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Abstract: Scanning probes reveal complex, inhomogeneous patterns on the surface of many con-
densed matter systems. In some cases, the patterns form self-similar, fractal geometric clusters. In
this paper, we advance the theory of criticality as it pertains to those geometric clusters (defined as
connected sets of nearest-neighbor aligned spins) in the context of Ising models. We show how data
from surface probes can be used to distinguish whether electronic patterns observed at the surface
of a material are confined to the surface, or whether the patterns originate in the bulk. Whereas
thermodynamic critical exponents are derived from the behavior of Fortuin–Kasteleyn (FK) clusters,
critical exponents can be similarly defined for geometric clusters. We find that these geometric critical
exponents are not only distinct numerically from the thermodynamic and uncorrelated percolation
exponents, but that they separately satisfy scaling relations at the critical fixed points discussed in
the text. We furthermore find that the two-dimensional (2D) cross-sections of geometric clusters in
the three-dimensional (3D) Ising model display critical scaling behavior at the bulk phase transition
temperature. In particular, we show that when considered on a 2D slice of a 3D system, the pair
connectivity function familiar from percolation theory displays more robust critical behavior than the
spin-spin correlation function, and we calculate the corresponding critical exponent. We discuss the
implications of these two distinct length scales in Ising models. We also calculate the pair connectivity
exponent in the clean 2D case. These results extend the theory of geometric criticality in the clean
Ising universality classes, and facilitate the broad application of geometric cluster analysis techniques
to maximize the information that can be extracted from scanning image probe data in condensed
matter systems.

Keywords: critical phenomena; fractals; electronic inhomogeneity

1. Introduction

Since their invention in 1982, scanning probes have revolutionized our understanding
of materials and their surfaces, yielding an ever increasing wealth of data available for
in-depth analysis, on a wide variety of systems [1]. At least seventeen types of scanning
probes have been developed [2,3], revealing new information about quantum materials
via, e.g., scanning tunneling microscopy [4–6], scanning near-field optical microscopy [7,8],
scanning X-ray methods [9–11], and atomic force microscopy [12], among others. Theory
has been sprinting to catch up in order to interpret it all, and also to discover new ways of
extracting information from the data, in order to fully realize this promise of new knowl-
edge from the increasing variety of scanning probes and their ever-increasing experimental
capabilities. While scanning probes have varying penetration depths, and therefore varying
native ability to probe at least some of the bulk, their real strength lies in the exquisite
spatial resolution at the surface. To date, the majority of theoretical treatments have focused
on microscopic physics [2], with few theoretical treatments offering guidance for how to
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interpret the wealth of information [13] available in the multiscale pattern formation often
observed on surfaces. We have recently pioneered a new set of techniques for analyzing
scanning probe data by mapping two-component image data to random Ising models [14],
based on geometric cluster methods imported from disordered statistical mechanics. A ge-
ometric cluster is defined as a set of aligned nearest-neighbor sites. The key insight is that
near criticality, the spatial configurations of geometric clusters are controlled by the critical
fixed point, and therefore the geometric properties encode critical exponents. The method
is capable of extracting information from experimental data about disorder, interactions,
and dimension. We have already successfully applied this new technique to uncover a uni-
fication of the fundamental physics governing the multiscale pattern formation observed
in two disparate strongly correlated electronic materials (cuprate superconductors [14,15]
and vanadium dioxide [16]).

However, because it is the Fortuin–Kasteleyn (FK) clusters (See Figure 1) which
encode thermodynamic criticality [17], rather than the geometric clusters which are directly
accessible experimentally via scanning probes and which we employ in our method, little
is known about the general theoretical structure of geometric clusters in clean and random
Ising models, and the critical exponents associated with the geometric clusters are unknown
for many of the fixed points which are key to interpreting experimental data. In this paper,
we advance the theory of criticality as it pertains to geometric clusters in clean Ising models
to further develop geometric cluster analysis techniques [14], in order to maximize the
information that can be extracted from experiments using these new methods. Although the
geometric clusters do not encode thermodynamic criticality, we conjecture that when the
geometric clusters percolate, whether at or below the thermodynamic critical temperature,
the geometric clusters do encode geometric criticality, complete with its own set of critical
exponents, which we further conjecture are distinct from the exponents of uncorrelated
percolation when arising in the context of an interacting model.

Figure 1. Geometric Clusters and Fortuin-Kasteleyn Clusters. (a) An example of an Ising config-
uration. Blue circles represent up spins; red circles represent down spins. Geometric clusters are
nearest-neighbor connected sets of like spins. There are two red geometric clusters, with connecting
bonds denoted in green. The blue sites also form a single geometric cluster. (b) To construct the FK
clusters, allow the bonds of each geometric cluster to be broken with a Boltzmann-like probability,
to mimic temperature fluctuations [18]. (c) The remaining set of nearest-neighbor connected clusters
are the FK clusters.

This paper is organized as follows. We first describe in Section 2 the model under
consideration. We then ask in Section 3 whether the pair connectivity function can be a
power law in any system other than uncorrelated percolation (to which we will answer
“yes”). In Section 4, we present some conjectures considering geometric criticality as distinct
from thermodynamic criticality. Next, we present in Section 5 our results for the critical
geometric cluster exponents on 2D slices of the clean 3D Ising model (denoted by C-3Dx,
where x means cross-section), and in Section 6 our simulations of the pair connectivity
function of the clean 2D Ising model (denoted by C-2D). In Section 7 we discuss the relation
of the order parameter in a 3D ferromagnetic Ising model to the percolation of geometric
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clusters on 2D slices of the 3D system and derive that the position of the 2D slice geometric
cluster percolation point coincides with bulk critical point. In Section 8 we discuss the
implications of the pair connectivity length scale in Ising models. Finally, in Section 9, we
discuss and summarize our findings about geometric criticality, and present conclusions
in Section 10. In addition, a List of Symbols can be found in Table 1, and a List of Critical
Exponents can be found in Table 2.

Table 1. List of symbols.

Symbol Definition

σi Ising variable on a site i (Equation (1))

J|| ; J⊥
In-plane and inter-plane Ising coupling

constant (Equation (1))
h Applied (uniform) magnetic field (Equation (1))
hi Random (local) field (Equation (1))
s Number of sites in a nearest-neighbor connected cluster
h Number of sites on the hull of a cluster

Rs Radius of Gyration of a cluster (Equation (2))
Rh Radius of Gyration of the interior of a cluster (Equation (3))

D(s) Distribution of cluster sizes
gconn(r) Pair connectivity function (Equation (4))
gspin(r) Spin-spin correlation function (Equation (10))

ξc Spin-spin correlation length (Equation (11)
ξp Percolation correlation length (Equation (4))
2D Two-dimensional
3D Three-dimensional

C-2D Clean 2D Ising model (i.e., no disorder)
C-3D Clean 3D Ising model

C-3Dx Interior slice of C-3D
T Temperature
Tc Magnetic ordering temperature
Tp Percolaton temperature

Tslice
p Percolation temperature on a slice

T3D
c ; T3D

p Bulk (3D) Tc and Tp

T3D
c (L→ ∞) = 4.51152786J Tc of C-3D in large system limit [19,20]

T2D
c (L→ ∞) = 2/ln(1 +

√
2)J Tc of C-2D for infinite size system [21]

p Percolation fraction
pc Critical fraction for percolation
FK Fortuin–Kasteleyn
L Length of one side of simulation
d Spatial dimension
R Infinite network strength (Equation (5))

Rslice
↑ ; Rslice

↓
Ininite network strength of up (down) spins on a slice

(Equation (5))
πi; π̃i Lattice gas variables (Equation (6))

γ̃∞
i

Characteristic function that spin i belongs to the infinite 2D
slice (+)-cluster

γ∞
i

Characteristic function that spin i belongs to the infinite 2D
slice (−)-cluster



Condens. Matter 2021, 6, 39 4 of 22

Table 2. List of critical exponents, defined in terms of scaling relations near criticality.

Name Symbol Definition

Fisher Exponent τ D(s) ∝ sτ

Volume Fractal Dimension dv s ∝ Rdv
s

Hull Fractal Dimension dh h ∝ Rdh
h

β M ∼ |T − Tc|β
ν ξ ∼ |T − Tc|−ν

Anomalous Exponent for Magnetism
(Equation (10) and (11)) ηc gspin(r) ∼ r−(d−2+ηc)

Anomalous Exponent for
Percolation (Equation (4)) ηp gconn(r) ∼ r−(d−2+ηp)

ηc and ηp as measured on a 2D (interior) slice η
||
c ; η

||
p

2. The Model

In strongly correlated electronic systems, the combination of disorder and strong
correlations can drive complex pattern formation [13], but disentangling correlations from
disorder in the experimental system is an open problem. Recently, we have developed new
cluster analysis techniques for interpreting scanning image probe data [14] in cases where
the spatial data can be abstracted to two components (and thus may be mapped to an Ising
variable [22,23]), and where the resulting cluster patterns display structure on multiple
length scales.

Scanning probe experiments often reveal complex pattern formation at the surface
of strongly correlated electronic systems [13,24]. For example, charge stripe orientations
display complex geometric patterns at the surface of some cuprate superconductors, as re-
vealed by scanning tunneling microscopy [5,25]. Complex patterns have also been observed
in thin films of VO2 and NdNiO3 as they transition from metal to insulator, via scanning
near-field optical microscopy [7,8,26] and via scanning X-ray microscopy [9]. Using the clus-
ter analysis techniques we developed, we showed that in these cases the dominant type of
disorder driving the pattern formation is in the random field [27] universality class, and we
argued that this is the origin of nonequilibrium behavior in both systems [8,9,14–16].

In this paper, we expand the diagnostic toolset of the geometric cluster analyses we
have developed to include the functional form and qualitative behavior of the connectivity
function, derived directly from geometric clusters. We find that the pair connectivity
function can be a power law at more than just uncorrelated percolation points, and we
compute the corresponding critical exponent via Monte Carlo simulations.

We consider a short-range Ising model:

H = −J ∑
〈ij〉

σiσj , (1)

where the sum runs over the sites of a cubic lattice for 3D systems, and over a square lattice
for 2D systems, chosen with spacing at least as small as the resolution of the images to be
studied. The tendency for neighboring regions in the data image to be of like character is
modeled as a nearest neighbor ferromagnetic interaction J.

The Ising variable σi = ±1 on each coarse-grained site represents one of the two
possible states, such as the two possible electron nematic orientations in the cuprates,
or the two states of conductivity (metallic or insulating) in VO2. For the two examples
above, our cluster analysis [14–16] of the image data shows that the geometric clusters
(which are defined as the connected set of the nearest neighbor sites with Ising variables
being the same value) extracted from the multiscale pattern formation display universal
scaling behavior over multiple decades, suggesting criticality and universality as the origin
of the spatial complexity revealed by scanning probe microscopy in strongly correlated
electronic systems. By comparing the data-extracted critical exponents derived from the
self-similarity of the geometric clusters with the theoretical values for the fixed points
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contained in Equation (1), we have shown [14] that it is possible to identify the universality
class governing the scaling behavior of the geometric clusters observed on surfaces of
novel materials.

Once the universality class driving the pattern formation has been identified, this
in turn yields information about the relative importance of disorder and interactions,
the dominant type of disorder in the system, and the dimension of the phenomenon
studied [14–16,25]. For example, by extracting the critical exponents associated with the
geometric clusters appearing at the surface of a material, it is possible to understand
whether those clusters are forming merely due to surface effects, or whether the clusters
form throughout the bulk of the material and then intersect the surface, because the critical
exponents are sensitive to dimension.

3. Where Is the Connectivity Function Power Law?

Although geometric clusters do not encode thermodynamic criticality, we claim that
whenever the geometric clusters percolate, the resulting power law behavior encodes a
type of geometric criticality [28,29]. We further claim that such geometric critical points in
interacting models are new, distinct fixed points, which are different from uncorrelated
percolation, as supported by our results to be presented in this paper. The pair connectivity
function, derived from geometric clusters, is known to be power law at uncorrelated
percolation points. The pair connectivity function gconn(r) is defined as the probability that
two sites separated by a distance r belong to the same connected finite cluster. Can it also
be power law at certain fixed points in interacting models? The most natural clusters to
define in Ising models are the geometric clusters, defined by nearest-neighbor sets of like
Ising “spins”. The geometric clusters have the advantage that they are directly accessible
in image probe data in a two-component system, and they are the clusters we employ in
our method.

However, geometric clusters in Ising models are still poorly understood theoretically,
presumably because they do not necessarily percolate at the thermodynamic transition
temperature, Tc. Rather, it is the FK clusters which percolate at the thermodynamic
transition temperature Tc, and which encode the thermodynamic critical behavior [17]. The
FK clusters also constitute the critical “droplets” of the Fisher droplet model [30]. In the
case of the clean 2D Ising model (C-2D), it has been shown that the geometric clusters also
percolate at the thermodynamic transition, where the percolation temperature Tp is equal
to the thermodynamic transition temperature: Tp = Tc [28]. In other cases, such as the
clean and random bond Ising models in three dimensions, it has been shown that the bulk
geometric clusters percolate at a temperature Tp < Tc, inside the ordered phase [28,29,31,32].

For the thermodynamic fixed points of Equation (1) at which Tp = Tc (as happens
at C-2D), the geometric clusters have well-defined fractal dimensions [33], both fractal
volume dimension dv and fractal hull dimension dh. In addition, geometric clusters defined
on a 2D slice of the clean 3D Ising model also display fractal behavior [34]. At these points,
because of their fractal structure, the large-scale geometric clusters are self-similar, i.e., they
look the same on all length scales. This is a tell-tale characteristic of power law behavior,
which leads us to our first conjecture:

Conjecture #1: The connectivity function is a power law at all critical points for which the
geometric clusters have fractal dimensions, dv and dh.

Our results in Section 6 indicate that indeed the connectivity function is a power law
at the C-2D critical fixed point, in support of Conjecture #1. This is of course implicit in the
pioneering work of Coniglio and coworkers on the percolation of geometric clusters in this
model [28,35]. Our results in Section 5 show that the connectivity function is also a power
law on a 2D slice as the clean 3D Ising system passes through thermodynamic criticality at
T3D

c . (See Figures 5 and 6). It was already known from the work in Ref. [34] that geometric
clusters defined on a 2D slice have well-defined fractal dimensions at T3D

c in the clean 3D
Ising model, lending further support to Conjecture #1.
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4. Geometric Criticality and Thermodynamic Criticality: Two Types of
Critical Exponents

It is known that at the clean 2D Ising (C-2D) fixed point, there are two distinct sets
of critical exponents: one set associated with the thermodynamic criticality and encoded
by the FK clusters, and a different set associated with “geometric criticality”, encoded by
the geometric clusters [17,28,33]. As both types of clusters percolate right at the transition
temperature, Tp = Tc, both types of clusters exhibit power law behavior, yielding two
distinct sets of critical exponents, one set derived from each type of cluster. While the
scaling laws governing the exponent relations at this fixed point are the same for the two
types of clusters, the values of the geometric exponents are not equal to the values of the
thermodynamic exponents, and neither set is equal to the values of uncorrelated percolation
exponents. In this sense, the C-2D fixed point is therefore both a thermodynamic critical
point and a type of geometric critical point. This also implies that there are two order
parameters for the 2D clean Ising model (the magnetization and the infinite geometric
cluster); as we will show below, corresponding to the two order parameters are two distinct
length scales.

The set of critical exponents derived from the thermodynamic order parameter (in
this case, the magnetization), is associated with percolation of the FK clusters, and encodes
thermodynamic criticality—we will denote these exponents by the subscript “c” (to match
the “c” in the thermodynamic critical temperature Tc). This type of exponent has been
widely discussed in the literature. The other set of exponents is derived from the percolation
order parameter, which is the infinite network strength, defined as the ratio of the number
of sites in the infinite connected geometric cluster to the total number of sites in the system.
This second set of critical exponents is associated with percolation of geometric clusters,
and encodes geometric criticality—we will denote these exponents by the subscript “p”
(for percolation).

The fact that there can be two distinct sets of exponents has been largely ignored
in the literature, except at the C-2D [28,33] fixed point where Tp = Tc, and in the clean
3D Ising model [31,36] where Tp < Tc. The percolation temperature is also known to be
inside the ordered phase Tp < Tc in 3D random bond Ising models, as well [28,29,31,32].
When Tp < Tc, we claim that as the geometric clusters percolate at Tp, they display
a type of criticality, even though the system is not at the thermodynamic critical point.
To understand why, it is first helpful to have an intuition about how Tp in an interacting
model is related to uncorrelated percolation. The relation of the percolation temperature Tp
to Tc is constrained by the site percolation thresholds in the uncorrelated case: on a square
lattice, the percolation threshold is pc = 0.59, while on a cubic lattice, it is pc = 0.31, where
p is the fraction of sites that are occupied. (In the Ising case, p becomes the fraction of sites
with aligned spins [28].)

The high temperature limit of Equation (1) maps to uncorrelated percolation with
p = 0.5. So, in 2D, neither up nor down spins percolate at T → ∞, since p(T → ∞) =
0.5 < pc = 0.59 on a square lattice. Since a majority geometric cluster spans the system
in the ordered phase, it must pass through a percolation point at Tp = Tc if the transition
is continuous. Indeed, it has been proven rigorously that Tp = Tc in clean 2D Ising
models [28]. Consistent with the argument above, it is known that ∆p = ∆c = 0 in the 2D
random field Ising model [37] where ∆ is the disorder strength. We expect similar physics
to obtain in the random bond Ising model in two dimensions.

In three dimensions, the high temperature limit of Equation 1 still maps to uncorrelated
site percolation with p = 0.5, but now both up and down spins span the system, since
p(T → ∞) = 0.5 > pc = 0.31 on a cubic lattice, where pc is the site percolation threshold.
Upon decreasing temperature, the majority clusters grow below Tc, but since they were
already spanning the system, the majority clusters do not pass through a percolation point.
However, the minority geometric clusters must pass through a percolation point as they
begin to shrink below Tc, although there is no obvious reason why they should do so at Tc.
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In fact, in the clean 3D case, it has been rigorously shown that Tp < Tc [31]. This inequality
also holds in the random bond case as well [32].

At C-2D, the two sets of critical exponents separately satisfy the same scaling relations.
For example, as discussed in Refs. [28,33], the familiar exponent relations d − 2 + η =
2β/ν = 2(d− dv) are satisfied by the thermodynamic exponents as d− 2 + ηc = 2βc/νc =
2(d− dv,c), and the same exponent relations are separately satisfied by the connectivity
function and the geometric clusters as d− 2 + ηp = 2βp/νp = 2(d− dv,p). The thermody-
namic exponents in this case are [38,39] ηc = 0.25, βc/νc = 1/8, and dv,c = 15/8, where
the volume fractal dimension dv,c is derived from the fractal structure of the FK clusters
at the critical point [33]. Inserting these values into the above scaling relations yields
2− 2 + 0.25 = 2 ∗ (1/8) = 2 ∗ (2− 15/8), and the exponents are clearly self-consistent.
The exponents associated with percolation of the geometric clusters are βp/νp = 5/96 and
dv,p = 187/96 [33], where the volume fractal dimension dv,p is derived from the fractal
structure of the geometric clusters as they percolate at Tp = Tc. Inserting these values into
the exponent relation 2βp/νp = 2(d− dv,p) yields 2 ∗ (5/96) = 2 ∗ (2− 187/96), indicating
that the geometric clusters also satisfy scaling relations at C-2D.

Although we have not found an explicit, direct calculation in the literature of the
exponent ηp at C-2D, which in this case should be derived from the pair connectivity
function familiar from percolation theory, our results based on numerical simulations of the
connectivity function gconn(r) at C-2D indicate that d− 2 + ηp = 0.104± 0.002 as shown
in Figure 7, consistent within error bars with the scaling relation d− 2 + ηp = 2βp/νp
(0.104± 0.002 ≈ 2 ∗ (5/96)). Thus, we see that at C-2D, there are two distinct sets of
exponents, and that the geometric exponents also satisfy the scaling relations of criticality.
This brings us to our second conjecture:

Conjecture #2:: There are two distinct sets of critical exponents which both satisfy scaling
relations at all critical points for which Tp = Tc: one derived from the FK clusters, and the
other derived from the geometric clusters.

5. Numerical Results for the Critical Exponents Defined on 2D Slices of a 3D System

We are ultimately interested in understanding the origin of the complex, two-component
pattern formation observed at the surfaces of some strongly correlated electronic sys-
tems [13,14,16] via scanning image probes. In cases where the data show multiscale
clusters of two distinct types, one of the drivers of such behavior can be proximity to a
critical point of an Ising model, Equation (1). We focus in this paper on the clean Ising
case; future work will include the effects of disorder. The problem at hand, then, is to map
the properties of the observed geometric clusters to critical exponents of the model. We
focus here on five exponents that can be directly extracted from the microscopy imaging
data, and can be used to compare with different models to identify the universality class
(explained more fully below): The Fisher exponent τ which describes the cluster size dis-
tribution; the volume fractal dimension dv and the hull fractal dimension dh of geometric
clusters; the anomalous dimension η

||
c which controls the spin-spin correlation function;

and as we will see below, η
||
p which controls the pair connectivity function.

We are interested in this section in the critical behavior displayed by the 2D slice
geometric clusters near the 3D clean Ising phase transition (C-3Dx) which occurs at the
bulk 3D transition temperature T3D

c . (In Section 7 we will demonstrate that this temper-
ature indeed coincides with the 2D slice percolation point Tslice

p .) The simulations of the
clean Ising system are performed near T3D

c for the study of geometric criticality on 2D
slices, and the Wolff single cluster algorithm [40] is known to be successful in mitigating
critical slowing down effects near criticality. Therefore, we use this well-established cluster
updating algorithm in our simulations. We adopt open boundary condition, because this
representation is consistent with our context of microscopy experiments on real materials
with finite scale. Throughout the paper, we use the logarithmic binning method which
is a standard technique for analyzing the scaling behavior [41]. For the 3D cubic lattice,
we use T3D

c = 4.51152786J [19,20], and all simulations are performed using system sizes
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from L3 = 803 to L3 = 1923 averaged over a large number of configurations in the Monte
Carlo simulation in the order of magnitude 104. We take samples of configurations every
1000 Wolff steps after the system reaches equilibrium, in order to mitigate explicit spatial
correlations between different images. As one whole cluster is updated for each Wolff
iteration, 1000 steps are empirically a large enough interval to make two neighboring
sample images look totally different.

In the simulations, we have found that the percolation critical exponents extracted
from (+)-clusters and (−)-clusters, respectively, are consistent with each other. This is
expected, since at Tslice

p = T3D
c there is (+)/(−) symmetry (see Section 7). Therefore, we

present the results with both clusters considered together for better statistics.
The cluster size distribution D(s) measures the number of geometric clusters with

a given size s, and scales with s−τ as geometric clusters become critical. It is important
to remember that when considered in the bulk context, geometric clusters do not display
criticality at the bulk transition temperature T3D

c , but rather the minority clusters experience
a percolation transition (and therefore display criticality) (At high temperatures in three
dimensions, both (+) and (−) clusters span the system, since the uncorrelated percolation
transition in a cubic lattice occurs at a fraction of 31%. At very low temperatures in 3D,
the system is spanned only by a majority cluster. The percolation transition for geometric
clusters happens inside the ordered phase, T3D

p < T3D
c , when minority clusters cease to

span the system) at a lower temperature T3D
p < T3D

c . However, we find that when a 2D slice
of the system is considered, the geometric clusters as defined on the slice do display critical
behavior in the form of power law scaling at the bulk transition temperature T3D

c . For a
2D slice embedded in the 3D bulk system, we find that D(s) ∼ s−τ at T3D

c , with the Fisher
exponent τ specific for geometric clusters defined on a 2D cross section of a 3D system.
With a finite field of view (FOV), D(s) in the bulk is known to have a scaling bump, which
skews τ to a lower value [42]. In order to mitigate this effect, we analyze D(s) using only
internal clusters, i.e., those which do not touch a boundary. D(s) of the internal clusters
shows unskewed power law behavior within a cutoff [43].

Figure 2 shows the cluster size distribution D(s) of internal 2D cross-sectional clusters
for different system sizes at Tslice

p = T3D
c . For each system size, we exclude the last two

points, which deviate from power law scaling, and fit all the other points within this
cutoff [43]. Based on the observed power law behaviors in Figure 2, we use the discrete
logarithmic derivative method (DLD) [44] to extract τ. Since we are only interested in the
slope −τ, we normalize all the D(s) with D(s = 1) = 1 for better comparison between
different system sizes. As can be seen in the figure, depending on the system size, power
law scaling persists for about 2.5 decades of scaling. We extrapolate τ extracted at T3D

c
to L → ∞, and we find that a linear fit of τ(L) yields τ = 2.001 ± 0.013 as L → ∞.
Here, the extrapolation follows the linear regression method with error-in-variables [45].
In general, the critical exponents cannot be directly obtained from a rigorous parametric
fitting because the exact analytical form of the finite scaling functions are usually unknown.
Under this case, linear extrapolation is a standard first-order approximation method for
exponent extractions [46], and we use this for critical exponent extrapolations throughout
the whole paper. The natural finite-size scaling hypothesis for the cluster size distribution
at criticality reads D(s, L) = (L2)−τD̂(s/L2), where D̂ is a universal scaling function [46].
The inset (b) in Figure 2 shows that using the exponent τ derived as above, the results from
the main panel exhibit scaling collapse to a universal scaling function D̂ as expected.

The cluster volumes s and hulls h become fractal near a percolation point. The fractal
nature of the 2D cross-sectional cluster volumes at Tslice

p = T3D
c can be described by s ∼ Rdv

s
with fractional rather than integer dv for s� 1. Here, dv is the volume fractal dimension,
and Rs is the radius of gyration of the cluster,

R2
s ≡

1
2 ∑

i,j
|ri − rj|2/s2 (2)
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where the sum is over sites in the cluster, and ri and rj are the positions of the ith and jth
sites [47]. Figure 3 shows a DLD power law fit of s ∼ Rdv

s , using only the internal clusters
to mitigate boundary effects. Since the scaling relation is for s � 1, we exclude the first
3 points which correspond to the non-universal short-length regime. All the other points
belong to the power law scaling regime. The power law fits at Tslice

p = T3D
c persist for about

two decades of scaling, depending on the system size. A straightforward fit extrapolating
dv to the thermodynamic limit yields dv = 1.856± 0.018. The inset Figure 3b illustrates the
scaling collapse for different system sizes to the universal function ŝ using the extrapolated
values of dv, based on the finite-size scaling hypothesis s = Ldv ŝ(Rs/L) [46].
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Figure 2. Cluster size distribution D(s) ∼ s−τ of internal C-3Dx geometric clusters at Tslice
p = T3D

c
for system sizes from L = 80 to L = 192. The inset (a) shows the extrapolation of τ from the DLD
fits in the main panel to the thermodynamic limit L→ ∞, which gives τ = 2.001± 0.013. The inset
(b) shows the scaling collapse of the curves in the main panel, using the extrapolated τ in (a).
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Figure 3. The power law fits for Rs ∼ s1/dv , using internal C-3Dx geometric clusters at Tslice
p = T3D

c
for system sizes from L = 80 to L = 192. The inset (a) shows the extrapolation of dv from the fits
in the main panel to the thermodynamic limit L → ∞, which gives dv = 1.856± 0.018. The inset
(b) shows the scaling collapse of curves in the main panel, using the extrapolated dv in (a).
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The cluster hulls h scale with h ∼ Rdh
h near a percolation point. The clusters are said to

be fractal if dh is fractional rather than integer. In this case, we are only tracking the outer
(externally accessible) surfaces of each cluster. Thus, one surface might contain not only
the cluster itself, but also the subclusters inside. Therefore, Rh here refers to the radius of
gyration of all the sites enclosed by the hull, including any subclusters:

R2
h ≡

1
2 ∑

i,j∈h
|ri − rj|2/s2 (3)

To mitigate the boundary effect, we still use only the internal clusters in the DLD fit.
We exclude the first 2 point from the fit (h is a smaller measure than s for a cluster), which
deviate from the power law scaling regime and correspond to non-universal short distance
physics. As shown in Figure 4, the power law behavior extends over about 2 decades,
depending on the system size. A straightforward fit extrapolating to the thermodynamic
limit at Tslice

p = T3D
c yields dh = 1.714± 0.022. The inset Figure 4b shows the scaling

collapse for different system sizes to the universal function ĥ using the extrapolated values
of dh, based on the finite-size scaling hypothesis h = Ldh ĥ(Rh/L) [46].
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Figure 4. The power law fits for Rh ∼ h1/dh , using internal C-3Dx geometric clusters at Tslice
p = T3D

c
for system sizes from L = 80 to L = 192. The inset (a) shows the extrapolation of dh from the fits
in the main panel to the thermodynamic limit L → ∞, which gives dh = 1.714± 0.022. The inset
(b) shows the scaling collapse of curves in the main panel, using the extrapolated dh in (a).

As introduced in the previous section, the pair connectivity function gconn(r) is defined
as the probability that two sites separated by a distance r belong to the same finite cluster.
This correlation function scales with gconn(r) ∼ r−(d−2+ηp) close to the percolation point.
Figure 5 shows gconn(r) at Tslice

p = T3D
c with different system sizes. As shown by the

figure, in addition to the power law behavior, associated with gconn(r) there appears to
be an exponential decay characterized by the correlation length scale of the finite system.
Therefore, we infer the scaling form

gconn(r) ∼ r−(d−2+ηp)e−r/ξp (4)
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with a finite correlation length, and then fit the curves in the main panel using this scaling
form. From the fits, we find that the curves of gconn(r) are consistent with the shape of the
scaling form with some large percolation correlation length ξp comparable with the finite
system size. The inset (a) of Figure 5 shows the extracted anomalous dimension d− 2 + ηp
from the scaling form fits in the main panel. A straightforward fit extrapolating to L→ ∞
yields d− 2 + ηp = 0.322± 0.002. The curves in the main panel collapse onto each other
for the extrapolated d− 2 + ηp, as shown by the inset (b) of Figure 5.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

r

g
(r

)

 

 

L=80

L=96

L=112

L=128

L=144

L=160

L=192

0 0.005 0.01 0.015

0.28

0.3

0.32

0.34

L
−1

d
−

2
+

η

(a)

10
−2

10
−1

10
0

10
1

10
−2

10
0

r/ξ

rd
−

2
+

η
g
(r

)

(b)

Figure 5. Pair connectivity function gconn(r) on the 2D slice of clean 3D Ising system with different
system sizes from L = 80 to L = 192 at Tslice

p = T3D
c . The inset (a) shows the extrapolation of

d− 2+ ηp from the scaling form fits of gconn(r) in the main panel to the thermodynamic limit L→ ∞,
which yields d− 2 + ηp = 0.322± 0.002. The inset (b) shows the scaling collapse of curves in the
main panel, using the extrapolated d− 2 + ηp in (a).

In Figure 6, we show the C-3Dx pair connectivity function gconn(r) simulated with
system size L = 192 for different temperatures near T3D

c . It is evident that for T & T3D
c ,

gconn(r) is consistent with the shape of the scaling form in Equation (4) and for T < T3D
c ,

gconn(r) turns up at large r. For gconn(r) calculated using all the possible pairs in the
system, this up-turn is a characteristic behavior of the connectivity function when the
system transitions from the “disordered side” (zero infinite network strength R = 0) to
the “ordered side” (non-zero infinite network strength R > 0) through a percolation point,
indicating the presence of an infinite cluster on a 2D slice. (Here R is the percolation order
parameter defined on the 2D slice, also called the infinite network strength, and defined
as the ratio of the number of sites in the infinite connected geometric cluster to the total
number of sites in the system.) Therefore, this behavior can be used as a diagnostic tool
to estimate the percolation point in an experimental situation. In the present case, this
up-turn happens in the vicinity of T3D

c , corroborating the idea that Tslice
p coincides with the

bulk thermodynamic transition temperature, Tslice
p = T3D

c .
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Figure 6. Pair connectivity function gconn(r) on the 2D slice of the clean 3D Ising system with size
L = 192 at different temperatures around Tslice

p = T3D
c . gconn(r) turns up at large r for T < T3D

c .

We have studied the scaling behavior of cross-sectional 2D slice geometric clusters
embedded in the 3D bulk clean Ising system. We have found robust power law scaling
(about two decades) for the measures related to the self-similarity of geometric clusters
at T3D

c , as well as the existence of universal scaling functions. All of these phenomena
corroborate the conjecture that geometric criticality on a 2D slice occurs at the bulk crit-
ical temperature Tslice

p = T3D
c , and we have extracted the corresponding critical cluster

exponents, as summarized in Table 3.

Table 3. Theoretical/numerical values for the 2D geometric cluster self-similarity-characterized
critical percolation exponents for Ising models and standard percolation model.

Model 2D Ising Model [33,48] 2D Slice of 3D Ising
Model (This Work)

Standard
Percolation [47,49,50]

Fixed Point C-2D C-3Dx P-2D

τ 379/187 = 2.027 2.001± 0.013 187/91 = 2.055
dv 187/96 = 1.948 1.856± 0.018 91/48 = 1.896
dh 11/8 = 1.375 1.714± 0.022 7/4 = 1.75

d− 2 + ηp 0.104± 0.002 (this work) 0.322± 0.002 5/24 = 0.208

6. Numerical Results for the Connectivity Function in the Clean 2D Ising Model

In the clean 2D Ising model, the percolation point coincides with the critical point,
and both up and down geometric clusters percolate symmetrically at T2D

p = T2D
c under

zero external field [28,51]. The values of the exponents τ, dv and dh are already given in the
work by Janke et al. [33], as summarized in Table 3. In the present work, we simulate the
connectivity function in order to obtain the value of the anomalous dimension d− 2 + ηp.
Figure 7 shows the connectivity function gconn(r) at T2D

p = T2D
c , with T2D

c = 1/ln(1 +
√

2)
for the square lattice [52]. The inset (a) shows d− 2 + ηp extracted from the scaling form fit
of the connectivity function gconn(r) ∼ r−(d−2+ηp)e−r/ξp at T2D

c for different system sizes,
and a straightforward fit extrapolating to the thermodynamic limit gives d − 2 + ηp =
0.104± 0.002. With this value, all of the curves in the main panel collapse on top of each
other, as shown by the inset (b). Figure 8 shows the behavior of gconn(r) around T2D

c with
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system size fixed at L = 256. As for the case of C-3Dx, we find that for T > T2D
c , the pair

connectivity function gconn(r) is consistent with the scaling form shape and for T < T2D
c

gconn(r) turns up. This change of behavior happens in the close vicinity of T2D
c , consistent

with the idea that T2D
p = T2D

c .
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Figure 7. Pair connectivity function gconn(r) of the 2D clean Ising system with different sizes from
L = 96 to L = 352 at T2D

p = T2D
c . The inset (a) shows the extrapolation of d − 2 + ηp from the

scaling form fits of gconn(r) in the main panel to the thermodynamic limit L → ∞, which yields
d− 2 + ηp = 0.104± 0.002. The inset (b) shows the scaling collapse of curves in the main panel,
using the extrapolated d− 2 + ηp in (a).

Figure 8. Pair connectivity function gconn(r) of the 2D clean Ising system with size L = 256 at
different temperatures around T2D

p = T2D
c . The change of behavior for gconn(r) from the scaling form

shape to the turning-up shape happens in the close vicinity of T2D
p = T2D

c .
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7. Relation of Infinite Cluster to Bulk Magnetization on a 2D Slice

The bulk minority geometric clusters for the clean 3D Ising model are known to percolate
inside the ordered phase, with the percolation temperature T3D

p = 0.93T3D
c < T3D

c [31,36].
Therefore, the bulk geometric clusters do not display fractal properties at the critical tem-
perature Tc, although they do at T3D

p . At first glance, one might think that the geometric
clusters on a 2D slice, which are cross-sections of the 3D bulk clusters, should also display
critical scaling behavior at the bulk percolation temperature T3D

p . However, as shown
in Figure 9a, the geometric clusters defined on a 2D cross-section at T3D

p do not display
self-similar scaling behavior, since the minority clusters are small, and a single majority
cluster spans the slice. This shows that T3D

p is not the percolation point for 2D slice geomet-
ric clusters. On the other hand, inspired by the fact that the percolation point coincides
with the critical point for 2D Ising model [28], we find that at T3D

c , as shown by Figure 9b,
the 2D cross-sectional geometric clusters indeed show self-similarity and fractal behavior
over all lengthscales in the field of view. This is consistent with the findings of Ref. [34],
which argues that Tslice

p = T3D
c . Additionally, our numerical simulation in Section 5 cor-

roborates Tslice
p = T3D

c from various perspectives, including robust power law behaviors
of 2D slice geometric clusters at T3D

c and change of behavior of pair-connectivity function
through T3D

c .

(a) (b)

Figure 9. Illustration of the equilibrium 2D slice configuration embedded in the 3D Ising system with
L = 192 at (a) T = T3D

p and (b) T = T3D
c .

In the clean 2D Ising model, Coniglio and co-workers [28] showed that the percolation
temperature coincides with the thermodynamic transition temperature, Tp = Tc, by show-
ing that M < R, where M is the net magnetization and R is the infinite network strength,
defined as the ratio of the number of sites in the infinite connected geometric cluster to the
total number of sites in the system. This stems from the very physical idea that in a 2D
system with thermal fluctuations, a net magnetization requires that at least one geometric
cluster spans the system. From Figure 9, it appears that something similar must be going
on in the 3D Ising model, when clusters are defined as a 2D slice. As will be discussed
later in this section, our numerical results indeed show that M < Rslice, where Rslice is
the infinite network strength defined on a plane of a 3D system (Note that in Ref. [51],
Coniglio et al. showed that M < R in any dimension, for T < Tc. The question here is
whether M < Rx on a 2D slice in a 3D system).
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To rigorously prove that Tslice
p = T3D

c would require a proof the following lemma: For
a 2D slice of the 3D ferromagnetic Ising model with nearest-neighbor interactions at zero
external field (H = 0) and below the critical temperature(T < Tc), we have

M(0+, T) ≤ Rslice
↑ (0+, T)− Rslice

↓ (0+, T). (5)

The symbol 0+(0−) means H = 0 with (+)-boundary ((−)-boundary) condition.
For our discussion, we limit ourselves to the (+)-boundary by convention, and the re-
sults of (−)-boundary follow those of (+)-boundary under symmetry. M(0+, T) is the
reduced spontaneous magnetization on the 2D slice (which is identical to the reduced
spontaneous magnetization of the bulk system at thermodynamic limit), and is given by
M(0+, T) = 〈π̃0〉+ − 〈π0〉+. Here

πi =
1
2
(1− σi)

π̃i =
1
2
(1 + σi) (6)

are the lattice gas variables relative to the ith site, and σi = ±1 is the usual Ising spin
variable. π̃i (πi) is equivalently the characteristic function of the event that spin i is up
(down). The characterstic function of an event is that when the event happens, the function
takes the value 1, otherwise it takes the value 0. The subscript 0 refers to the origin, and 〈〉+
means the thermal average for the Ising model with (+)-boundary. Here we only take
one slice for each Ising configuration to be counted in the thermal average, and we do not
average over slices belonging to the same configuration in order to reduce spatial depen-
dence. Therefore, there is a one-to-one correspondence between the slice configuration
and bulk system configuration, and by convention we fix the slice to be the z = 0 plane
in the Z3 cubic lattice so that the slice contains the origin. Rslice

↑ (0+, T)(Rslice
↓ (0+, T)) is

the 2D slice infinite network strength for up(down) spins, defined as the probability that
the origin belongs to the infinite 2D slice (+)-cluster ((−)-cluster), or equivalently, it is
the weight of the infinite 2D slice (+)-cluster((−)-cluster). Mathematically, it is given by
Rslice
↑ (0+, T) = 〈γ̃∞

0 〉+ (Rslice
↓ (0+, T) = 〈γ∞

0 〉+), where γ̃∞
i (γ∞

i ) is the characteristic function
of the event that spin in i belongs to the infinite 2D slice (+)-cluster((−)-cluster).

For the 2D slice of a cubic lattice system, which is a simple planar graph admitting an
elementary cell and two axes of symmetry, we have the statement that (i) an infinite 2D
slice (+)-cluster cannot coexist with an infinite 2D slice (−)-cluster, and (ii) the number of
each type of infinite 2D slice cluster must be either 0 or 1 [28,51,53–55]. This means that

Rslice
↑ (H, T)Rslice

↓ (H, T) = 0, (7)

and thus, there can only be at most one infinite (+)-cluster on the 2D slice with the (+)
boundary condition. While one can conceive of two infinite clusters which both span the
system (i.e., skinny clusters which stretch from one side to the opposite side), the isotropy of
the model ensures that the naturally occurring clusters are isotropic in the thermodynamic
limit. Therefore, Equation (2) equivalently becomes

M(0+, T) ≤ Rslice
↑ (0+, T), (8)

as intuitively discussed in the previous paragraph.
The rigorous demonstration of (4) requires that the Markov property [56] and the

Fortuin–Kasteleyn–Ginibre (FKG) inequality [57] both hold [28]. The FKG inequality
(the FKG inequality concerns the relation of the expectation value of the product of two
functions of Ising variables to the product of the expectation values. See Refs. [28,57].)
may be directly extended to the 2D slice since it is applicable to any finite set in the bulk
system. However, the Markov property cannot be restricted to a 2D slice, since the Markov
chain may extend off the slice in a 3D system. Rather than delving into a mathematical
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physics approach, for the purpose of this paper, we numerically demonstrate the fact that
the inequality (4) holds for the 2D slice embedded in the 3D Ising model, as revealed
by Figure 10.

By symmetry, we have Rslice
↑ (H, T) = Rslice

↓ (−H, T). Therefore, from Equation (3),
for T ≥ T3D

c , we must have Rslice
↑ (0, T) = Rslice

↓ (0, T) = 0. For T < T3D
c , Equations (3)

and (4) yield Rslice
↓ (0+, T) = 0 and Rslice

↑ (0+, T) ≥ M(0+, T) > 0. If we suppose that the
finite cluster weight is continuous and has a limit at T3D

c , then due to symmetry we have
limT→T3D

c
〈γ̃0〉+ = limT→T3D

c
〈γ0〉+. From

M(0+, T) = 〈π̃0〉+ − 〈π0〉+
= 〈γ̃0〉+ − 〈γ0〉+ + 〈γ̃∞

0 〉+ − 〈γ∞
0 〉+, (9)

we have limT→T3D
c
〈γ̃∞

0 〉+ = limT→T3D
c
〈γ∞

0 〉+, which then leads to limT→T3D
c

Rslice
↑ (0+, T) = 0,

so that no jump occurs at T3D
c . This is intuitively consistent with a continuous phase transi-

tion. In other words, under the (+) boundary condition with zero external field, the 2D
slice (+)-cluster percolates at T3D

c , as characterized by the percolation order parameter
Rslice
↑ (0+, T) which continuously changes from 0 to non-zero.

All of the above statements apply to the (−)-cluster with (−) boundary condition un-
der symmetry. Thus, for zero applied field H = 0, the (+)-cluster and (−)-cluster defined
on a 2D slice both approach the percolation point at the limit T → T3D

c . The spontaneous
infinite cluster type in the ordered phase T < T3D

c is decided by the boundary condition
(whether (+) or (−)), and is symmetric under H = 0+ ↔ H = 0−. Therefore, with H = 0
at the limit T → T3D

c , both types of clusters percolate on the slice, and due to symmetry
they present the same universal scaling behavior with the same critical exponents.

As supported by our numerical simulation as summarized in Table 3, this critical
percolation point of geometric clusters defined on 2D slices of the bulk system in the 3D
clean Ising model is a new universality class of geometric criticality, distinct from that of the
clean 2D model and uncorrelated percolation in 2D, as well as that of the bulk percolation
which occurs inside the ordered phase of the 3D system, since T3D

p 6= Tslice
p .

Figure 10. Numerical results of the reduced spontaneous magnetization M and the infinite network
strength R of the 2D slice embedded in 3D Ising system under zero external field with L = 192 at
T < T3D

c , averaged over a number of configurations in the order of magnitude ∼105. M and R both
approach 1 when T decreases, with M < R. The inset shows a log–log plot of M vs. R, compared to
the power law scaling form ansatz M ∝ R2.37.
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8. Two Correlation Lengths

In this section we elaborate on the two different correlation lengths associated with
the pair connectivity function and the spin-spin correlation function. In Figure 11, we show
the pair connectivity function gconn and spin-spin correlation function gspin for both the 2D
slice of the 3D clean Ising model and 2D clean Ising model near their respective transition
temperatures with specific system sizes (L = 160 for C-3Dx and L = 256 for C-2D). The
spin-spin correlation function is defined as

gspin(r) = 〈σ0σi〉 − 〈σ0〉〈σi〉 (10)

where r is the distance between the origin and site i. Since gspin approaches 0 for large r, it
can fluctuate into negative values under our simulation with finite system sizes and finite
number of configurations for averaging. Once negative values appear, in Figure 11 we cut
off the remaining points with larger length scales on the log-log plots.

By doing scaling form fits of the correlation functions, we can extract the correlation
length for each function. The scaling form that we fit for the pair connectivity function
gconn(r) is in Equation (4), which gives the correlation length ξp of geometric criticality. We
use the following scaling form fit for gspin(r) near criticality:

gspin ∼ r−(d−2+ηc)e−r/ξc (11)

Figure 11. Pair connectivity function gconn(r) and spin-spin correlation function gspin(r) for (a) C-
3Dx with L = 160 at the critical temperature T3D

c (L→ ∞) and (b) C-2D with L = 256 at the critical
temperature T2D

c (L→ ∞). The black cross markers on the correlation functions denote the length
scales of correlation lengths, extracted from a fit to Equations (4) and (11). The thick lines represent
the power law behaviors of the correlation functions by setting the exponential terms to unity.

In Panel (a) of Figure 11, which is calculated at the thermodynamic critical temperature
T3D

c (L → ∞) of the infinite size system for C-3Dx, these two correlation lengths are
ξp = 168± 4.9 and ξc = 19.5± 0.6, where the error bars are estimated from the standard
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deviation of the correlation lengths in the simulations from the critical form ξ ∝ 1/|T− Tc|ν
over the temperature range reported in Figure 12. In Panel (b) of Figure 11, which is
calculated at thermodynamic critical temperature T2D

c (L→ ∞) of the infinite size system
for C-2D, these correlation lengths are ξp = 327± 9.5 and ξc = 95± 2.8, where the error
bars are once again estimated from the standard deviation of the correlation lengths in the
simulations from the critical form ξ ∝ 1/|T − Tc|ν over the temperature range reported in
Figure 12. Note that in both cases, ξp extracted by this method has exceeded the system
size, and is subject to finite size effects. In addition, these graphs should be considered to
be near but not at criticality, since finite size effects lower the transition temperature from
the bulk value. Nevertheless, in both cases, ξp is much larger than ξc. From the scaling
form fits, we have d− 2 + ηc = 1.078± 0.068 for C-3Dx, and d− 2 + ηc = 0.272± 0.008
for C-2D. They are very close to the established values d − 2 + ηc = 1.0336 [58] and
d − 2 + ηc = 0.25 [38,59], respectively, corroborating the validity of our results for the
spin-spin correlation lengths. The results for d− 2 + ηp from the fits are already reflected
in the insets (a) of Figures 5 and 7.

Figure 12. The two correlation lengths ξp (pertaining to gconn(r)) and ξc (pertaining to gspin(r)) for
C-3Dx with L = 160 for T ≥ T3D

c (L→ ∞), computed by using the scaling form fits of the correlation
functions, Equations (4) and (11). The dotted line marks the thermodynamic critical temperature in
the thermodynamic limit.

As implied in our previous discussion, these two different correlation lengths cor-
respond to two categories of criticality, geometric criticality (ξp) and thermodynamic
criticality (ξc), with two distinct order parameters (the infinite network strength R and the
magnetization M, respectively). For C-2D, it is well established that the correlation length
exponents νp (based on geometric clusters) and νc (based on FK clusters) are different and
are related by νp ≥ νc [28]. Therefore, near the critical point T2D

p = T2D
c , from the relation

ξ ∼ |T − Tc|−ν, the connectivity correlation length of geometric clusters is expected to
be large compared to the spin-spin correlation length (ξp > ξc). This is consistent with
our simulation Figure 11b. Our simulation Figure 11a reveals that ξp > ξc also applies
for C-3Dx.
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To further validate this inequality, in Figure 12, we compute the two correlation
lengths for C-3Dx geometric criticality as a function of temperature near the critical point
Tslice

p = T3D
c on the disordered side, where the correlation function is consistent with the

scaling form shape. As shown by Figure 12, ξp is always much larger than ξc, and they
increase as T → Tc. This suggests that the exponent inequality νp ≥ νc also applies
for C-3Dx.

9. Discussion

So far, we have argued that the bulk thermodynamic critical point of the 3D clean
Ising model coincides with the percolation of geometric clusters defined on a 2D slice,
Tslice

p = T3D
c . Furthermore, we have numerically investigate this geometric criticality by

extracting the critical cluster exponents and studying the behaviors of the pair-connectivity
functions (together with the 2D clean Ising model). These results have several impor-
tant implications:

(1) There are two length scales in the clean 3D Ising model. Aside from the usual length
scale associated with the spin-spin correlation length ξc, we have defined a new length
scale, ξp, which is the correlation length of the pair connectivity function of geometric
clusters defined on a 2D slice. We have furthermore shown that these two length scales
diverge differently as T → T3D

c , and that the generic case is that ξp > ξc. One consequence
of this is that near this critical point, experiments which can detect clusters on a slice (for
example, scanning probes like scanning tunneling microscopy) should reveal that the pair
connectivity function defined on a slice is power law over a larger region of the phase
diagram than the spin-spin correlation function. That is, the critical region appears to
be larger when measured via a pair correlation function than via a spin-spin correlation
function. The argument above also applies to the 2D clean Ising model.

(2) As discussed in the context of Conjecture #2 in Section 4, for the 2D clean Ising
model, the geometric cluster percolation exponents and thermodynamic critical exponents
are different in definition and values, but they satisfy the same scaling relation in their own
respective closed sets. As in the purely 2D case, there are also two distinct sets of critical
exponents at T3D

c for the clean 3D Ising model. One set comes from the geometric clusters
defined on a 2D slice of the clean 3D Ising system, and the other from the bulk FK clusters.
Using the numerical values derived in this work, the scaling relation d− 2 + η = 2(d− dv) is
satisfied within error bars. Inserting the values from Table 3, d− 2 + ηp = 0.322± 0.002, and
dv,p = 1.856± 0.018 gives 2(d− dv,p) = 0.288± 0.036. The scaling relation τ = (d + dv)/dv
is almost satisfied: From the Table, we have τ = 2.001± 0.013 and dv,p = 1.856± 0.018, so
that (d + dv,p)/dv,p = 2.078± 0.010. Recall that the scaling function associated with the
exponent τ suffers from a significant scaling bump, which skews the value of τ to lower
values in finite size systems. The slight mismatch in this scaling relation is likely due to
this well-known finite size effect for τ [42].

We find some indication that the Coniglio inequalities for these two different sets
of critical exponents also hold on a 2D slice of the 3D clean Ising model. For example,
our results in Figure 12 suggest that the exponent inequality derived by Coniglio and
coworkers [28] for the correlation length exponents νp and νc at the C-2D critical point also
holds at the C-3Dx critical point, νp ≥ νc.

(3) The C-3Dx fixed point represents a new universality class: not only are the critical
exponents numerically distinct from the geometric criticality of the 2D clean Ising sys-
tem and from 2D uncorrelated percolation, but they are also distinct from the values of
bulk percolation in the 3D clean Ising model, which happens inside the ordered phase
T3D

p < T3D
c = Tslice

p .
(4) All of the above implies that there are two order parameters on the 2D slice of the 3D

clean Ising model, just as there are two order parameters in the 2D clean Ising model. One of
them is associated with the thermodynamic phase transition, and the other is associated
with the geometric cluster percolation.
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10. Conclusions and Outlook

In summary, we have studied geometric criticality associated with the correlated
percolation of interacting geometric clusters on a 2D slice of clean 3D Ising models (C-3Dx).
We find that as in the clean 2D Ising model (C-2D), the geometric criticality associated with
the percolation of interacting geometric clusters at the C-3Dx critical fixed point corresponds
to a unique geometric universality class which is distinct from that of uncorrelated percolation.

In addition, we find that at both the C-3Dx fixed point and the C-2D fixed point,
the geometric clusters become fractal, meaning they acquire self-similar spatial structure
leading to fractal hull and volume dimensions, and leading to power law behavior in the
pair connectivity function. We find that in the vicinity of thermodynamic criticality, the
pair connectivity function displays power law behavior over a wider region of the phase
diagram than does the spin-spin correlation function.

One consequence of this finding is that the pair connectivity function can be a useful
tool for diagnosing criticality in the context of image data from probes which can take
“slice” data, as well as potentially from scanning surface image probes such as scanning
tunneling microscopy, atomic force microscopy, and scanning infrared microscopy. In a
future publication, we will explore the relation of these concepts to surface criticality, which
is relevant for the application of these ideas to scanning surface probes. Especially in light
of the tremendous increase in data coming from a growing number of scanning image
probes [2], it is useful to have another method of analysis in hand. We expect that future
studies regarding geometric criticality in random bond and random field Ising models will
further facilitate the application of geometric cluster analyses to the interpretation of the
many types of 2D image probe experimental techniques, especially in cases where complex
pattern formation is observed [14–16,25].
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