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Abstract: While spin striped phases in La2−xSrxNiO4+y for 0.25 < x < 0.33 are the archetypal case of
a 1D spin density wave (SDW) phase in doped antiferromagnetic strongly correlated perovskites,
few information is available on the SDW spatial organization. In this context, we have measured
the spatial variation of the wave vector of the SDW reflection profile by scanning micro X-ray
diffractions with a coherent beam. We obtained evidence of a SDW order–disorder transition by
lowering a high temperature phase (T > 50 K) to a low temperature phase (T < 50 K). We have
identified quasi-commensurate spin stripe puddles in the ordered phase at 50 < T < 70 K, while
the low temperature spin glassy phase presents a nanoscale phase separation of T = 30 K, with
the coexistence of quasi-commensurate and incommensurate spin stripe puddles assigned to the
interplay of quantum frustration and strong electronic correlations.

Keywords: quantum complex materials; incommensurate and commensurate superlattice; phase
separation; spatial statistics

1. Introduction

Commensurate–incommensurate (C–IC) transitions [1] and the related complex multi-
scale distribution of dislocations with the formation of striped phases are of high interest in
the quantum complex matter research field. Recently, this phenomenon has been observed
in two-dimensional atomic layers with strongly correlated electronic matter forming stacks
held together by a week Van der Waals force. For example, stripes appear in Ca-Intercalated
bilayer graphene, induced by commensurate lattice matching [2] in graphene on hexagonal
boron nitride [3] and in the monolayers on a honeycomb substrate [4].

The commensurate (C) phase in a crystalline lattice occurs when the ratio between
a superlattice oscillation period (λ = 1/ε) (where ε is the wave vector) and the number
of lattice units is a rational number. On the contrary, the incommensurate (IC) phase
occurs if this ratio is an irrational number. In the C phase, the wave modulation is locked
or pinned to the periodicity of the crystal while, in the incommensurate state, the wave
is unlocked with the crystal periodicity. In this case the wave can be easily unpinned
by a weak perturbation and dislocations, as bosonic strings can wander and sweep an
increasingly greater volume at low temperatures driven by quantum fluctuations. As a
consequence, a crystalline phase with real space ordering in a single state in the k-space
can become disordered at lower temperatures.

Between any two commensurate phases, there is a sequence of quasi-commensurate
(QC) locked-in and incommensurate (IC) phases forming a complex landscape called the
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Devil’s Staircase [1]. It has been observed in several systems, namely the Kr monolayer on
graphite [5]; atomic Pb layer on Si(111) surface [6]; charge density wave (CDW) and spin
density wave (SDW) [7]; ferroelectric smectic phases in liquid crystalline binary mixtures [8];
ferroelectrics [9]; atomic concentration waves in alloys [10]; periodic atomic displacements
in NaV2O5 [11]; colloidal particles on a periodic substrate [12]; and field-induced SDW
states in anisotropic two-dimensional conductors [13].

Commensurate or incommensurate stripes modulations can be formed by doping
two dimensional (2D) strongly correlated magnetic quantum materials. Indeed, doping
introduces charged solitons that can be viewed as a generalized Wigner charge density
wave, as proposed by Hubbard [14], or as lines of domain walls in doped nickelates,
which are the archetypal case of a multi orbital Hubbard model in a strained 2D atomic
lattice [15–19]. Charge–spin stripes modulations are accompanied by orbital modulations
and lattice distortions, like those that occur in cuprates [20–25], providing the archetypal
case of quantum complex matter composed from a nanoscale phase separation [26–29].
Moreover, evidence now exists that proves this nanoscale phase separation is controlled by
(i) the misfit strain between atomic layers in hetero-structures at the atomic limit [30–33],
which is great in La2−xNiO4, giving a compressed [NiO2] plane and an expanded [La2O2]
layer; and (ii) by the proximity of the chemical potential to a Lifshitz transition [30,34,35]
in multiband multiorbital Hubbard systems.

The layered La2−xSrxNiO4+y nickelate is an archetypal doped Mott insulator exhibiting
the universal features of the inhomogeneous spatial distribution of spin stripes phases in
complex quantum materials [36–38], as lightly doped La2−xSrxCuO4 [39,40], and photo-
induced stripes in La2CuO4+y [41]. The nanoscale phase separation [42,43] can be generated
by oxygen interstitial ordering [24,25,44–47], CDW [24,25] strain driven superstripes in
cuprates [21,22,31–33], in iron-based superconductors [48,49], and diborides [50–53].

We have used scanning micro X-ray diffraction with a high coherent flux of X-ray,
to visualize the spin stripes phase separation at different temperatures in La1−xSrxNiO4.
Nowadays, scanning micro X-ray diffraction is recognized as a general and powerful
tool to investigate the emergence of complex geometry in several fields, such as complex
biological systems [54–60], using time-resolved and space-resolved synchrotron radiation
techniques and space–time dependent photo-induced structure evolution [61]. In this
paper, we report the study of the SDW order–disorder transition in La1−xSrxNiO4, which
was observed as transitioning from the spin ordered phase at 50 < T < 70 K to the low
temperature disordered phase at T = 30 K [62]. The formation of a glassy electronic
phase at a low temperature was observed in other nickelates and related materials [63–68].
Moreover, it was found that the spin stripe phase in La1−xSrxNiO4 below 120 K presented
a strong spatially inhomogeneous landscape, with the formations of the spin stripe rich
regions and spin stripes poor regions [43] providing evidence of nanoscale electronic phase
separation [69,70] observed in several strongly correlate systems [71–73].

The formation of the inhomogeneous stripes landscape has been assigned to long-
range interactions in combination with the confinement to periodic potentials, which
generate a proliferation of metastable low-energy states, resulting in Devil’s Staircase-type
structures [74–77]. Quantum frustration becomes relevant at low temperatures [78,79], in
which stripe behavior called the superstripes phase can be generated, while preserving
super fluidity [80–82] or superconductivity [83–85] or favoring competing glassy spin
stripes landscape realizations. In the present study, we have identified a nanoscale phase
separation at T = 30 K between quasi-commensurate and incommensurate glassy spin
stripes, assigned to the interplay of quantum frustration and strong electronic correlations.

2. Results
2.1. Iincommensurate and Quasi-Commensurate Spin Stripes in La2−xSrxNiO4

The temperature–doping phase diagram of La2−xSrxNiO4 [36] presents the antiferro-
magnetic order (AFM) in the lower Sr-doping region with x < 0.2. In the higher Sr-doping
region with x > 0.2, charge and spin stripes appear, extending diagonally to the Ni–O
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bond directions. For samples with tetragonal symmetry, such as the one analyzed here, the
stripes order itself breaks the rotational symmetry of the ab-plane and, therefore, stripes
with 2 different orientations show up, related by a 90-degree rotation around the c-axis.
It has been found that the incommensurate superlattices of spin stripes occur at wave
vectors (1−ε, 0, 0), where ε is a temperature dependent incommensurability value. A
strong enhancement of the intensity peak can be obtained by resonant soft X-ray diffraction
at the Ni 2p→3d L3-edge (852 eV), as reported in [62]. The temperature evolution of the
SDW profile projected on the H and L directions is summarized in Figure 1a. The SDW
rises for temperatures below TSDW = 120 K. On further cooling, its intensity increases,
reaching a maximum value between 50 and 70 K. Subsequently, quite a dramatic intensity
reduction is reached when the temperature is decreased further to approximately 30 K
(light blue area). Moreover, the peak position changes with the temperature. The commen-
surate periods 1/ε = (nx + my)/(n + m) intermediate between two main commensurate
wave vectors (ε1 = 1/n) and (ε2 = 1/m) with periods of m and n lattice units, respectively,
occuring at integer numbers of lattice unit cells η = (n + m)/ε. Each step corresponds to a
modulation wave with a number of (m + n) periods λ = 1/ε locked with the underlying
lattice onto a rational number. The temperature evolution of η value, named here as the
commensurability value, indicates that the system tends to reach the quasi-commensurate
state, namely QC, at η = 24 when the intensity reaches its maximum value of approximately
T = 50 K. As the system moves to lower and higher temperatures, ηmoves away from the
QC state, and the SDW puddles density presents an anomalous decrease.
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Figure 1. (a) Temperature evolution of the integral intensity (black squares) and the incommensura-
bility η = 7/ε (green dots) of the SDW peak, in agreement with the data in [62]. The intensity reaches a
maximum value of around 50 K, followed by a decrease indicating the emergence of phase separation
with coexisting ordered and disordered domains. We observe that, at the temperature onset of SDW,
TSDW, η is close to 23.4 and it increases to reach the long period commensurate order with value 24 at
the point where the diffraction intensity is at its maximum level, at approximately T = 50 K. In the
surprisingly low temperature range, ηmoves away from the long period commensurate order value
and moves back toward 23.85 with the intensity decrease, thus showing that, at a low temperature,
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the state with minimum energy is not the quasi-commensurate but the slightly incommensurate state.
(b) Pictorial view of spin stripes ordering. (c) The 2D color plot of the SDW peak in the HL space
measured by coherent X-ray diffraction. The experimental setup with the source and detector placed
at 86 m and 6 m, respectively, ensures = high resolution in the reciprocal space, with the possibility to
resolve speckles. (d) Graphic representation of the incommensurate phases between 1/n and 1/m
(n = 4 and n = 3) commensurate phases.

A scheme of the superlattice of spin ordering is presented in Figure 1b. The typical
SDW peak generated by the spin ordering, with cuts along the tH and L directions of
he reciprocal space, is shown in Figure 1c. Fitting profiles with a Lorentzian lineshape,
provided us with the in-plane correlation length of approximately 20 nm (36 unit cells) and
the out-of-plane correlation length of 2 nm (2 unit cells), which is significantly smaller, re-
flecting the quasi two-dimensionality of the stripes phase [35]. For the present investigation,
we used a sample with the following doping level: x = 0.29. The incommensurate SDW,
with ε = 0.29 ordering, consists of the mixture of the ε = 1/4 stripe order and the ε = 1/3
spin order, i.e., alternating n = 3 stripes portions and m = 4 stripes portions as schematized
in Figure 1d. The average modulation period is given by 1/ε = (3x + 4y)/(3 + 4), where
x + y = 3 + 4. Therefore, η = 7/ε = 3x + 4y varies in the range 21 < η < 28 and, at each
integer value of η, the system reaches a quasi-commensurate phase at the step of a Devil’s
Staircase. The x = 0.29 doping is close to the staircase step of the quasi-commensurate spin
modulation with 7/ε = 24 i.e., (x = 3, y = 4) 3 × 4+4 × 3 = 12 + 12 = 24 and, by changing
the temperature and position, it fluctuates in the range 23 < η < 24.

2.2. Maps of Incommensurate and Quasi-Commensurate Spin Stripes in La1.71Sr0.29NiO4

In order to shed light on the counterintuitive behavior of SDW disordering at low
temperatures, we have investigated the spatial evolution of the SDW in real space. We used
scanning micro X-ray diffraction (SµXRD), probing the local stripes order via the mapping
of the superlattice peak at (1−ε, 0, 0) with ε = 0.29. We performed our measurements
on the P10 beamline of the Petra III synchrotron. The key result obtained from this
experiment has been the mapping of the spatial distribution of the (1−ε, 0, 0) stripes peak
incommensurability over different areas of 40 × 80 µm2 in steps of 1 µm in both directions,
resulting in 3321 diffraction images.

The variability of the incommensurability, η, has already be observed as a function
of temperature (Figure 1a). In Figure 2a, we present the maps of η at T = 30 K, 50 K,
and 70 K. In Figure 2b, we show the probability density function of η and its multiple
value η* = 5η, indicating a higher degree of commensurability. Focusing on the maps
measured at the temperature T = 50 K, we can observe that microscale puddles with a
narrow distribution occur in the range 23.9 < η < 24 (119.5 < η* < 120), which is associated
with the QC long range SDW phase with the η = 24 (η* = 120) phase. By increasing the
temperature to T = 70 K, we can observe that the average value of η remains at the QC
phase η = 24 (η* = 120), but we can also observe the increasing number of incommensurate
micro puddles with 24.0 < η < 24.2 (120 < η* < 121) induced by thermal noise. In the phase
probing the spin glass at T = 30 K, which is characterized by the small coherence length
of the SDW reflection [62], we can observe a shorter average SDW incommensurability
η = 23.85. This is due to the appearance of a relevant number of spots with incommensurate
values 23.6 < η < 23.8 (118 < η* < 119). Thus, at low temperatures, T < 50 K, we observe the
coexistence of a double set of spots: the first set with the quasi-commensurate η* = 120 spots,
and the second set of spots associated with an incommensurate SDW phase, namely IC.
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Figure 2. (a) Maps of incommensurability η of the SDW peak measured at T = 30 K in the low
temperature phase, LT, at the critical temperature for the transition T = 50 K, and at 70 K in the high
temperature phase, HT. The values of each single pixel have been obtained by recording the intensity
of the stripes in a specific (x, y) position of the sample. In order to reconstruct the spatial maps, the
sample has been scanned over an area of about 40 × 80 µm2 in steps of 2 µm in both directions. The
scale bar shown in the upper frame corresponds to 10 µm. (b) Probability density function of η (and
η*) calculated at T = 30 K, 50 K, and 70 K.

2.3. Low Temperature Phase Separation between Incommensurate and Quasi-Commensurate Spin
Stripes in La1.71Sr0.29NiO4

The tendency of the system to assume a quasi-commensurate SDW conformation,
when the intensity reaches a maximum at 50 K, is illustrated by plotting the SDW intensity
as a function of η (η*), in Figure 3. Here, we can observe that the η distribution in the
quasi-commensurate QC phase at T = 50 K is centered around the value of η = 24 and drops
as soon as η overcomes this value.
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Figure 3. The figure shows the intensity of the SDW reflection satellite versus η = 7/ε (η* = 35/ε),
measured at different microscale spots (small, filled dots) at 3 fixed temperatures T = 30 K, (blue)
T = 50 K (green), and T = 70 K (red), by scanning micro X-ray diffraction. The space averaged values
of the XRD profile intensity versus η (η*) are indicated by the large colored spots. The black line and
black dots indicate the values of the average intensity of the SDW reflection satellite. measured using
standard XRD diffraction in [62] measured with no spatial resolution at different temperatures, as a
function of the average incommensurate η value.

The QC value of η is maintained at T = 70 K, even if the distribution appears larger
due to the thermal noise. On the other hand, the incommensurability values decrease to
approximately η = 23.6 in the IC phase at T = 30 K.

We can observe a continuous spread of the observed superlattice periods that broadens
upon cooling below 50 K. At these low temperatures, a phase separation between the
incommensurate and quasi-commensurate spin stripes phase occurs, as summarized in
Figure 4. We indicate, here, the quasi-commensurate (QC) phase with η = 24 (η* = 120)
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and the incommensurate phase, at around η = 23.75 (η* = 118), with orange and blue light
triangles, respectively. These phases correspond to slightly different x doping values, which
can be estimated by fitting the experimental data of η (η*) as a function of Sr content, x [36].
These results indicate that the crystalline state at a low temperature is not a perfect periodic
lattice but an intrinsic incommensurate lattice with expected dynamical lattice dislocations.
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Figure 4. The Devil’s Staircase of quasi-commensurate and incommensurate phases for many
LSNO samples at different x values (open circles). The open symbols are obtained from the measured
incommensurability as a function of the doping in LSNO samples, as reported in the review paper [36].
The black line is the expected 7/x (where x is the doping) curve. The red and blue triangles represent
the high temperature, HT, quasi-commensurate phase at around η = 24 (η* = 120), and the low
temperature, LT, incommensurate phase in the range 23.6 < η < 23.9 or 118 < η* < 119.7.

3. Discussion

We have investigated the spatial distribution of spin stripes order in La1.71Sr0.29NiO4.
The results obtained regarding the temperature dependence of SDW intensity are similar
to those reported for the nickelates of different doping levels. Thus, we can assume the
observed behavior to be a general characteristic of stripe order. This behavior resembles
what has been predicted for incommensurate cuprate stripes at low temperatures, when the
freezing of the lattice potentially disturbs the long-range order. The temperature where the
stripes peak intensity is maximum coincides with a reorganization of more isotropic and
quasi-commensurate SDW puddles at T = T* = 50 K. By decreasing the temperature, T < T*,
the SDW shows a nanoscale phase separation with the coexistence of quasi-commensurate
(QC) and incommensurate (IC) SDW puddles. These results shed light on the intrinsic
inhomogeneous spatial organization of magnetic stripes forming domains organized in mi-
crometric puddles, and their different spatial arrangement transitioning from the so-called
ordered high temperature phase (T > 50 K) to the so-called disordered glassy SDW phase
(T < 50 K). This inhomogeneous aspect could be a key issue for theoretically understanding
the basic mechanisms for the formation of superstripes on particular lattice geometries in
the regime of strong interactions.

The inhomogeneous spatial distribution of the spin ordering wave vector can be
related to the spatial distribution of chemical doping in [La2−xSrxO2+y] spacer layers,
which are intercalated between [CuO2] planes. Therefore, doping can either be controlled
by the x substitutions of Sr for La, or by the additional oxygen interstitials. Indeed, it has
been shown that in HgBa2CuO4+y [25], the oxygen interstitial ions form atomic stripes in
the spacer layer [HgOyBa2O2] between [CuO2] planes, which are anticorrelated with the
spatial distribution of CDW order. Moreover, in the isostructural cuprate La2CuO4+y [24],
in which oxygen interstitials form large La2CuO4.12 clusters, the CDW order appears in the
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poorly oxygen-doped domains anticorrelated with oxygen-interstitials-rich domains. In
nickelates, the spatial distribution of dopants and spin/charge ordering is an open issue to
be addressed by using new experiments with space resolved probes [86–88].

Our results show a disordered landscape of the spin stripes made of large striped
puddles of about 20 nm, which are significantly larger than the CDW puddles observed in
the cuprates [25]. The disordered striped landscape in manganites and cobaltites [89] has
been described by the Anisotropic Random Field Ising Model (ARFIM), which predicts
that any small amount of random field could stabilize long-range order, leading to a phase
diagram with large critical regions corresponding to short-range quasi-2D spin/charge
order. Furthermore, the ARFIM description has been applied to the nematic electronic
phases in orthorhombic cuprates [90].

Finally, we observe that the spin stripes scenario in nickelates is similar to the spin
stripes in isostructural multiband cobaltites. Indeed, the scattering pattern of the spin
stripes shown in Figure 1c is similar to the spin order scattering found in cobaltites [91],
which also presents nanoscale phase separation [42]. In these two perovskite families, the
stripes are the result of the polaron ordering driven by lattice elastic interactions, as it has
been proposed for the stripe formation in cuprates using X-ray spectroscopy [21,30].

4. Materials and Methods

Single-crystalline La1.71Sr0.29NiO4 was grown via the floating zone technique. The
seed and feed rods were prepared from polycrystalline powder obtained by the solid state
reaction of La2O3, SrCO3, and NiO with an excess of NiO. The reaction was performed at
1200 ◦C for 20 h with intermediate grinding. The rods were densified at 1500 ◦C for 5 h.
All of the syntheses were carried out in air. The scanning micro X-ray diffraction µXRD
experiments were carried out at the Coherence Beamline P10 of PETRA III synchrotron
in Hamburg. The synchrotron radiation source was a 5 m long undulator (U29). The
X-ray beam was monochromatized by a cooled Si(111) double-crystal monochromator with
a bandwidth of ∆E/E ∼ 1.4 × 10−4 in the 8 KeV photon energy range. The collimated
coherent X-ray beam was focused, using the beryllium refractive lens (CRL) transfocator, to
a size of about 1 µm2 on the sample positioned 1.6 m downstream of the transfocator center.
The incident flux on the sample was about 1011 photons/s. The exit window of the heating
chamber and He cryostat, as well as the entrance window of the detector flight path, was
covered by a 25 µm thick Kapton sheet. The scattered signal was detected using a large
horizontal scattering setup with a sample-to-detector distance of 5 m with an evacuated
flight path. A PILATUS 300 K detector was used to record the X-rays scattered by the
sample. For the measurements, the sample was cooled to the lowest temperature (30 K) and
the measurements were performed in a heating cycle. We aligned the crystal to detect the
spin ordering satellite of the (100) reflection, which appeared only below the spin ordering
temperature, TsDW = 120 K. The spin ordering satellite appeared at qh = 0.71, where the
incommensurate stripes wave vector was ε = |1 − qh| = 0.29. The sample scanning was
obtained by translating the sample over different areas of about 40 × 80 µm2 in steps of
1 µm in both directions, resulting in more the 3000 diffraction images. Data analysis was
performed by using customized and homemade written MATLAB routines [61].
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