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Abstract: Layered La(O,F)BiS2 exhibits drastic enhancements of the superconducting transition
temperature (Tc) under high pressure among the BiS2-based superconducting family. However, the
high-pressure application beyond a high-Tc phase of the monoclinic structure has not been conducted.
In this study, the electrical transport properties in La(O,F)BiS2 single crystal are measured under high
pressures up to 83 GPa. An insulating phase without superconductivity is observed under a higher-
pressure region above 16 GPa. Moreover, the sample exhibits metallicity and superconductivity
above 60 GPa. The newly observed hidden semiconducting phase and reentrant superconductivity
have attracted much attention in BiS2-based compounds.

Keywords: superconductivity; high pressure; BiS2

1. Introduction

Layered BiS2-based superconductors, represented as La(O,F)BiS2 [1], have opened
various materials science properties, such as their anomalous upper critical field [2,3],
thermoelectric performance [4–6], topological features [7], and superconductivity on high-
entropy alloys [8], up for further investigation. Among them, the performance of the
material at high-pressures has attracted considerable attention. The superconducting
transition temperature (Tc) in La(O,F)BiS2 at ambient pressure is 2.5 K with maximum
F-doping [1]. The original Tc is discretely enhanced with a structural phase transition from
tetragonal to monoclinic [9]. Interestingly, the high-pressure phase and enhanced Tc are
quenchable to ambient pressure via high-pressure synthesis or annealing at 600–700 ◦C and
2 GPa [10]. According to theoretical calculation [11] and experimental observation of the iso-
tope effect [12], the paring mechanism of superconductivity in the ambient tetragonal phase
is unconventional. In contrast, the isotope effects on the high-pressure monoclinic phase
suggest conventional phonon-mediated superconductivity [13]. Most layered BiS2-based
superconductors exhibit similar high-pressure effects [14–17]. Therefore, investigating the
high-pressure effects on BiS2-based materials is important for understanding its supercon-
ducting mechanism and increasing the maximum Tc.

The high-pressure study of La(O,F)BiS2 is important because it has the highest Tc
among the BiS2-based superconductors. La(O,F)BiS2 exhibits superconductivity with a
maximum Tc = 2.5 K at ambient pressure by F doping into O in the parent compound
of insulating LaOBiS2 with a direct bandgap of 0.8–1.0 eV [1,18]. The electrical transport
property under high pressure on polycrystalline La(O,F)BiS2 has been investigated up to
18 GPa, and the Tc exhibits a “dome-like” feature [9]. Tc suddenly jumps up to 10.7 K
by applying pressure at around 1 GPa, and monotonically decreased with increasing
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the pressure up to 18 GPa. Recently, similar high-pressure effects of Tc enhancement
and quench of higher-Tc phase have been reported for single-crystalline La(O,F)BiS2 [19].
However, the high-pressure study of La(O,F)BiS2 above 18 GPa beyond a high-Tc phase of
themonoclinic structure has not been conducted.

A reemergence of superconductivity in a higher pressure region after the “dome-
like” feature of Tc has been reported in several materials. It attracts considerable atten-
tion because different superconducting properties compared with the original Tc, for
instance, higher Tc and robust superconductivity, are often observed. KxFe2Se2 and
(Li1-xFex)OHFe1-ySe at ambient pressure exhibit superconductivity at 30 K and 41 K. The
superconductivity in these materials is rapidly suppressed by applying pressure. After
further compression, KxFe2Se2 and (Li1-xFex)OHFe1-ySe show reentrant superconductivity
with higher Tc of 48.7 K and 50 K than those of the original superconducting phase [20–22].
Recently, highly robust reentrant superconductivity in quasi-2D kagome metal CsV3Sb5
has been reported [23]. Inspired by the discoveries of the reentrant superconductivity, we
conducted electrical transport measurements on superconducting La(O,F)BiS2 under high
pressure of up to 83 GPa using a diamond anvil cell (DAC) with a boron-doped diamond
micro-electrode. A reemergence of superconductivity was observed in La(O,F)BiS2 under
60 GPa. The in-situ Raman spectroscopy under high pressure and transmission electron
microscope (TEM) observation of the recovered sample were performed to analyze the
crystal structure.

2. Experimental Procedures

La(O,F)BiS2 single crystals were grown using the high-temperature flux method based
on that reported in the literature [24,25]. The starting materials of La2S3, Bi, Bi2S3, Bi2O3,
and BiF3 were weighed with a nominal composition of LaO0.5F0.5BiS2 (total 0.8 g). CsCl
and KCl flux with a molar ratio of 5:3 (total 5 g) were mixed using a mortar and were sealed
in a quartz tube. The sample was heated at 900 ◦C for 10 h, cooled slowly to 600 ◦C at a
rate of 1 ◦C/h, and then naturally cooled to room temperature in the furnace. The products
were washed using distilled water after the sample was opened in the air. For comparison,
the undoped LaOBiS2 was also synthesized using the same method.

The chemical compositions of the products were determined by scanning electron
microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) using a JSM-
6010LA (JEOL) instrument. An X-ray diffraction (XRD) pattern of the obtained sample was
collected using a Mini Flex 600 (Rigaku) with Cu Kα radiation (λ = 1.5418 Å). Refinement of
the lattice parameters was performed by a Rietveld analysis using RIETAN-FP program [26].
In refinement, the tiny impurity peaks near 27◦ were excluded. The temperature depen-
dence of the resistance in the range of 300 to 0.2 K at ambient pressure was measured by a
four-probe method using an adiabatic demagnetization refrigerator option on a physical
properties measurement system (Quantum Design). The high-pressure generation and the
in-situ transport measurements were performed using a DAC with boron-doped diamond
electrodes [27–29]. The anvil culet and gasket hole had diameters of 300 µm and 200 µm,
respectively. The sample space was composed of SUS316 stainless steel, a cubic boron
nitride pressure-transmitting medium, and a ruby powder pressure sensor. The generated
pressure was determined using the ruby fluorescence method [30] and Raman shift of
diamond [31] at room temperature. The Raman spectrum of the sample and fluorescence
spectrum of ruby were acquired using an inVia Raman microscope (RENISHAW). TEM
observation and atomic-resolution EDX mapping were conducted for the recovered sample
from DAC using JEM-ARM200F (JEOL) to analyze the sample crystal structure further.
The sample fabrication for TEM observation was performed using focused ion beam (FIB)
apparatus JIB-4000 (JEOL).
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3. Results and Discussion

The obtained sample of La(O,F)BiS2 was evaluated at ambient pressure using the
SEM/EDX observation, XRD analysis, and transport measurements. The inset of Figure 1a
shows an SEM image of the obtained La(O,F)BiS2 single crystal exhibiting a well-developed
plate-like shape. The compositional ratio (La:Bi:S) was determined as 1:0.99:1.72 by normal-
izing La = 1 in the EDX analysis, which is consistent with the nominal cation composition.
The upper pattern of Figure 1a shows the XRD signal from one piece of La(O,F)BiS2 single
crystal. The pattern only exhibited 00l diffraction peaks, indicating that the sample was
a highly oriented crystal. The middle data of Figure 1a show the XRD pattern of the
powdered La(O,F)BiS2 single crystal with the fitting result of the Rietveld refinement. The
green bars and blue spectrum indicate a peak position of the determined structure and a
differential curve for the fitting. The analysis revealed that the sample crystallized with a
tetragonal structure. The obtained lattice parameters and reliability factor were a = 4.0729(2)
Å, c = 13.5001(16) Å, Rwp = 10.3%. The EDX and XRD analyses establish that single crystal
La(O,F)BiS2 was obtained.
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Figure 1. (a) XRD patterns with Cu Kα radiation (λ = 1.5418 Å) of the obtained La(O,F)BiS2. The
upper pattern is from one piece of single crystal. The middle data show the pattern from the powdered
single crystal with the fitting result of Rietveld refinement. The green bars and blue spectrum indicate
a peak position of the determined structure and a differential curve for the fitting. The inset shows an
SEM image for one piece of single crystal. (b) Temperature dependence of normalized resistance in
La(O,F)BiS2 and LaOBiS2 single crystals at ambient pressure.

Figure 1b shows the temperature dependence of normalized resistance at ambient
pressure in single crystal of La(O,F)BiS2, and undoped LaOBiS2 as a reference. The undoped
LaOBiS2 exhibited no superconductivity down to 0.2 K. In contrast, the doped sample
La(O,F)BiS2, at ambient pressure, exhibited an onset Tc of 1.7 K. According to the detailed
structural analysis using a single crystalline XRD in the literature [25], LaO1-xFxBiS2 with
an actual F concentration x ~ 0.23 and ~0.46 show the lattice constant c = 13.547(4) and
13.345(4) Å, respectively. The actual F concentration x of the obtained crystal in this study
was estimated to be less than 0.23 because the lattice constant c = 13.5001(16) Å was smaller
than that of the previous report. In addition, based on the relationship between Tc and the
amount of F (x) in the LaO1-xFxBiS2 single crystal reported in the literature [32], the value
of x was estimated to be less than 0.23, which was consistent with the estimated value from
the XRD analysis.

Figure 2a shows the temperature dependence of resistance in La(O,F)BiS2 single crystal
under high pressure of 7.0 to 37 GPa. The sample exhibits a sharp drop to zero resistance
at 7.0 GPa, corresponding to superconductivity. Tc is drastically enhanced from that of
ambient pressure because of the structural phase transition, as reported in a previous
high-pressure study on single crystals [19]. Tc monotonically decreased with the increasing
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pressure of up to 13 GPa, consistent with the report on polycrystalline samples [9]. The
superconducting transition could not be observed in the measured temperature range
above 16 GPa, and the temperature dependence of the resistance exhibited a semiconduct-
ing tendency. In contrast, the semiconducting behavior was suppressed under further
compression above 37 GPa, as seen in Figure 2b. At 60 GPa, a reemergence of supercon-
ducting transition was observed at around 3 K. In general, the pressure distribution in the
sample chamber was quite large and affected the measured resistance under the extremely
high-pressure region of the DAC. In particular, the semiconducting feature often remained
after the insulator to metal transition due to the pressure distribution [33]. Therefore, the
sample was considered to be metallic above 60 GPa, although the temperature dependence
of the resistance was still semiconducting. As Tc gradually increased, the resistance at
the lowest temperature approached zero with the increasing pressure up to 83 GPa. The
appeared drop of resistance was gradually suppressed by applying a magnetic field, as
represented in Figure 2c. Such suppression was further evidence of the higher-pressure
phase of superconductivity in La(O,F)BiS2. The inset of Figure 2c shows the temperature
dependence of the upper critical field Bc2. Tcs was determined from the intersection point
between the straight line of the normal resistance region and the extended line from resis-
tance after the superconducting transition. Bc2(0) was estimated to be 2.6 T under 79 GPa
from the parabolic fitting. From the Ginzburg−Landau (GL) formula, Bc2(0) = Φ0/2πξ(0)2,
where Φ0 is the fluxoid and the coherence length at zero temperature ξ(0) is estimated to
be 11.2 nm.
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Figure 2. Temperature dependence of resistance in La(O,F)BiS2 single crystal under high pressure
between (a) 7.0 to 37 GPa, (b) 37 to 83 GPa, and (c) 79 GPa under various magnetic fields up to 2 T.
The insets of (a,b) show the magnified plots around the low superconducting transition. The inset of
(c) is the temperature dependence of the upper critical field Bc2.

Raman spectroscopy is often used to discuss the structure and vibration modes in the
BiS2-based compounds [19,34,35]. Figure 3a displays the Raman spectra of the La(O,F)BiS2
single crystal up to 83 GPa from the ambient pressure. At ambient pressure, La(O,F)BiS2
exhibited a Raman-active mode of A1g originating from the in-plane vibrations of Bi and
S atoms at the gamma point [34]. At ambient pressure, the peaks at around 70 cm−1 and
123 cm−1 were clearly visible, identified as A1g symmetry. The positions of the correspond-
ing peaks were slightly shifted to a higher wavenumber at 1.2 GPa. As reported in precise
Raman analysis for La(O,F)BiS2 single crystal [19], the original A1g mode disappeared, and
new peaks appeared at 2.7 GPa. The change in the Raman spectrum suggested the struc-
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tural phase transition from tetragonal to monoclinic with the discrete enhancement of Tc in
La(O,F)BiS2. The observed peaks gradually shifted to a higher wavenumber with increasing
the pressure up to 9.6 GPa. The intensity of the Raman peaks from the monoclinic structure
became small above 13 GPa, suggesting an emergence of a new structure corresponding to
the semiconducting phase without superconductivity. All the Raman peaks disappeared
under further compression above 60 GPa, signaling another new structure or metallization.
The reemergence of superconducting transition was observed in this pressure range. When
pressure decreased to 15 GPa and ambient pressure, the Raman peaks were not recovered.
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peak labeled “15 GPa(dec)” are the data from the decompression process. (b) Pressure dependence of
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onset and Tc
zero in La(O,F)BiS2 single crystal up to 83 GPa.

Figure 3b shows the pressure dependence of Tc in La(O,F)BiS2 single crystal up to
83 GPa. At ambient pressure, the original Tc with a tetragonal structure is 1.7 K (SC1).
The Tc is suddenly enhanced up to 8.2 K with applied pressure above 1 GPa due to
the phase transition to a monoclinic structure (SC2). The steep reduction of Tc with
increasing the pressure in the monoclinic phase up to 13 GPa was possibly due to a phonon-
hardening effect in conventional Bardeen−Cooper−Schrieffer type superconductors [36,37],
as seen in the Raman analysis. The sample exhibited a semiconducting nature without
superconductivity between 16 GPa and 50 GPa. Above 60 GPa, reentrant superconductivity
was observed (SC3). Although the Tcs of SC3 was not higher than that of SC2, as in the
case of Fe-based materials [20–22], quite robust pressure dependence of Tc against the
pressure was confirmed, such as Kagome metal [23]. In addition, the reentrant Tc continued
to enhance with increasing the pressure up to 83 GPa. For future research, the further
application of pressure is expected to present the “dome-like” feature of Tc in the SC3 phase
of La(O,F)BiS2.
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The TEM observation was conducted for the recovered sample of La(O,F)BiS2 and
as-grown La(O,F)BiS2 single crystal in order to understand the origin of phase “SC3”.
Figure 4a,b displays the scanning ion microscope images (SIM) of the as-grown and recov-
ered La(O,F)BiS2 single crystals before the TEM observation, respectively. The specimens
were fabricated from the square region in (a) and (b) by the FIB, and their cross-sections
were analyzed as seen in (c) and (d), respectively. Figure 4e shows a high-angle annular
dark-field scanning TEM image taken with the incident beam parallel to the [10] direction
of the as-grown La(O,F)BiS2 single crystal. No distortion and stacking faults were observed
in the scanning TEM image for the analyzed area. In contrast, the scanning TEM image
for the recovered sample was highly distorted with amorphous parts, as seen in Figure 4f.
Such an amorphous-like structure can be seen in the broader region in the recovered sample
(see Figure S1). This is consistent with the disappearance of Raman peaks above 60 GPa.
Figure 4g,h shows the atomic-resolution EDX mapping for certain expanded parts of the
as-grown and recovered samples. The layered structure composed of alternate stacks of
conducting layers BiS2 and reservoir blocking layers La(O,F) was observed in both samples.
Here, the blocking layer (La,O,F) in the recovered sample seemed to become thin compared
with the original one (images with guidelines for the comparison are seen in Figure S2).
The in-situ observation of the crystal structure under the pressure corresponding to phase
“SC3” using XRD was expected in the future for a more detailed discussion on the origin of
the reentrant superconductivity.
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Figure 4. Scanning ion microscope images (SIM) of the (a) as-grown and (b) recovered La(O,F)BiS2

single crystals. SIM images of the specimen for TEM observation of the (c) as-grown and (d) recovered
samples. High-angle annular dark-field scanning TEM images for the (e) as-grown and (f) recovered
samples. Atomic-resolution EDX mapping images for the (g) as-grown and (h) recovered samples.

4. Conclusions

The electrical transport property in layered La(O,F)BiS2 single crystal was investi-
gated under high pressure up to 83 GPa. The existence of a high-pressure phase with a
higher Tc of this material has already been investigated. This study successfully observed
the high-pressure semiconducting phase without superconductivity and the reentrant
superconductivity. The semiconducting phase exhibited different Raman peaks from the
superconducting monoclinic structure. In addition, the reentrant superconducting phase
showed no Raman peak, and the recovered sample had an amorphous-like morphology.
Therefore, the crystal structures of newly observed phases were different from the orig-
inal tetragonal and monoclinic structures. Because the reentrant superconductivity was
robust against the pressure and the Tc continued to enhance up to 83 GPa, further appli-
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cation of pressure was expected. As a future investigation, the in-situ XRD analysis is
expected to explain the origin of the reentrant superconductivity. The discovery of two
high-pressure phases is important in order to understand further physics in the BiS2-based
superconductors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/condmat7010025/s1, Figure S1: Wide view of high-angle annular
dark field scanning TEM images for the recovered samples, Figure S2: Comparison between two EDX
mapping images with a guideline of the blocking layers.
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