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Abstract: We determined the spin exchanges between the Cu2+ ions in the kagomé layers of vol-
borthite, Cu3V2O7(OH)2·2H2O, by performing the energy-mapping analysis based on DFT+U cal-
culations, to find that the kagomé layers of Cu2+ ions are hardly spin-frustrated, and the magnetic
properties of volborthite below ~75 K should be described by very weakly interacting antiferromag-
netic uniform chains made up of effective S = 1/2 pseudospin units. This conclusion was verified
by synthesizing single crystals of not only Cu3V2O7(OH)2·2H2O but also its deuterated analogue
Cu3V2O7(OD)2·2D2O and then by investigating their magnetic susceptibilities and specific heats.
Each kagomé layer consists of intertwined two-leg spin ladders with rungs of linear spin trimers.
With the latter acting as S = 1/2 pseudospin units, each two-leg spin ladder behaves as a chain of
S = 1/2 pseudospins. Adjacent two-leg spin ladders in each kagomé layer interact very weakly,
so it is required that all nearest-neighbor spin exchange paths of every two-leg spin ladder remain
antiferromagnetically coupled in all spin ladder arrangements of a kagomé layer. This constraint
imposes three sets of entropy spectra with which each kagomé layer can exchange energy with the
surrounding on lowering the temperature below ~1.5 K and on raising the external magnetic field
B. We discovered that the specific heat anomalies of volborthite observed below ~1.5 K at B = 0 are
suppressed by raising the magnetic field B to ~4.2 T, that a new specific heat anomaly occurs when B
is increased above ~5.5 T, and that the imposed three sets of entropy spectra are responsible for the
field-dependence of the specific heat anomalies.

Keywords: volborthite; deuterated volborthite; kagomé layer; spin exchange; DFT calculations;
two-leg spin ladder; spin 1/2 antiferromagnetic uniform Heisenberg chain; entropy driven magnetic
phase transitions; magnetic heat capacity; magnetic field-dependence of specific heat

1. Introduction

Properties of a magnetic material are described by a spin Hamiltonian, defined in
terms of a few spin exchange paths between magnetic ions. The repeat pattern of strong
spin exchange paths forms a spin lattice, with which the spin Hamiltonian generates the en-
ergy spectrum to be utitilized in describing the magnetic properties. Consequently, the use
of a correct spin lattice is paramount because the nature of the energy spectrum generated
by a spin Hamiltonian depends on the nature of the spin lattice chosen. Antiferromagnets
possessing a kagomé arrangement of transition-metal magnetic ions M are often believed to
be spin-frustrated, hence suppressing a long-range magnetic order, so they are prime candi-
dates that can give rise to exotic magnetic ground states [1,2]. However, spin frustration
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is not guaranteed per se by, for example, a trigonal, a kagomé or a pyrochlore structural
arrangement of magnetic transition-metal ions M. This is so because they interact strongly
with the surrounding main-group ligands L to form MLn polyhedra, thereby splitting its
d-states. What is crucial for geometrical spin frustration is not the geometrical pattern
imposed by the arrangement of magnetic ions M, but rather that of the spin exchanges these
ions generate with their neighboring ions. The direction-dependence of spin exchanges
between magnetic ions M is determined by their magnetic orbitals, namely, the singly occu-
pied d-states of their MLn polyhedra [3,4]. The d-states have the d-orbitals of M combined
out of phase with the p-orbitals of the ligands L, so they are highly anisotropic in shape.
Consequently, even if the magnetic ions form a kagomé arrangement, the spin exchanges
between magnetic ions do not necessarily generate the same pattern. The anisotropy of
spin exchange is most strongly manifested for a magnetic ion possessing only one magnetic
orbital (e.g., S = 1/2 ions Cu2+ and Ti3+), and least strongly for a magnetic ion with five
magnetic orbitals (e.g., S = 5/2 ions Mn2+ and Fe3+).

Volborthite, Cu3V2O7(OH)2·2H2O, consisting of Cu2+ (d9, S = 1/2) ions in kagomé
arrangement, has received much attention over the past decade [5–11], largely because it
is believed to be spin-frustrated [5,11] The kagomé layers of Cu2+ ions (see Figure 1) are
slightly distorted from an ideal kagomé shape with two different crystallographic sites for
Cu2+ in a ratio 2:1. Below room temperature, each Cu2+ ion forms an axially elongated
CuO6 octahedron, so that, with the local z-axis taken along the elongated Cu-O bonds,
the magnetic orbital of each CuO6 octahedron is the x2−y2 state contained in the CuO4
equatorial plane, which is quite anisotropic in shape. In volborthite, the kagomé layers
of composition Cu3O6(OH)2 parallel to the ab-plane are pillared by pyrovanadates V2O7.
The voids between the layers provide space for crystal water molecules. Below room
temperature, volborthite undergoes two structural phase transitions, one at ~292 K from a
C2/c phase to a I2/a phase, and the other at about ~155 K from the I2/a phase to a P21/c
phase [6]. The latter structural phase transition generates two slightly different kagomé
layers, which are slightly different in structure. Below 1.5 K, volborthite exhibits magnetic
order, indicated by two anomalies in the magnetic specific heat [10].
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Figure 1. (a) The kagomé arrangement of Cu2+ ions (red and blue circles) in volborthite, where the
labels 1–5 refer to the spin exchanges J1–J5, respectively (see Table 1). In each J2 path, two Cu2+ ions
make a Cu-O . . . V5+ . . . O-Cu bridge, while the remaining exchange paths do not. (b) Geometrical
entanglement of adjacent two-leg spin ladders in a kagomé layer. Adjacent spin ladders are presented
with different colors for ease of distinction. (c) A two-leg spin ladder with rungs of linear trimers
defined by J2 and legs defined by J4, with all exchange paths antiferromagnetically coupled, where
the red and blue circles represent the up-spin and down-spin Cu2+ ion sites, respectively. (d) A spin
ladder arrangement in which (FF)-, (AF)-, (AA)- and (FA)-coupled spin ladders occur consecutively.
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On the basis of their DFT+U calculations, Janson et al. [11] described the magnetic
properties of volborthite using a trigonal spin lattice made up of pseudo S = 1/2 units,
i.e., linear spin trimers in which adjacent Cu2+ ions are strongly coupled antiferromag-
netically. However, with this spin lattice model, it is difficult to explain why volborthite
undergoes a magnetic ordering below 1.5 K [10]. Furthermore, the magnetic susceptibility
Janson et al. calculated for volborthite by their exact diagonalization method for the spin
Hamiltonian of the trigonal lattice show a spin gap below the susceptibility maximum at
~17 K. The latter is in sharp contrast to the experimental observation [5], which reveals that
the magnetic susceptibility remains rather high as the temperature is decreased toward
0 K [5]. Thus, results of Janson et al.’s exact diagonalization based on their trigonal spin
lattice model are inappropriate for understanding the physics of volborthite below ~17 K.
The magnetic entropy removed by the long-range order is small compared to Rln2, as is
typically found for low-dimensional short-range ordered (SRO) magnetic systems, e.g., for
S = 1/2 antiferromagnetic uniform Heisenberg (AUH) chains. Then, one might speculate if
the magnetic ordering of volborthite observed below 1.5 K is associated with a magnetic
ordering of such S = 1/2 AUH chains, although it has been believed that volborthite is
spin-frustrated [5,11].

To explore the magnetic order below 1.5 K, especially its dependence on the magnetic
field, as well as the origin of the apparent finite susceptibility as T→0 K, we re-analyzed
the spin lattice of volborthite by performing an energy-mapping analysis based on DFT+U
calculations [3,4] to find that the magnetic properties of volborthite below ~75 K should
be described by two-leg spin ladders with rungs of S = 1/2 pseudospin units rather than
by a trigonal lattice of S = 1/2 pseudospin units, as proposed by Janson et al. [11]. We
verified this conclusion by acquiring new magnetic susceptibility data and re-analyzing
reported magnetization data of volborthite to show that the kagomé layer of Cu2+ ions is
hardly spin-frustrated, and the low-temperature magnetic properties of volborthite should
be described by an AUH chain composed of S = 1/2 pseudospin units. We characterized
the magnetic phase transitions below 1.5 K by carrying out specific heat measurements
for Cu3V2O7(OH)2·2H2O and its deuterated analogue, Cu3V2O7(OD)2·2D2O, under a
magnetic field B = 0–9 T. Our work shows that the magnetic ordering of volborthite below
1.5 K is suppressed by field B > ~4.5 T, while a new magnetic ordering takes place when
B > ~5.5 T, and that these field-dependent behaviors of the magnetic ordering originate
from the three sets of magnetic entropy spectra of each kagomé layer of Cu2+ ions, created
by constrained interactions between adjacent two-leg spin ladders.

2. Experimental and Calculations

To determine the spin exchanges of the I2/a and P21/c phases of volborthite, we
carried out DFT+U calculations, employing the Vienna ab Initio Simulation Package
(VASP) [12,13] using the projector augmented wave (PAW) [14,15] method and the PBE [16]
exchange-correlation functional. The electron correlation associated with the 3d states of Cu
was taken into consideration by DFT+U calculations, i.e., by performing DFT calculation
with an effective on-site repulsion Ueff = U − J = 4 and 5 eV added on the magnetic ions
Cu2+ [17].

Single crystals of volborthite were grown using hydrothermal techniques, as described
in the literature [6]. Deuterated samples of volborthite were prepared by replacing light by
heavy water (isotope enrichment 99.5%). The magnetic susceptibilities were measured at
constant field as a function of the temperature in a Magnetic Property Measurement System
SQUID magnetometer (MPMS-XL7, Quantum Design, San Diego, CA, USA). The specific
heats of a collection of oriented crystals were determined using the relaxation method of a
3-He Physical Property Measurement System (PPMS, Quantum Design, San Diego, CA,
USA). In order to construct a lattice reference needed to evaluate the magnetic contribution
to the specific heat of volborthite, we prepared a polycrystalline sample of the diamagnetic
mineral martyite with composition Zn3V2O7(OH)2·2H2O from an aqueous solution of
NH4VO3 and zinc acetate, Zn(CH3CO2)2, following a recipe reported in the literature [18].
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3. Results
3.1. Spin Exchanges and Spin Lattice of Volborthite

We determine the spin exchanges J1–J5 defined in Figure 1a by performing the energy-
mapping analyses [3,4] based on DFT+U calculations (for details of calculations, see the
Supplemental Material). Below room temperature down to ~155 K, volborthite has a crystal
structure with two equivalent kagomé layers in the unit cell (space group I2/a) and below
155 K a structure with two slightly non-equivalent kagomé layers of Cu2+ ions (space group
P21/a) [5,8]. The spin exchanges of the two phases are very similar, as summarized in
Table 1, where only the values obtained with Ueff = 4 eV are listed. Those calculated with
Ueff = 5 eV are given in the Supplemental Material. Janson et al. [11] carried out DFT+U
calculations using Ueff = 8.5, 9.5 and 10.5 eV to determine the spin exchanges of the P21/a
structure by fitting the electronic band structure in terms of a tight binding approximation.
In the following, we first discuss the spin lattice of volborthite suggested by the spin
exchanges we obtained. Subsequently, we show that the same picture is obtained from
those of Janson et al., despite that their spin exchanges are considerably smaller than ours
in the strengths of AFM character due to their use of very large Ueff values.

As can be seen from Table 1, the strongest exchange J2 is AFM and forms isolated
linear trimers (Figure 1a). The second strongest spin exchange J4 is also AFM but is weaker
than J2 by nearly an order of magnitude. All other spin exchanges are weaker than J2 by
more than an order of magnitude. Since J2 is much stronger than other spin exchanges,
each linear trimer at T << J2 constitutes a pseudospin S = 1/2 unit and such units form a
triangular lattice, as already pointed out by Janson et al. [11] However, we note that the
linear trimers interact through the AFM exchange J4 to form two-leg spin ladders with
the linear trimers as rungs (Figure 1b). This feature is hidden in a kagomé layer because
nearest-neighbor spin ladders are geometrically entangled with their superposed legs.

The two-leg spin ladder model as the spin lattice of volborthite described above is also
supported by Janson et al.’s spin exchanges (Table 1), although their spin exchanges differ
considerably from ours in magnitude. In general, a spin exchange J between two magnetic
ions located at sites i and j can be written as the sum of the FM and AFM components (JF
and JAF, respectively), namely, J = JF + JAF [3,4,19]. With the magnetic orbitals describing
the spin sites i and j as ψi and ψj, respectively, the overlap density ρij = ψiψj gives rise to
the exchange repulsion Kij, while the overlap integral <ψi|ψj> leads to an energy split ∆e
between the two states described by the magnetic orbitals. Then, JF and JAF are written as

JF = −Kij, and JAF =
(∆e)2

Ueff
(1)

Since the AFM component JAF is inversely proportional to Ueff, using a large Ueff value
in DFT+U calculations should make J value less AFM or even shift it to a FM spin exchange.
This explains why the J2 and J4 values of Janson et al. are less strongly AFM than ours, and
why their J1 and J3 values are more strongly FM than ours.

Table 1. Values (in K) of the spin exchanges J1–J5 calculated for the I2/a and P21/a phases of
volborthite obtained by DFT+U calculations.

I2/a Phase a
P21/a Phase a P21/a Phase b

Layer 1 Layer 2 Layer 1 Layer 2

J1/J2 0.010 −0.001 −0.025 −0.15 −0.11

J3/J2 0.025 0.031 0.031 −0.34 −0.32

J4/J2 0.145 0.141 0.135 0.17 0.15

J5/J2 0.014 0.014 0.013 - -

J2 542 K 550 K 582 K 193 K 205 K
a Present work with Ueff = 4 eV, b Janson et al. (ref. [11]) with Ueff = 8.5 eV.
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We now examine the interactions between adjacent two-leg spin ladders, under the
constraint that the spin exchanges J2 and J4 forming the two-leg spin ladders are much
stronger than J3 and J1, which provide interactions between spin ladders. The latter requires
that, in all possible spin ladder arrangements, all J2 and J4 exchange paths of each two-leg
spin ladder must remain antiferromagnetically coupled (Figure 1d). In every intertwined
leg, each J2 leg has two consecutive J3 paths. Since each J2 leg is antiferromagnetically cou-
pled, J3 has no effect on the interaction between adjacent two-leg spin ladders, regardless of
whether it is AFM or FM. Thus, adjacent two-leg spin ladders interact only through the very
weak exchanges J1 (Figure 1a). Note that J1 is weakly AFM for the I2/a phase but is weakly
FM for the P21/a phase in our calculations. This difference does not influence how the or-
dering between spin ladders in a kagomé layer is affected by J1 (see below). Since J1 is more
than an order of magnitude weaker than J4, the magnetic property of each kagomé layer
at low temperatures (|J1| < T << J2) is primarily determined by those of the two-leg spin
ladders with each linear trimer acting as an effective S = 1/2 pseudospin rung (Figure 1c).
At sufficiently low temperatures where excitations within the rungs are negligible, the dom-
inant AFM spin exchanges form two-leg spin ladders predicting that volborthite should
be regarded primarily as a system of very weakly coupled S = 1/2 AUH chains. In the
following, we first demonstrate that the magnetic properties of volborthite below ~75 K are
well explained by the model of very weakly interacting S = 1/2 AUH chains.

3.2. Experimental Evidence for the Spin-Half AFM Uniform Heisenberg Chain Character

Figure 2 displays the magnetic susceptibilities of volborthite, which exhibits a broad
peak at ~17 K and a finite susceptibility as T→0 K, characteristic of low-dimensional
AFM SRO behavior. As implied by the results of the DFT+U calculations, the magnetic
susceptibilities of volborthite between 3 and 75 K can indeed be very well fitted by those
theoretically predicted for a S = 1/2 AUH chain according to

χmol(T) = χspin(JC, g, T) + χ0 (2)

where χspin(JC, g, T) represents the magnetic susceptibility of the S = 1/2 AUH chain with
nearest-neighbor (NN) spin exchange JC (Figure 2a). For χspin(JC, g, T), we used the Padé
approximant of Quantum Monte Carlo (QMC) results for the S = 1/2 AUH chain [20].
The second term refers to the temperature-independent susceptibility χ0 arising from the
diamagnetism of the electrons in the closed shells (−175 × 10−6 cm3/mol per formula unit,
FU) [21,22] and also from the van Vleck paramagnetic susceptibility due to excitations to
the excited states of each Cu2+ ion (~100 × 10−6 cm3/mol per Cu atom) [23], leading to
χ0 = +125 × 10−6 cm3/mol per FU. Up to ~75 K, the experimental susceptibility is well
reproduced by the susceptibility calculated for a S = 1/2 AUH chain with JC = 27.8(5) K
and g = 2.33 (the solid blue curve in Figure 2a). The fitted g-factor is found to be 2.33, which
is at the higher end of the g-factor expected for Cu2+ ions [24]. The S = 1/2 AUH chain
model readily explains the susceptibility maximum at Tmax = 17 K as well as the finite
susceptibility below Tmax. The exchange JC = 27.8(5) K agrees very well with the expected
value JC = Tmax/0.64085 = 26 K. In addition, the ratio χspinTmax/g2 = 0.0346 cm3K/mol
concurs well with the value 0.0353 expected for the S = 1/2 AUH chain [20]. The difference
between the experimental data and the chain susceptibility (green solid line in Figure 1)
vanishes below ~75 K and gradually increases to higher temperatures. The susceptibilities
above ~75 K without any constraints matches very well with the susceptibility of an isolated
linear spin S = 1/2 trimer described by the spin Hamiltonian

H = Jtrim(
→
S 1·
→
S 2 +

→
S 2·
→
S 3) (3)

where
→
S i (i = 1, 2, 3) represent the three spin sites. Replacing χspin(JC, g, T) in Equation (2)

with the susceptibility of a spin S = 1/2 trimer given e.g., by Boukhari et al. [25], the
susceptibility data above ~75 K can be well fitted without further constraints. The trimer
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spin exchange amounts to 197(2) K, indicating a ratio JC/Jtrim = 0.14, in good agreement
with the ratio J4/J2 obtained from our DFT+U calculation (see Table 1), suggesting that the
spin trimers should be identified as the rungs of the two-leg spin ladders running along
the crystallographic b axis.
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Figure 2. (a) The magnetic susceptibility of one formula unit (i.e., comprising three Cu atoms) of
volborthite (black circles) with B applied along the crystallographic b axis fitted (for T < 75 K) to
the theoretical prediction for a S = 1/2 AUH chain (solid blue curve) given by Equation (2). The
difference between the two is displayed as a solid green line. The experimental susceptibilities
for 75 K ≤ T ≤ 320 K are well fitted by the susceptibility of a linear spin S = 1/2 trimer with spin
exchange of 197(K) (red dotted curve). Note the susceptibility anomaly at ~295 K due to the structural
phase transition from the C2/c to the I2/a phase [5]. (b) Isothermal magnetization of volborthite
determined at 1.4 K taken from ref. [11] compared with quantum Monte Carlo calculations for a
S = 1/2 AUH chain with a spin exchange of JC = 27.5 K (solid red line).

Another characteristic feature of the magnetic properties of volborthite is the low-
temperature 1/3 magnetization plateau extending over a wide magnetic field range, dis-
played in Figure 2b [8,9]. Note that we multiplied the published literature data by a factor of
three to obtain the magnetization per one FU of volborthite (3 Cu atoms); the experimental
data are well reproduced by the magnetization predicted for the S = 1/2 AUH chain with
JC = 27.5 K. The theoretical magnetization was obtained by Quantum Monte Carlo Calcula-
tions (QMC), employing the path integral method of the loop code incorporated within the
ALPS project [26,27]. To ensure a low statistical error, these simulations included 250 spins
and 1.5 × 105 Monte Carlo steps for the initial, as well as the subsequent, thermalization.

3.3. Specific Heat Anomalies of Volborthite
3.3.1. Specific Heat Anomalies of Volborthite

In Figure 3a, we show the specific heat measured for an ensemble of aligned crystal
of volborthite Cu3V2O7(OH)2 2H2O in zero magnetic field with magnetic field applied
along the b axis, the estimated lattice contribution to the heat capacity constructed from the
specific heat of Zn3V2O7(OH)2·2H2O [28] and the difference between the two representing
the magnetic contribution to the specific heat of volborthite. It is difficult to obtain a
proper lattice specific heat reference because the atomic masses of Cu and Zn are not the
same, and because the space groups describing the crystal structures of Zn3V2O7(OH)2
2H2O

(
P3m1

)
and Cu3V2O7(OH)2 2H2O (I2/a and P21/a) are different. In our work, we

adopt the procedure suggested by Boo and Stout [29] and stretch the temperature axis
of the specific heat data for Zn3V2O7(OH)2·2H2O with a smooth function, varying from
1.15 at 0 K to 1.05 at 50 K. The latter values were chosen such that the specific heat of
Zn3V2O7(OH)2·2H2O smoothly approaches that of volborthite as T→50 K. The magnetic
specific heat of volborthite thus obtained exhibits a broad maximum consistent with the
specific heat capacity expected for a S = 1/2 AUH, with a NN spin exchange of JC = 26 K.
The latter value is in good agreement with the spin exchanges derived from the analyses of
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the magnetic susceptibility and magnetization data. The total magnetic entropy amounts
to ~80% of Rln2 expected for a S = 1/2 system, consistent with the result reported by
Yamashita et al. [10].
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3.3.2. Effect of Isotope Substitution

In Figure 3b, we compare the specific heats of Cu3V2O7(OH)2·2H2O and its deuterated
analogue, Cu3V2O7(OD)2·2D2O, prepared by using 99.5% isotope enriched heavy water
in the preparation. The specific heat anomalies of Cu3V2O7(OH)2·2H2O below 1.5 K (see
inset Figure 3b) are hardly affected by the deuteration. However, the structural phase
transition from C2/c to I2/a near 155 K undergoes a 5% upshift for the deuterated sample.
This strongly suggests that the two specific heat anomalies below 1.2 K are related to
magnetic ordering. Apparently, the D→H substitution does not essentially modify the
spin exchange between adjacent kagomé layers, but substantially affects the structural
properties of volborthite. The latter finding reflects the fact that the pyrovanadate groups
connecting neighboring kagomé layers provide large interlayer spacing. The hydrogen
bond network, from an OH group of a kagomé layer to a crystal water to an O atom of the
adjacent kagomé layer, is loosened by the D→H substitution, which facilitates the I2/a to
P21/a structural transition in Cu3V2O7(OD)2·2D2O.

3.3.3. Effect of a Magnetic Field on Magnetic Ordering

Given that the specific heat anomalies below 1.5 K are associated with magnetic
ordering, it is reasonable to expect that it can be destroyed, and the specific heat anomalies
disappear under the sufficiently high external magnetic field. To confirm this conjecture,
we carried out specific heat measurements for volborthite under magnetic fields B = 0–9 T
(Figure 4a). As B increases, the two specific heat anomalies observed at B = 0 widen
but remain separated, forming two ridges until they eventually merge into one and then
abruptly disappear for B > ~4.2 T (see Figure 4a). Surprisingly, however, a new specific
heat anomaly occurs for fields B > ~5.5 T. This new anomaly forms a single broad ridge,
widening and shifting to higher temperatures with increasing B.
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Figure 4. (a) Magnetic field dependence of the specific heat measured with an external magnetic field
applied B along the b axis of the volborthite crystals. (b) The spectra of ΩA(2m) and SA(2m) in a
kagomé layer of N spin ladders containing m pairs of (AA)- and (FF)-coupled spin ladders. SA(2m) is
the entropy associated with ΩA(2m), namely, SA(2m) = kBlnΩA(2m).

To probe the cause for the field-dependence of the specific heat anomalies, it is neces-
sary to find the magnetic energy spectra of volborthite available below 1.5 K, with which
it can exchange energy with the surrounding phonon bath. At a temperature T below
1.5 K, the free energy Gi of volborthite associated with its magnetic arrangement i can be
written as Gi = Hi − TSi, where Hi and Si are the enthalpy and entropy of the magnetic
arrangement I, respectively. If volborthite has a set of different magnetic arrangements
i = 1, 2, 3, . . . , it has the corresponding energy spectrum {G1, G2, G3, . . . }. Then, volborthite
can absorb energy from the surroundings by using this energy spectrum reflected by the
specific heat anomaly. Since the magnetic specific heat anomalies are observed below 1.5 K,
one might assume that the enthalpies Hi are identical for all members i = 1, 2, 3, . . . . Then,
the free energy spectrum {G1, G2, G3, . . . } is determined by the corresponding entropy
spectrum {S1, S2, S3, . . . }, so the specific heat anomalies below 1.5 K arise from the entropy
spectrum of volborthite, which is due most likely to the magnetic ordering of each kagomé
layer. The latter implies that each kagomé layer must possess at least two different sets of
entropy spectra, so that one set is responsible for the specific heat anomalies below ~4.2 K,
and the other for those above ~5.5 K. In the next section, we show that each kagomé layer
has three different sets of entropy spectra associated with the arrangements of two-leg
spin ladders in each kagomé layer. These entropy spectra are a direct consequence of
the fact that interactions between adjacent two-leg spin ladders in each kagomé layer are
topologically constrained (see below).

4. Entropy Spectra and Specific Heat Anomalies
4.1. Spin Ladder Arrangements

In this section we discuss the magnetic-field dependence of the magnetic ordering
in volborthite below 1.5 K. Our experiments gave conclusive evidence for an effective
AUH chain behavior of volborthite at low temperatures, based on the two-leg spin ladders
formed by J2 and J4. As already mentioned, the two-leg spin ladders (thereafter, referred to
as the spin ladder for short) interact with their neighboring spin ladders to establish two-
dimensional correlations within each kagomé layer via the spin exchange J1 (Section 3.1). To
begin with, we examine what kinds of spin ladder arrangements are possible in a kagomé
layer. As already mentioned, in all possible magnetic arrangements of each kagomé layer at
temperatures below 1.5 K, all J2 and J4 exchange paths of every spin ladder should remain
antiferromagnetically coupled (Figure 1d) because the spin exchanges J2 and J4 forming
the spin ladders are AFM and are much stronger in magnitude than J1. This constraint on
the magnetic arrangements of a kagomé layer leads to three different groups of spin ladder
arrangements. Note that each spin ladder has a set of two consecutive J1 paths running
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along the leg direction, which consists of the left and right sets of J1 paths. Then, the first
topological constraint is that the left or right set of J1 paths in each spin ladder be coupled
either all antiferromagnetically or all ferromagnetically. For simplicity, we use the labels A
(F) to represent the set of J1 paths all antiferromagnetically (ferromagnetically) coupled in
each spin ladder. The two sets of the J1 paths in each spin ladder can have one of the four
possible arrangements, (AA), (AF), (FA), and (FF), as illustrated in Figure 1d. Here, the (AF)
arrangement, for example, means that the spin ladder indicated by a parenthesis has the J1
paths all antiferromagnetically coupled in the left set, but all ferromagnetically coupled
in the right set. Use of bold labels in the (AA) and (FF) arrangements stems from the ease
of recognizing the spin ladder arrangements, as will be seen below. Figure 1d illustrates
a kagomé layer in which the (FF), (AF), (AA) and (FA) spin ladders occur consecutively.
It is convenient to denote this arrangement of spin ladders by (FF)(AF)(AA)(FA). As can
be seen from this arrangement, the second topological constraint is that, when crossing from
one spin ladder to its adjacent one, the two sets of the J1 paths adjacent to the boundary
between the two be opposite in the nature of the spin exchange coupling, e.g., “F)(A” or
“A)(F”. As a consequence, the third topological constraint is that (AA) spin ladders cannot
be nearest neighbors, nor can be (FF) spin ladders. This implies also that (AA) and (FF)
ladders always have to alternate in any spin ladder arrangement. These three constraints
imply that there occur only three different sets of spin ladder arrangements in each kagomé
layer, in which the members of each set are distinguished by how many pairs of (AA) and
(FF) spin ladders are present. For simplicity, we use (AF)m to represent the occurrence
of m consecutive (AF) spin ladders, and (FA)n that of n consecutive (AF) spin ladders.
Then, with the integers m, n, o, p, q and r counting the numbers of consecutive (AF) or (FA)
arrangements, examples of the spin ladder arrangements in Groups I, II and III are written
as follows:

Group I: (AF)m(AA)(FA)n(FF)(AF)o(AA)(FA)p(FF)(AF)q.
Group II: (AF)m(AA)(FA)n(FF)(AF)o(AA)(FA)p(FF)(AF)q(AA)(FA)r.
Group III: (FA)m(FF)(AF)n(AA)(FA)o(FF)(AF)p(AA)(FA)q(FF)(AF)r.

The example of Group I given above illustrates the case when two pairs of (AA) and
(FF) spin ladders are separated by patches of consecutive (FA) and (AF) spin ladders. All
possible spin ladder arrangements of Group I are obtained by changing the number of
(AA) and (FF) pairs, m (=0, 1, 2, 3, . . . ). With respect to any member of Group I, the
corresponding member of Group II has one more (AA) spin ladder, while that of Group III
has one more (FF) spin ladder.

4.2. Entropy Spectra

For a given (AF)m(AA)(FA)n arrangement, it is important to note that the (AF)m patch
represents a domain of (AF)-coupled spin ladders while the (FA)n patch represents a
domain of (FA)-coupled spin ladders, and the (AA) spin ladder is a boundary between
the two domains. Similarly, in a given (FA)m(FF)(AF)n arrangement, the (FF) spin ladder
represents a boundary between the (FA)m and (AF)n domains. Thus, each member of the
Groups I, II and III arrangements is characterized by how many pairs of (AA) and (FF)
boundaries it has, regardless of the widths (e.g., values of m, n, . . . ) of each individual
domain. This point is important in connection with the enthalpy of any given spin ladder

arrangement. All members of Group I have an identical enthalpy, HI = J1 ∑i>j
→
S i
→
S j = 0

per kagomé layer, because each member has equal numbers of antiferromagnetically and
ferromagnetically coupled J1 paths. Similarly, all spin ladder arrangements of Group II are
identical in enthalpy, HII = HI − 2J1 = −2J1 per kagomé layer, and those of Group III are
identical in enthalpy, HIII = HI + 2J1 = +2J1 per kagomé layer. Note that J1 is weakly FM
in the P21/a phase (see Table 1), and that the value of −2J1 for Group II is the enthalpy of
one (AA) spin ladder while the value of +2J1 for Group III is the enthalpy of one (FF) spin
ladder. Since J1 is very weak and since a kagomé layer has a large number of spin ladders,
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one can for all practical purposes assume HI = HII = HIII = 0 per kagomé layer, that is, all
spin ladder arrangements of Groups I, II and III are practically identical in enthalpy.

The spin ladder arrangements of Groups I, II and III give rise to entropy spectra
that are characterized by the number m of (AA) and (FF) pairs. To probe the entropy
spectra of Groups I, II and III, we consider that a kagomé layer has N spin ladders, where
N = NA/3 per FU of volborthite Cu3V2O7(OH)2·2H2O with NA as Avogadro’s number.
The factor 1/3 takes into account the fact that each spin ladder has three Cu2+ ions per
repeat unit. For the case when there are m pairs of (AA) and (FF) arrangements, the total
number of different spin ladder arrangements, ΩA(2m), in Group I, is given by

ΩI(2m) = 2(NC2m) = 2(N!)/[(2m)!(N − 2m)!],

where NC2m is the binomial expansion coefficient, and the factor 2 arises because the m
pairs of sites in each arrangement can be occupied first with a (FF) spin ladder or first with
an (AA) spin ladder when m > 0. For m = 0, ΩI(0) = 2 because one can have the (AF)∞ = . . .
(AF)(AF)(AF) . . . or the (FA)∞ = . . . (FA)(FA)(FA) . . . arrangement. The corresponding
numbers for Group II (Group III) are given by

ΩII(2m) = ΩIII(2m) = ΩI(2m) ΩE(2m),

where ΩE(2m) represents the number of possible sites available for an extra spin ladder
after m pairs of (AA) and (FF) spin ladders are chosen from N spin ladders. Due to the
topological constraints on the spin ladder ordering, ΩE(2m) ≤ N − 2m. Then, the entropies
S associated with the three groups of spin ladder arrangements are given by

SI(2m) = kB lnΩI(2m),

SII(2m) = SIII(2m) = SI(2m) + SE(2m),

SE(2m) = kB lnΩE(2m).

Since ΩI(2m) = ΩI(N − 2m), ΩI(2m) increases as 2m increases from 0 toward N/2,
reaching a maximum at 2m = N/2, and decreases as 2m increases beyond N/2 toward N
(Figure 4b). Consequently, SI(2m) = SI(N − 2m), and SI(2m) increases as 2m increases from
0 toward at N/2 and as 2m decreases from N toward N/2.

The kagomé layers of volborthite satisfy the three conditions necessary for a crystalline
solid to exhibit a purely entropy-driven phase transitions: [30–32] (1) It has a set of states
identical in enthalpy H. (2) The members of this set are grouped into subsets i = 1, 2, 3, . . . ,
with degeneracies Ω1, Ω2, Ω3, . . . , respectively. (3) The degeneracy Ωi increases steadily,
e.g., Ω1 < Ω2 < Ω3 < . . . , so the associated entropy increases steadily. Thus, one may expect
that already moderate magnetic fields inducing Zeeman energies comparable to J1 are able
to substantially alter the entropy balance, causing dramatic effects on the low-temperature
ordering behavior. In fact, as shown Figure 4a, the specific heat anomalies observed at B
= 0 indeed disappears for B > ~4.2 T, but a new anomaly occurs when B > ~5.5 T. Below
~2 K, neither electronic nor vibrational energy of volborthite is available for the energy
absorption, causing the specific heat anomalies. Thus, in the following, we analyze the
dependence of the specific heat anomalies on T and B in terms of the entropy spectra of
Groups I, II and III (Figure 4b).

4.3. Specific Heat Anomalies and Entropy Spectra

As shown above, the entropy SI(2m) of Group I is smaller than that of Group II or III
by SE(2m). As the magnetic field B increases from 0, a kagomé layer starts absorbing energy
by exploiting the entropy spectrum of Group I, so the anomaly below ~4.2 T arises from
the entropy spectrum of Group I. Since ΩI(2m) becomes larger with increasing 2m from 0
to N/2 and also with decreasing 2m from N to N/2, more states are involved in the energy
absorption from Zeeman energy. This allows one to understand why the intensity of the
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specific heat anomaly increases with increasing field B. The entropies SI(2m) from the states
for 2m = 0 − N/2 as well as 2m = N − N/2 are used to absorb energy, eventually reaching
the highest entropy level SI(N/2) (Figure 4b). When all entropy levels are exploited, there is
no more entropy level with which a kagomé layer can absorb energy any further, even if B
is increased. At this stage, the spin ladder ordering within a kagomé layer assumes a liquid-
like disordered state, and the specific heat in the valley between ~4.2 T and ~5.5 T reaches
that of the disordered state of the S = 1/2 AUH chains (the green plateau in Figure 4a). It is
most reasonable to assign the higher-temperature specific heat ridge to a magnetic ordering
within each kagomé layer, and the lower-temperature one to a three-dimensional ordering,
i.e., an ordering between the magnetically ordered kagomé layers. When the magnetic
field increases further, a kagomé layer can utilize the entropy spectra of Groups II and III
simultaneously, leading to the single broad specific heat anomaly above ~5.5 T. However,
this requires that the spin ladder arrangements of a kagomé layer must be converted from
Group I to Groups II and III. Each spin ladder has two sets of J1 exchanges, e.g., a (AF) spin
ladder has one set of AFM-coupled J1 and another set of FM-coupled J1 exchanges. Suppose
that a set of J1 paths is switched from FM to AFM, e.g., from an (AF) to a (AA) spin ladder
in one member of ΩA(2m) of Group I to create an extra (AA) spin ladder. Such a J1-flip,
e.g., (AF)m(AF)(AF)n→(AF)m(AA)(FA)n, converts the electronic structure from Group I to
Group II, raising the entropy from SI(2m) to SII(2m) = SI(2m) + SE(2m). Similarly, a J1-flip
can create an extra (FF) spin ladder, e.g., (FA)m(FA)(FA)n→(FA)m(FF)(AF)n, converting
the electronic structure from Group I to Group III, raising the entropy from SI(2m) to
SIII(2m) = SI(2m) + SE(2m).

With a magnetic field, it is energetically more favorable to induce a J1-flip from AFM
to FM rather than that from FM to AFM. In contrast, thermally-driven J1-flips from AFM to
FM or from FM to AFM are equally likely. Thus, thermal agitation will be more effective
in creating J1-flips than Zeeman energy, approximately by a factor of 2. The positions of
two ridges of the specific heat below ~4.2 T are nearly parallel to the magnetic field axis,
whereas the single specific heat ridge above ~5.5 T is slanted with slope gµBB/kBT ≈ 2. This
reflects that, at a strong enough magnetic field, the kagomé layers of Group II spin ladder
arrangements absorb energy equally, as do those of Group III spin ladder arrangements.

The entropy spectra II and III are identical in the degeneracy of each entropy level, but
differ in the nature of spin ladder arrangements. Whether a given kagomé layer produces
the entropy spectrum II or III has no effect on the enthalpy difference. Consequently, there
is no ordering between kagomé layers, which explains the occurrence of a single specific
heat anomaly at magnetic field above ~5.5 T. The latter forms a single ridge with increasing
B, the shape of which suggests that not all available entropy states of the entropy spectra
II and III are populated at 9 T. If it is assumed that this above-5.5 T specific heat anomaly
(Figure 4a) retains a symmetric shape with respect to the temperature and magnetic field,
one might expect that the magnetic order above ~5.5 T will disappear under a magnetic
field higher than ~13 T.

Finally, we note that in all ordered magnetic states of Groups I, II and III, there occurs
a strong gain of translational entropy with respect to those states in which there is no order
between neighboring spin ladders, because the ordered states have translational symmetry
along the leg direction. This provides a strong driving force for the magnetic ordering. In
a sense, this situation is similar to the nematic phase transition in a system of thin rods
examined by Onsager [31].

5. Concluding Remarks

The spin exchanges of volborthite show that each kagomé layer of Cu2+ ions is hardly
spin-frustrated, but rather consists of very weakly interacting two-leg spin ladders with
linear trimers as rungs. Below ~75 K, these rungs act as S = 1/2 pseudospin units, mak-
ing each two-leg spin ladder behave as a S = 1/2 antiferromagnetic uniform Heisenberg
chain. This conclusion was confirmed by synthesizing single crystal samples of volbor-
thite Cu3V2O7(OH)2·2H2O and its deuterated analogue Cu3V2O7(OD)2·2D2O and sub-



Condens. Matter 2022, 7, 24 12 of 13

sequently measuring their magnetic susceptibilities and specific heat anomalies. Under
a magnetic field B higher than ~4.2 T, the specific heat anomalies below 1.5 K are sup-
pressed. However, a new specific heat anomaly appears when B is raised above ~5.5 T.
The dependence of the specific heat anomalies on the magnetic field are governed by the
fact that the magnetic properties of each kagomé has three sets of entropy spectra with
which it can exchange energy with the surrounding. These entropy spectra arise from
the topologically constrained interactions between adjacent two-leg spin ladders in each
kagomé layer; that all spin exchange paths forming each two-leg spin ladder should remain
antiferromagnetically coupled.

The present work makes it clear that the use of a correct spin lattice is critical in
describing the properties of a magnetic material. As a criterion for finding a proper spin
lattice, the geometrical pattern of magnetic ion arrangement can be grossly misleading
because a spin lattice is decided by the geometrical pattern of the strong spin exchange
paths [3,4,19]. If volborthite were to be treated as a spin-frustrated kagomé lattice model, the
S = 1/2 antiferromagnetic uniform Heisenberg chain behaviors of its magnetic susceptibility
and magnetization are exotic and novel, as are its specific heat anomalies below 1.5 K. By the
same token, all other magnetic properties of volborthite not explained by a spin-frustrated
kagomé lattice model would be novel and surprising. However, our work showed that
each kagomé layer of Cu2+ ions consists of very-weakly interacting two-leg spin ladders,
so the seemingly exotic magnetic properties previously attributed to magnetic frustration
are simply explained by a well-studied S = 1/2 antiferromagnetic uniform Heisenberg
chain model. To find a correct spin lattice for any given magnetic material, it is necessary
to evaluate the relative strengths of various possible spin exchanges of a given magnetic
system by using an unbiased and straightforward method such as the energy-mapping
analysis, based on first principles DFT calculations [3,4,19,33].
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