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Abstract: We provide a detailed description of the path-integral Monte Carlo worm algorithm used
to exactly calculate the thermodynamics of Bose systems in the canonical ensemble. The algorithm
is fully consistent with periodic boundary conditions, which are applied to simulate homogeneous
phases of bulk systems, and it does not require any limitation in the length of the Monte Carlo moves
realizing the sampling of the probability distribution function in the space of path configurations. The
result is achieved by adopting a representation of the path coordinates where only the initial point of
each path is inside the simulation box, the remaining ones being free to span the entire space. Detailed
balance can thereby be ensured for any update of the path configurations without the ambiguity of
the selection of the periodic image of the particles involved. We benchmark the algorithm using the
non-interacting Bose gas model for which exact results for the partition function at finite number of
particles can be derived. Convergence issues and the approach to the thermodynamic limit are also
addressed for interacting systems of hard spheres in the regime of high density.

Keywords: path-integral; Monte Carlo; periodic boundary conditions; worm algorithm; ultracold
Bose gases

1. Introduction

The path-integral Monte Carlo (PIMC) method is a computational approach that allows
one to exactly calculate the equilibrium properties of Bose systems at finite temperature
starting from the microscopic Hamiltonian. The first applications of the method addressed
the study of bulk liquid and solid 4He approaching the quantum degenerate regime [1,2].
Similarly to these first simulations, many later implementations of the PIMC algorithm
addressed homogeneous systems featuring infinite spatial extension in the physically
relevant dimensions. To mimic such configurations, the use of periodic boundary conditions
in the computer simulations is crucial [3]. The size of the simulation cell enters as an
important parameter of the numerical procedure, calling for a careful extrapolation of all
the results to a properly defined thermodynamic limit. Another crucial aspect of PIMC
simulations is the efficient sampling of Bose-particle permutations. This gets increasingly
important with the level of quantum degeneracy and is essential to obtain reliable estimates
of observables such as the superfluid density and the condensate fraction [4,5]. In this
context, an important technical advancement emerged with the introduction of the worm
algorithm, first devised for lattice models [6,7] and later extended to continuous-space
simulations [8,9]. The PIMC method implementing the worm algorithm has proven to
be one of the most powerful computational quantum many-body techniques. It allowed
performing accurate simulations of intriguing phenomena in different condensed matter
systems, such as dipolar systems [10–12], ultracold gases [13–17] and quantum fluids and
solids [18–24]. However, the original implementation of the worm algorithm is not fully
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compatible with periodic boundary conditions. This can lead to biased results when the
de Broglie thermal wavelength starts to be comparable to the size of the fundamental
periodic cell. The basic idea behind the worm algorithm is the use of both diagonal and
off-diagonal configurations of the paths describing particles in the many-body system.
Various moves of portions of the paths are devised to ensure the ergodic sampling of
both types of configurations as well as to switch from the diagonal to the off-diagonal
sector and vice-versa. Such moves, satisfying detailed balance, have a straightforward
implementation in the case of a system with infinite extension or of a confined finite
geometry. In periodic systems, instead, the ambiguity in the choice of periodic images
might lead to biased results, unless stringent constraints are imposed on the portions of
the paths involved in certain Monte Carlo moves. Such bias can be avoided by adopting
periodic cells much larger than the thermal wavelength, but this becomes impractical
in the zero temperature limit. Furthermore, the limitations in the updates can affect the
efficiency of the Monte Carlo sampling. We present here a formalism and a detailed
recipe for a PIMC algorithm for bosons in the canonical ensemble, which is rigorously
compatible with periodic boundary conditions. With this algorithm, no constraint has to be
imposed on the Monte Carlo updates, even for small periodic cells. We use as a benchmark
the canonical non-interacting Bose gas in a periodic box for which exact results for the
energy can be obtained for any number of particles in the box. Direct comparison with
these results permits us to check one by one the various elementary moves of our novel
implementation of the worm algorithm, verifying that they provide an unbiased ergodic
sampling. Interacting systems are considered only with the hard-sphere model interaction
and the pair-product approximation. In this case, no exact result is available for finite
box-like geometries even for just a pair of particles. Nonetheless, we can investigate the
convergence of the results for a given number of particles in terms of the length of the
path steps in imaginary time as well as the approach to the thermodynamic limit when the
number of particles in the simulation is increased.

The structure of the paper is as follows. In Section 2, we introduce the representation
of the particle coordinates consistent with the use of periodic boundary conditions. Trying
to be pedagogical, we first consider the case of a single particle in a one-dimensional
periodic box and then move to the case of N identical particles. In the same section, we
describe the general scheme of the worm algorithm and we introduce in details the various
Monte Carlo updates. In Section 3, we benchmark the algorithm against exact results of
the non-interacting Bose gas for one, two and many particles at different temperatures.
Section 4 is devoted to interacting systems for which we use the hard-sphere model in the
regime of high density. We address the convergence of the algorithm for a given number of
particles N and for different temperatures, as well as the approach to the thermodynamic
limit. Finally, in the last section, we draw our conclusions. In Appendix A, we outline the
useful formulas used for the calculation of the internal energy, both the thermodynamic
and virial estimator, and of the pressure.

2. Path Integral Monte Carlo

In a PIMC simulation, one aims at calculating the partition function ZN of a Bose
system of N identical particles described by the Hamiltonian H and with inverse temper-
ature β = 1/(kBT), where kB is Boltzmann’s constant. In the coordinate representation,
the partition function is defined as the trace over all states |R〉 of the density matrix
ρ(R, R′, β) = 〈R|e−βH |R′〉 properly symmetrized,

ZN =
1

N! ∑
P

∫
dR ρ(R, PR, β) . (1)

Here, R = (r1, r2, . . . , rN) collectively denotes the position vectors of the particles
and PR = (rp(1), rp(2), . . . , rp(N)) corresponds to the position vectors with permuted labels.
Furthermore, the sum in the above equation extends over the N! permutations of the particle
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labels. The partition function can be conveniently rewritten in terms of the convolution
integral

ZN =
1

N! ∑
P

∫
dR
∫

dR1· · ·
∫

dRM−1 ρ(R, R1, δτ) . . . ρ(RM−1, PR, δτ) , (2)

where δτ = β/M. Starting from the above decomposition, the calculation is mapped to
a classical-like simulation of polymeric chains with a number of beads M equal to the
number of terms of the convolution integral. More specifically, one makes use of suitable
approximations for the density matrix ρ(R, R′, δτ) at the higher temperature 1/δτ and
performs the multidimensional integration over R, R1, . . . , RM−1 as well as the sum over
permutations P by Monte Carlo sampling [1,2]. The whole procedure can be unambiguously
followed if the particle coordinates r1, . . . , rN can span the entire space, for example when
the Hamiltonian includes a confining external potential. In the case of interest of a bulk
system, where the simulation cell corresponds to a box periodically replicated in space, the
coordinates ri can either denote the position of the i-th particle in the box or of one of its
periodic images in the neighboring boxes. This ambiguity has troublesome consequences
in the proper sampling of configurations R with the correct probability distribution. In
particular, a naïve implementation of the Monte Carlo updates might lead to the violation of
the detailed balance condition. In the following subsection we motivate the use of a specific
representation for the particle coordinates that allows one to unambiguously construct a
PIMC algorithm that is consistent with periodic boundary conditions. The upshot is that
one should consider coordinates as belonging to the infinite space throughout the whole
simulation, and invoke periodic boundary conditions only when considering the periodicity
of the trajectories in imaginary time or the interaction among different particles. First, we
consider the simplest possible example, namely a single particle in one dimension, to show
how this coordinate representation naturally emerges in the context of the path-integral
representation of the partition function. Once the single particle case has been clarified, we
extend the formalism to the N-body system with periodic boundary conditions.

2.1. Path Integral for One Particle with Periodic Boundary Conditions

We consider a particle moving on a circle S1 ∼ R / Z of length L whose momentum
is quantized in units of 2πh̄/L. A position eigenstate on the circle can be represented as the
Fourier series

|x〉S1 =
1√
L

∞

∑
n=−∞

e
−

ipnx
h̄ |pn〉 , pn =

2πh̄
L

n , (3)

but it can also be expressed as the superposition of eigenstates in the space R as

|x〉S1 =

√
L

2πh̄

∞

∑
n=−∞

|x + nL〉 . (4)

In the above equations the coordinate x is limited to the fundamental cell [0, L) and
we used the notation |〉S1 to represent a state on S1 while with the standard ket |〉, without
subscripts, we represented a state on the real line R. For later convenience, we introduce
the following alternative labeling of the states on R:

|x + nL〉 ≡ |x, n〉 , (5)

which explicitly separates the coordinate in the fundamental cell from the integer iden-
tifying one of the periodic images. The momentum eigenstate |pn〉 does not have this
distinction since the plane-wave decomposition can equivalently be expressed in the two
spaces as

|pn〉 =
1√
L

∫ L

0
dx e

ipnx
h̄ |x〉S1 =

1√
2πh̄

∫ ∞

−∞
dx e

ipnx
h̄ |x〉 . (6)
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We can then write the partition function of a free particle of mass m in one dimension
with periodic boundary conditions using the set of coordinates on the real line R:

Z1 =
∫ L

0
dx

∞

∑
n=−∞

〈x, 0| e
−

βp2

2m |x, n〉 , (7)

where p is the momentum operator. Notice that the above equation computes the trace
over the Boltzmann factors by fixing a reference in the fundamental cell and then summing
over all periodic images. The reader can easily verify that the above expression evaluates to
the same result as the more familiar formula Z1 = ∑n exp[−βp2

n/(2m)]. It is also important
to notice that if one limits to n = 0 the summation over images in Equation (7), i.e., only
the particle in the simulation box is considered, the result for Z1 would be correct only in

the limit λT � L, where λT =
√

2πh̄2β/m is the thermal wavelength. For the particular
example of a single particle in a box, this issue explains the difficulty of a path-integral
algorithm with periodic boundary conditions [3].

We can then define δτ = β/M, with M being a positive integer, and introduce M− 1
completeness relations on the real line R,

1 =
∫ ∞

−∞
dx |x〉 〈x| , (8)

to obtain a representation of Z1 suitable for a PIMC simulation:

Z1 =
∫ L

0
dx

∞

∑
n=−∞

∫ ∞

−∞
dx1 . . . dxM−1 〈x, 0| e−

δτ p2
2m |x1〉 〈x1| . . . |xM−1〉 〈xM−1| e−

δτ p2
2m |x, n〉 . (9)

Notice that the expression above involves a product of matrix elements obtained
from states defined on the real line R. The periodicity of the space just constrains the
leftmost bra to span the fundamental cell, and the rightmost ket to coincide with one of
the images labeled by n. Before moving to the more general case of a system of N particles
in D-dimensions, let us introduce the analog of the partition function in Equation (7) for
non-diagonal (or two-point) configurations,

G1 =
1
L

∫ L

0
dx′

∫ L

0
dx

∞

∑
n=−∞

〈x, 0| e
−

βp2

2m |x′, n〉 , (10)

where the matrix element is between a state in the fundamental cell and a generic other
state. This quantity will characterize the simulation in the off-diagonal sector, and it can be
rewritten as

G1 =
1
L

∫ ∞

−∞
dx′

∫ L

0
dx 〈x, 0| e

−
βp2

2m |x′〉 . (11)

The generalizations of Equations (7) and (11) to the D-dimensional N-particle system,
in which the paths of the particles in imaginary time are represented on the infinite space,
with only one reference coordinate in the fundamental cell, provides an unambiguous
parametrization of the PIMC method and will be employed below to construct a worm
algorithm that is consistent with periodic boundary conditions.

2.2. Path Integral for N Bosons with Periodic Boundary Conditions

We consider now a system composed of N identical bosons of mass m contained in a
D-dimensional hypercube of volume V = LD. The use of periodic boundary conditions
makes the space of coordinates the D-dimensional torus (R/Z)D. Generalizing the notation
of the previous subsection, we introduce the coordinates inside the box X = (x1, x2, . . . , xN),
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with xi ∈ [0, L)D, and a collection of integers W = (w1, w2, . . . , wN), with wi ∈ ZD labeling
the image of the i-th particle. An N-particle state can then be defined as

|R = X + WL〉 ≡ |X, W〉 . (12)

The partition function can then be written as

ZN =
1

N! ∑
P

∑
W

∫
V

dX 〈X, 0| e−βH |PX, W〉 , (13)

where PX = (xp(1), xp(2), . . . , xp(N)) indicates the position vector in the box V with per-
muted indices. By using the convolution rule and introducing M− 1 intermediate beads
each at the inverse temperature δτ = β/M, the partition function can be written as

ZN =
1

N! ∑
P

∫ M−1

∏
j=0

dRj ρ(Rj, Rj+1, δτ) , RM ≡ PX0 + WL . (14)

In the above equation, we have combined the integration over X0 and the sum over
the integers W into an integration over R0, and implicitly required that the vector R0
appearing as the argument of the density matrix has to be considered as the image in the
fundamental cell, i.e., the vector X0. Similarly to the one-dimensional case in the previous
subsection, the remaining vectors R1, . . . , RM, span the entire space. As previously stated,
in a PIMC calculation one performs a classical-like simulation of polymers formed by M
links, connecting M + 1 beads. Each polymer corresponds to one boson, that can close on
itself (if p(i) = i) or on another particle specified by the permutation index p(i). Notice
that each polymer i starts at the bead 0 inside the fundamental cell, and ends at bead M,
closing on an image of the first bead of the polymer p(i), identified up to the periodicity of
the D-dimensional torus. Denoting with X a configuration of the N particles (that will be
defined more in detail later), one can see that Equation (14) naturally provides a probability
density function (PDF), given by

π(X) =
1

ZN

1
N!

M−1

∏
j=0

ρ(Rj, Rj+1, δτ) , (15)

that can be sampled using the Metropolis–Hastings algorithm [25,26]. Diagonal ther-
modynamic observables can then be directly computed using the above PDF from the
configurations visited by the simulation. With obvious notation, the equilibrium statistical
average of a given operator O is given by

〈O〉 =
∫
DX π(X)O(X) . (16)

For the systems that are considered here, the Hamiltonian can be expressed as the
sum H = T + V of a quadratic kinetic part T = ∑i p2

i /(2m), with pi being the momentum
operator associated to particle i, and a potential part V , usually diagonal in the coordinate
representation. In such a case, for sufficiently large M an accurate approximation of the
high-temperature density matrices is ensured by the Trotter product formula [27]

e−β(T +V) = lim
M→∞

[
e−δτT e−δτV

]M
, (17)

allowing us to rewrite the density matrices appearing in Equation (15) as

ρ(Rj, Rj+1, δτ) = ρfree(Rj, Rj+1, δτ) exp
[
−U(Rj, Rj+1)

]
, (18)

where U is the potential energy term, while ρfree is the free particle density matrix obtained
from the kinetic operator



Condens. Matter 2022, 7, 30 6 of 21

ρfree(Rj, Rj+1, δτ) ≡
N

∏
i=1

ρ
sp
free(ri,j, ri,j+1, δτ) =

N

∏
i=1

(4πλδτ)
−D/2 exp

[
−
(ri,j − ri,j+1)

2

4λδτ

]
, (19)

with λ = h̄2/(2m). In the so-called symmetrized primitive approximation, the potential energy
term is given by U(Rj, Rj+1) = δτ

(
V(Rj) + V(Rj+1)

)
/2. Depending on the problem at

hand, one might significantly reduce the number M of slices needed for convergence using
different approximation schemes. An effective scheme in the case of dilute systems with
hard-sphere interaction is the pair-product ansatz [3]. This is discussed in more detail in
Section 4. Let us anticipate that the factorization of Equation (18) highlights the possibility
of using efficient strategies to exactly sample the free Gaussian part ρfree, leaving the
acceptance/rejection stage of the Metropolis–Hastings algorithm to be determined only
by the potential interaction term. Among the possible schemes, we adopt the staging
algorithm [28,29], a smart collective displacement of an arbitrary number of beads.

2.3. Worm Algorithm

The configuration space detailed above, which will be called Z-sector in what follows,
consists of polymers organized by the permutation vector P into a number of cycles,
i.e., subsets with cyclic permutations, meaning that each polymer has links connecting
it to a preceding and a following polymer. Instead of directly summing the N! integrals
corresponding to just as many permutations, we use a Monte Carlo integration strategy
based on the worm algorithm [6–9,30], which is based on an extended configuration space
where the Z-sector is augmented by a G-sector, obtained by cutting one of the cycles
and leaving one sequence open-ended. This open sequence of polymers constitutes the
worm, with the first polymer called the tail and the last one called the head. During the
simulation, the system randomly fluctuates between the two sectors by opening or closing
the worm and, when in the G-sector, the head of the worm might be swapped with another
polymer, thus sampling the permutations and allowing the creation of long permutation
cycles. Configurations in the G-sector are obtained from a configuration in the Z-sector
complemented by a particle index iH , indicating the head of the worm, and an extra
position vector, riH ,M = xH + wiH L, representing an additional bead at the head of the
worm dangling at the time slice j = M. We need this additional position vector because we
want the PDF in the G-sector to be the analogue of the one in the Z-sector, thus requiring
the same total number of links. We can now define the analogue of the partition function in
the G-sector as

GN =
1

VN! ∑
P

N

∑
iH=1

∫
V

dxH

∫ M−1

∏
j=0

dRj ρ(Rj, Rj+1, δτ) ,

with ri,M =

{
xp(i),0 + wiL for i 6= iH ,
xH + wiH L for i = iH ,

(20)

where the 1/V factor has been introduced for dimensional reasons and, as before, we have
hidden the summation over the integers W inside the integration over R0. Notice that,
with respect to the partition function in Equation (14), the above equation contains the
additional integration over the vector xH and the sum over the head index iH , representing
the N possible choices for cutting the permutation cycles. We can then combine ZN and
GN into a generalized partition function

Zworm
N = ZN + CGN , (21)
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where C is an arbitrary constant that controls the relative simulation time spent in the two
sectors. Denoting with NG and NZ the number of times the simulation is found in the G
and Z-sector, respectively, the proportionality

NG
NZ

= C
GN
ZN

, (22)

must be satisfied, implying that the parameter C can be tuned to optimize the simulation.
Indeed, the statistical autocorrelation of observables is minimized if NG ∼ NZ. Using
Equations (14) and (20) we can rewrite Equation (21) as

Zworm
N = ∑

S=Z,G
∑
P

N

∑
iH=1

∫
dxH

M−1

∏
j=0

dRj×

× 1
VN!

(
M−2

∏
j=0

ρ(Rj, Rj+1, δτ)

){
δS,Z

N
ρ(RM−1, RM, δτ) + CδS,G ρ(RM−1, RH

M, δτ)

}
, (23)

where we have introduced an explicit summation over the two sectors as well as the
Kronecker delta functions to select the proper integrand for each sector. With the notation
RH

M, we represent the vector with components ri,M = xp(i),0 + wiL for i 6= iH and with
component riH ,M = xH + wiH L for i = iH . A generic configuration X for the worm
algorithm is specified as X = (S, P, iH , xH , {Rj}) with S the sector, P the permutation
vector, iH the head index, xH the extra head vector and {Rj} the set of NM position vectors
of the polymers. The PDF for the worm algorithm is readily obtained from Equation (23)
and reads

πW(X) =
1

Zworm
N

1
VN!

(
M−2

∏
j=0

ρ(Rj, Rj+1, δτ)

)
×

×
{

δS,Z

N
ρ(RM−1, RM, δτ) + CδS,G ρ(RM−1, RH

M, δτ)

}
. (24)

For sufficiently large number of beads M, the density matrices are then further factor-
ized into a free particle term and an interaction term as in Equation (18). Before turning to
the implementation of the Monte Carlo algorithm, we point out that the worm algorithm
offers one additional advantage besides the efficient sampling of permutations: it allows
accessing the G-sector configurations (also called off-diagonal configurations) from which
one can extract other useful observables such as a properly normalized one-body density
matrix [9].

2.4. Monte Carlo Updates

The Monte Carlo procedure is based on a random walk and is obtained by means
of semi-local updates X → X′ in the configuration space. The transition matrix P(X, X′),
i.e., the probability to go from the state X to X′, is chosen such that it satisfies the de-
tailed balance condition πW(X)P(X, X′) = πW(X′)P(X′, X). Together with the ergodicity
condition, this ensures that, after equilibration, the random walk samples points with
the probability πW(X). According to the Metropolis–Hastings criterion, the transition
probability for X 6= X′ can be factorized into an a priori sampling distribution T(X, X′)
and an acceptance probability A(X, X′) as P(X, X′) = T(X, X′)A(X, X′). The trial moves
are then accepted (or rejected) according to the probability:

A(X, X′) = min
[

1,
T(X′, X)πW(X′)
T(X, X′)πW(X)

]
. (25)

We provide below the details for an efficient set of moves (translate, redraw, open/close,
move head, move tail) that allow the sampling of the probability distribution πW . Before
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we start, let us stress once again that in order to develop a code compatible with the pe-
riodic boundary conditions, one must consistently use the coordinates as defined on RD

throughout the simulation. The only instance in which one needs to use the representation
of the periodic images is to “recenter” a polymer when the initial bead is moved outside of
the fundamental cell: in that case, one rigidly translates the whole polymer by the factor
∆wL, with ∆w chosen to make the polymer start in the fundamental cell. We note that in
the simulation, one can either choose to use the integers W or to use the additional vector
RM, making sure that RM = PX0 + WL in the Z-sector and RM = RH

M in the G-sector. We
find the second choice more convenient because it provides a uniform representation of the
polymers, which better suits a computer program. A separate discussion is needed in the
case of the computation for the interaction term. For systems with pairwise interactions,
one needs to compute the distance, in the compactified space, between beads belonging to
different polymers. Different approaches might be used in this case, but for interactions that
decay sufficiently fast with the distance, one can effectively use the nearest image convention,
in which the distance along each direction is computed modulo L. In the computation
of the energy terms for a given link, say, from time slice j to j + 1, we identify the closest
periodic image of a bead at j, and then find the corresponding image of the subsequent
bead at j + 1.

Before describing the various Monte Carlo updates, we should emphasize that stan-
dard implementations of the worm algorithm had to put constraints on the length of the
path segments, namely the number of beads, involved in the open/close and swap moves,
which had to be much smaller than the size L of the box to avoid biased sampling. Apart
from adding an inconvenient issue related to the fine tuning of the parameters of the
simulation, such constraints reduce in general the efficiency of the Monte Carlo sampling.

2.4.1. Translate

This update translates all polymers belonging to a permutation cycle as a rigid body.
We select a particle index from a uniform random distribution and construct a list of all
the particles in the same permutation cycle. We then select a displacement vector ∆r by
sampling D random variables uniformly between 0 and a maximum displacement rmax
and we perform the shift r′i,j = ri,j + ∆r for all the beads j = 0, . . . , M and all the particles i
belonging to the permutation cycle. This shift keeps the internal links of all polymers fixed,
hence the probability to accept this update is given by

AT = min

{
1, exp

[
M−1

∑
j=0

(
U(Rj, Rj+1)−U(R′j, R′j+1)

)]}
, (26)

where R′j collectively denotes the new coordinates at the time slice j. We note that the newly
proposed coordinates have the same permutation vector P of the old ones. The parameter
rmax ≤ L/2 can be tuned to optimize the sampling efficiency. If the initial bead of one of the
polymers is translated outside of the fundamental cell, we recenter it as discussed above.

2.4.2. Redraw

With this update, we redraw the part of a polymer between two fixed beads. As we
have already mentioned, various algorithms with similar efficiencies can be used for this
task, but we find the staging algorithm to be convenient because it allows us to redraw
a segment with an arbitrary number of beads, as opposed, for example, to the bisection
method [1,3] that fixes this number to powers of 2. We select a particle index i0, an initial
bead j0, and the number of beads ∆j ∈ [2, jmax] involved in the update, sampling them from
uniform random distributions. The final bead is determined by the bead index j1 = j0 + ∆j.
To avoid clutter in the presentation we restrict ourselves to present the details for the case
j1 ≤ M, noting that the generalization to j1 > M is quite straightforward: one needs to
follow the path to the next particle index p(i0) and use (j1 mod M) as the final bead.
Moreover, in this case one should follow the path to the next polymer preserving the length
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of the links, i.e., momentarily translating the next polymer to the same cell of the bead ri0,M,
and translating it back at the end of the staging procedure. In what follows, we also omit
the particle index in the position vectors. The next step is to propose new coordinates for
the ∆j− 1 beads between j0 and j1 using the so-called Lévy construction [31]. This allows
us to directly sample the product of the free particle propagators by rewriting them as

j1−1

∏
j=j0

ρ
sp
free(rj, rj+1, δτ) =

1
(4πλ∆j δτ)D/2 exp

[
−
(rj0 − rj1)

2

4λ∆j δτ

]
×

×
j1−1

∏
j=j0+1

1
(4πλajδτ)D/2 exp

[
−
(rj − r∗j )

2

4πλajδτ

]
, (27)

where we have defined

r∗j =
rj1 + (j1 − j)rj−1

j1 − j + 1
, aj =

j1 − j
j1 − j + 1

. (28)

The above equation shows that we can use the product of gaussians in Equation (27)
as the a priori sampling distribution for the redraw move and sequentially sample the
beads from j0 + 1 to j1 − 1 according to the conditional (free) probability for picking the
point j based on the previous bead j− 1 and the final bead j1. The acceptance probability is
computed as

AR = min

{
1, exp

[
j1−1

∑
j=j0

(
U(Rj, Rj+1)−U(R′j, R′j+1)

)]}
, (29)

The permutation vector P is left unchanged by this update, and the simulation pa-
rameter jmax can be tuned to maximize the sampling efficiency. It is worth pointing out
that, if j1 > M, the first bead is involved in the displacement and, if moved outside of the
fundamental cell, we shall recenter it, as discussed above.

2.4.3. Open/Close

The open and close moves are sector-changing updates and are particularly delicate.
With the open move, we cut a link, creating two loose extremities and taking the system
from the Z-sector of closed paths to the G-sector with one worm. With the close move,
we bind together the two extremities of the worm, returning to the Z-sector. Since one
move is the opposite of the other, we need to carefully weight the transition probability
in order to achieve the detailed balance. In our implementation, we propose to open or
close the worm at the same rate, independently of the sector the simulation is in, and,
only afterwards, we abort the move if either the open move is called within the G-sector
or the close move is called within the Z-sector. The updates that we present below differ
from the ones originally introduced in Refs. [6–9,30] and are constructed to be compatible
with the periodic boundary conditions, yielding exact results even for systems where the
thermal wavelength is of the order of the system size, regardless of how many beads are
involved in the updates. In the rest of this subsection, we consistently use the notation
X = (Z, P, iH , xH , {Rj}) to refer to the configuration in the Z-sector and the notation
X̂ = (G, P, îH , x̂H , {R̂j}) to refer to the configuration in the G-sector. Notice that X and X̂
share the same permutation vector P and that, while the probability distribution in the
Z-sector doesn’t depend on the head index iH and the extra bead xH , they differ from
the ones of the state X̂. In the updates presented below, we embed the coordinate of the
extra bead x̂H into its representation on RD as r̂îH ,M = x̂H + ŵîH

L and sample the new
configuration based on r̂îH ,M.

The open move consists of the following steps:

• Select the particle index îH from a uniform random distribution.
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• Select a time slice j0 ≤ jopen
max from a uniform random distribution, with the positive

integer jopen
max < M a tunable parameter.

• Propose a new value for the position of the new head r̂iH ,M by displacing the point
rîH ,M ≡ xp(îH),0 + wîH

L by a quantity ∆r uniformly sampled in the space [−∆, ∆]D,
with ∆ < L/2 an adjustable parameter.

• Redraw the portion of the polymer îH going from the bead j0 + 1 to the bead M− 1 by
constructing a free particle path starting at rîH ,j0

and ending after ∆j = M− j0 steps at
x̂H with the staging algorithm described above.

• Accept the update with probability

AO = min

{
1,

CN(2∆)D

V
exp

[
M−1

∑
j=j0

(
U(Rj, Rj+1)−U(R̂j, R̂j+1)

)]
×

×
ρ

sp
free (̂rîH ,j0

, r̂îH ,M, ∆j δτ)

ρ
sp
free(rîH ,j0

, rîH ,M, ∆j δτ)

}
. (30)

The close move provides the detailed balanced complement to the open move. In
explaining the steps for the close move, we remind the reader that as per the open move
detailed above, the position vectors {Rj} and {R̂j} only differ at particle îH for the bead
indices going from j0 + 1 to M. The close move consists of the following steps:

• Identify the particle indices îH and îT = p(îH) corresponding to the head and the tail
of the worm, respectively.

• Select a time slice j0 ≤ jopen
max from a uniform random distribution.

• Find the periodic image r̂T = x̂îT ,0 + wîH
L of the first bead of the tail x̂îT ,0 that is the

nearest to the head bead r̂îH ,M and check whether their difference r̂îH ,M − r̂T is within
[−∆, ∆] in every direction. If that is the case set rîH ,M = r̂T , otherwise abort the update.

• Redraw the portion of the polymer îH going from the bead j0 + 1 to the bead M− 1 by
constructing a free particle path starting at rîH ,j0

and ending after ∆j = M− j0 steps at
rîH ,M with the staging algorithm.

• Accept the update with probability

AC = min

{
1,

V
CN(2∆)D exp

[
M−1

∑
j=j0

(
U(R̂j, R̂j+1)−U(Rj, Rj+1)

)]
×

×
ρ

sp
free(rîH ,j0

, rîH ,M, ∆j δτ)

ρ
sp
free (̂rîH ,j0

, r̂îH ,M, ∆j δτ)

}
. (31)

As a last step, one should randomly select the particle index iH and the value of xH
inside the fundamental cell, but, since the PDF in the Z-sector does not depend on them,
one can actually forget to update their value in the simulation.

Given the delicate nature of the present moves it is instructive to explicitly derive the
acceptance probability in Equations (30) and (31) to highlight the different elements that
make the sector-changing moves possible. We first write the ratio of the PDFs,

πW(X̂)

πW(X)
= CN

∏M−1
j=j0

ρ
sp
free (̂rîH ,j, r̂îH ,j+1, δτ)

∏M−1
j=j0

ρ
sp
free(rîH ,j, rîH ,j+1, δτ)

exp

[
M−1

∑
j=j0

(
U(Rj, Rj+1)−U(R̂j, R̂j+1)

)]
, (32)

and then we evaluate the transition probabilities. Since the choice of the particle indices iH
and îH and the choice of the time slice j0 are based on uniform distributions and proceed
identically for the open and close moves, we don’t report the corresponding factors below
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since they simplify in the ratio and are not relevant for the discussion. For the open move,
the procedure explained above gives

T(X, X̂) =
1

(2∆)D

M−1

∏
j=j0+1

1
(4πλajδτ)D/2 exp

− (̂rîH ,j − r̂∗îH ,j)
2

4πλajδτ

 , (33)

with r̂∗îH ,j and aj obtained with the Levy construction as in Equation (27). For the close
move, we have instead

T(X̂, X) =
1
V

M−1

∏
j=j0+1

1
(4πλajδτ)D/2 exp

− (rîH ,j − r∗
îH ,j

)2

4πλajδτ

 , (34)

with r∗
îH ,j

obtained with the Levy construction and with the factor 1/V coming from uni-

formly sampling the vector xH . Putting these equations together and using the identity (27),
one gets the acceptance probabilities in Equations (30) and (31). As stated at the beginning
of the subsection, the open/close updates introduced here are compatible with the periodic
boundary conditions and the parameter jopen

max can be freely chosen to maximize the sam-
pling efficiency. In contrast to the original algorithm, where one faces the ambiguity in the
choice of the image of the tail rT when closing the polymer—resulting in a violation of the
detailed balance condition when the thermal wavelength is of the order of the size of the
system—the updates presented here are always perfectly balanced. This is achieved by a
different sampling choice for r̂îH ,M, with the cutoff ∆ < L/2 removing said ambiguity. A
convenient choice for the parameter ∆ is to make it dependent on the choice of j0 as

∆ = min(
√

2λ(M− j0) δτ , L/2) . (35)

2.4.4. Swap

The swap update allows one to sample the permutations in a very efficient way by
connecting the worm head to a near polymer. It requires the worm to be present, hence it is
performed only in the G-sector, meaning that it must be aborted if proposed in the Z-sector.
We denote with iH the particle index associated with the worm’s head. We first select from
a uniform random distribution a time slice jP ≤ jswap

max with jswap
max < M, which will act as

pivot. We first compute the free propagators

ΠP(i) = ρ
sp
free(xH , ri,jP , jPδτ) , (36)

for every particle i, and we then use tower sampling to select a particle index i0 with
probability ΠP(i)/ΣP, where the normalization factor is given by

ΣP =
N

∑
i=1

ΠP(i) . (37)

Before proceeding further, we need to test the particle i0. If it corresponds to the tail
of the worm iT , we abort the move and reject the update. This is necessary to prevent the
worm from closing on itself, and hence disappearing. If that is not the case, we proceed by
computing the normalization factor for the inverse process

Σ0 =
N

∑
i=1

ρ
sp
free(xi0,0, ri,jP , jPδτ) , (38)

which is necessary to ensure the detailed balance. Notice that the free propagators in
Equations (36) and (38) are computed using the simulation coordinates, without invoking
periodic boundary conditions. We then cut the polymer i0 and we bind its first bead
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to the head of the worm by setting x′i0,0 = xH . We finally construct a free particle path
r′i0,1, . . . , r′i0,jP−1 with the staging algorithm. The acceptance probability is computed as

ASW = min

{
1,

ΣP
Σ0

exp

[
jP−1

∑
j=0

(
U(Rj, Rj+1)−U(R′j, R′j+1)

)]}
, (39)

Notice that this update changes the permutation P to P′ such that p′(iH) = i0, and
the new worm’s head i′H is instead identified as the particle that was in permutation with
i0 before the update, i.e., we set i′H = i∗ where i∗ is such that P(i∗) = i0. The tail index
remains unchanged.

2.4.5. Move Head

This and the next move are performed only in the G-sector, when a worm is present.
They must be aborted if proposed in the Z-sector. With move head we redraw the last beads
of the worm. We first select a starting time slice j0 and then sample the new worm’s head
bead r′iH ,M, from the free particle propagator

ρ
sp
free(riH ,j0 , r′iH ,M, ∆j δτ) = (4πλ∆j δτ)

−D/2 exp

[
−
(riH ,j0 − r′iH ,M)2

4λ∆j δτ

]
, (40)

where iH is the particle index of the worm’s head and ∆j = M− j0. We then construct a free
path r′iH ,j0+1, . . . , r′iH ,M−1 with the staging algorithm. We accept the update with probability

AH = min

{
1, exp

[
M−1

∑
j=j0

(
U(Rj, Rj+1)−U(R′j, R′j+1)

)]}
. (41)

2.4.6. Move Tail

Similarly, with move tail we redraw the first beads of the worm by selecting a time slice
j0 and generating a proposal r′T for the new tail bead of the worm xiT ,0 according to the
distribution

ρ
sp
free(r

′
T , riT ,j0 , ∆j δτ) = (4πλ∆j δτ)

−D/2 exp

[
−
(r′T − riT ,j0)

2

4λ∆j δτ

]
, (42)

where iT is the particle index of the worm’s tail and ∆j = M− j0. We set xiT ,0 = r′T and
then construct a free path r′iT ,1, . . . , r′iT ,j0−1 with the staging algorithm. We accept the update
with probability

AT = min

{
1, exp

[
M−1

∑
j=j0

(
U(Rj, Rj+1)−U(R′j, R′j+1)

)]}
. (43)

If the coordinate r′T falls outside of the fundamental cell, we recenter the tail polymer
as discussed above.

3. Non-Interacting Bose Gas

When developing a code, one should have precise benchmarks aimed at validating
the various aspects of the algorithm. In this section, we start with tests for non-interacting
systems, where exact results are known, and we will consider interacting systems in the
next section. From now on, we specialize to the D = 3 case. Textbook treatments of
the non-interacting Bose gas model usually consider the system in the grand-canonical
ensemble and in the thermodynamic limit. However, exact solutions are available also for
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a fixed number of particles in a box with periodic boundary conditions. In particular, we
are interested in the calculation of the internal energy

E = − 1
ZN

∂ZN
∂β

. (44)

The partition function ZN(β) for N particles at inverse temperature β can be calculated
using the recursion formula [32,33]

ZN(β) =
1
N

N

∑
k=1

z(kβ)ZN−k(β) , (45)

involving the partition functions of N − k particles at the same inverse temperature β with
the starting value Z0(β) = 1 and the partition function of a single particle z(kβ) at the
multiple inverse temperature kβ. The latter partition function for our system with periodic
boundary conditions is defined as

z(β) = ∑
nx ,ny ,nz

e−βε(nx ,ny ,nz) , (46)

where ε(nx, ny, nz) are the single-particle energies labeled by the integers nx,y,z = 0,±1,±2, . . .

ε(nx, ny, nz) = λ

(
2π

L

)2
(n2

x + n2
y + n2

z) . (47)

The calculation of the internal energy E in Equation (44) can be carried out recursively
from the derivatives with respect to β using result (45).

In the following we perform PIMC calculations of the internal energy of N non-
interacting bosons at different temperatures and we directly compare the results with the
exact value obtained from Equation (44). First, we compare for the case N = 1, where no
swap moves are involved in the PIMC simulation but it provides a stringent benchmark for
all the other moves. Then, we move to N = 2 in order to test the correct implementation
also of the swap moves. Finally we consider the case N � 1 and the approach to the
thermodynamic limit.

Benchmarks

We carry out a first non-trivial check on the worm algorithm by considering a single
particle in a regime where the thermal wavelength λT is of the order of the side of the box
L, thus testing the compatibility of the updates (except swap) with the periodic boundary
conditions. In Figure 1, we present the results for the internal energy E for different values
of the ratio λT/L and compare them with the exact results. We performed the test varying
the total number of beads M while keeping unconstrained the simulation parameters
controlling the portion of the polymers involved in the moves, namely setting jmax and
jopen
max to the maximum value M. Since, in the absence of the interaction, the algorithm is

exact for any number of beads, we recover the exact result even for M = 1.
We then turn a closer look to the open/close update, verifying the proportionality

between the ratio NG/NZ and the parameter C, as expressed in Equation (22). In the left
panel of Figure 2, we report the ratios obtained at different values of C together with
one-parameter fits. In the right panel, the fitted coefficient is in turn compared with the
exact value of G1/Z1 given by

G1

Z1
=

[
ϑ3

(
0, e−π

λ2
T

L2

)]−3

, (48)
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where ϑ3(z, q) is the theta function with rational characteristic 3 (see, e.g., chapter 16 of
ref. [34]). As one can see from the figure, there is perfect agreement between the PIMC
points and the expected results, with the inset showing the difference between them.
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Figure 1. Results for the N = 1 system at different values of λT/L. (Left) Internal energy E,
in units of NkBT0

c , with T0
c being the critical temperature defined in Equation (49). The values

obtained at different number of beads M are compared with the exact results (horizontal lines).
(Right) Differences with the exact values.
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Figure 2. Results for the N = 1 system at different values of λT/L. (Left) check of the proportionality
in Equation (22), the lines are one-parameter fits. (Right) the proportionality coefficients extracted
from the fits (diamonds) are compared with the exact value (solid line). Inset: difference between the
coefficients and the exact value.

We now move to the N = 2 system where the swap update makes its first appearance
and we check the results for different values of λT/L and various values of M. As before,
we used unconstrained parameters jmax = jopen

max = jswap
max = M, allowing updates involving

a whole polymer. We report the results in Figure 3, where we show that we recover the
exact result for any number of beads used, meaning that the implementation of the swap is
fully compatible with periodic boundary conditions.
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Figure 3. Results for the N = 2 system at different values of λT/L. (Left) Internal energy E computed
with different number of beads M and compared with the exact results (horizontal lines). As in
Figure 1 the energy scale is defined in Equation (49). (Right) Differences with the exact values.

The one and two-particle systems provide clean—and to some extent independent—
tests for the whole set of updates in the regime where the effect of periodic boundary
conditions is the largest. We now show that the exactness of the algorithm is preserved
when taking larger and larger numbers of particles. For this purpose, we vary N while
keeping the temperature T fixed. In Figure 4, we show the results for the internal energy for
three values of the temperature, expressed in units of the critical temperature T0

c defined as

kBT0
c = 4πλ

(
n

ζ(3/2)

)2/3
, (49)

where n = N/V is the number density. For every value of N, the worm algorithm gives
results that are in agreement with the exact values computed from Equation (45) and shown
in the left panel of Figure 4 with the dot-dashed lines. Notice that the error bars are of
the order of 10−4 and are completely hidden by the symbols. The horizontal dotted lines
represent the value of the internal energy in the thermodynamic limit. In the right panel of
Figure 4, we show a linear fit in 1/N that extrapolates to the thermodynamic limit the three
largest system sizes at T = 0.5T0

c . The gray band covers the 1-sigma region of the linear fit
and perfectly recovers the N → ∞ result shown by the horizontal dotted line.
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Figure 4. Internal energy E for N-particle systems at a fixed temperature. (Left) Worm algorithm
results compared with the exact values at fixed number of particles (dot-dashed lines) and with
the exact thermodynamic limit (horizontal dotted lines). Error bars, being of the order of 10−4, are
not visible on this scale and are perfectly compatible with the exact results. (Right) Zoom on the
T = 0.5T0

c data, with a linear fit extrapolation to the thermodynamic limit. The gray band covers the
one-sigma region of the fit.
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4. Hard-Spheres Bose Gas

In this section, we consider interacting systems described by the following microscopic
Hamiltonian with two-body interactions:

H = −λ
N

∑
i=1
∇2

i + ∑
i<k

v(|ri − rk|) , (50)

where m is the mass of the N identical bosons and ri indicates the particle position vector.
For pedagogical reasons, we use a simple interatomic potential corresponding to a purely
repulsive hard core, without any attractive tail to avoid the occurrence of possible cluster
bound states. More precisely, we use the hard-sphere (HS) model defined as

v(r) =

{
+∞ (r < a) ,
0 (r > a) ,

(51)

in terms of the HS diameter a. Besides the degeneracy parameter nλ3
T , only one extra

parameter, the gas parameter na3, is needed to fully characterize the many-body physics
of the model. Equilibrium states of the system correspond either to a gas or to a solid,
the latter requiring that the gas parameter be large enough and the temperature small
enough [35,36]. Furthermore, in the limit of a small gas parameter, the HS model fully
captures the universal behavior of dilute gases in terms of the s-wave scattering length,
which coincides with the HS diameter a. A careful study of the thermodynamics of the HS
model in the dilute regime has been carried out in Ref. [37]. Here, for illustrative reasons,
we consider the HS gas at a much higher density na3 = 0.1, which is not so far from the
corresponding density of liquid 4He and where the issues of convergence with the number
of beads are more relevant.

A convenient approximation scheme for the high temperature density matrix entering
the PIMC algorithm is the pair-product ansatz [3]

ρ(R, R′, δτ) =
N

∏
i=1

ρ
sp
free(ri, r′i, δτ)∏

i<k

ρrel(rik, r′ik, δτ)

ρ0
rel(rik, r′ik, δτ)

. (52)

In the above equation ρ
sp
free is the single-particle ideal-gas density matrix defined in

Equation (19) and ρrel is the two-body density matrix of the interacting system, which
depends on the relative coordinates rik = ri − rk and r′ik = r′i − r′k, divided by the corre-
sponding ideal-gas term

ρ0
rel(rik, r′ik, δτ) = (8πλδτ)

−3/2 exp

[
−
(rik − r′ik)

2

8λδτ

]
. (53)

The advantage of the decomposition in Equation (52) is that the two-body density
matrix at the inverse temperature δτ , ρrel(r, r′, δτ), can be calculated exactly for a given
potential V(r), thereby solving by construction the two-body problem. This is the most
effective strategy when the system is diluted, but can also be pursued at higher density.
For the HS potential, a simple and remarkably accurate analytical approximation of the
high-energy two-body density matrix is due to Cao and Berne [38]. For r > a and r′ > a,
the result is given by

ρrel(r, r′, δτ)

ρ0
rel(r, r′, δτ)

= 1− a(r + r′)− a2

rr′
e−[rr′+a2−a(r+r′)](1+cos θ)/(4λδτ) , (54)

where θ is the angle between the directions of r and r′, while it vanishes when either r or
r′ are smaller than a. An important remark concerning the Cao–Berne approximation is
that it correctly describes the scattering of hard spheres at high energy (small δτ), and it
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exactly accounts for the s-wave term in the partial wave expansion, which is the dominant
contribution at low energy. Within the Cao–Berne approximation, the interaction energy
of hard spheres evaluated at two subsequent beads j and j + 1 can finally be written as
(setting R = Rj and R′ = Rj+1)

U(R, R′) = −∑
i<k

log
(

ρrel(rik, r′ik, δτ)

ρ0
rel(rik, r′ik, δτ)

)
. (55)

In the following subsections, we investigate the convergence with the number of beads
for different number of particles and different temperatures at the density na3 = 0.1. Finally,
we investigate the approach to the thermodynamic limit for increasing values of N at a
specific temperature.

Benchmarks

The presence of the hard-sphere potential, approximated by the product of Cao–Berne
density matrices, brings a dependence on the number of beads that is detectable when
the gas parameter is large enough. In Figure 5, we show such dependence in a system at
density na3 = 0.1 for two values of the temperature, T = T0

c and T = 0.5T0
c . As one can

see, the value of the energy saturates at large number of beads, regardless of the system
size controlled by the total number of particles N. This can be interpreted recalling that
the Cao–Berne density matrix computes exactly the scattering at high energy, requiring the
thermal wavelength associated with the imaginary time step δτ to be small compared to
the interaction range a, i.e., √

4πλβ

M
� a . (56)
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Figure 5. Internal energy E for a system of hard-spheres bosons at the density na3 = 0.1, shown as
a function of the number of beads used in the simulation. The energy is computed using the virial
estimator reported in Appendix A.

On the contrary, in the limit of dilute systems the Cao–Berne approximation becomes
exact and even a small number of beads (even 8 or 16) is sufficient to get precise results [37].
Finally, in Figure 6 we show how the points at M = 64 from Figure 5 extrapolate to the
thermodynamic limit for the two temperatures. In the left and right panels of Figure 6, the
dotted lines represent the linear fit to the data, with the gray bands covering the one-sigma
region. As expected, the system at the critical temperature T0

c suffers from much larger
finite size effects, compared with the system at temperature T = 0.5T0

c .
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Figure 6. Extrapolation of the internal energy E to the thermodynamic limit using the points at
M = 64 from Figure 5. We have omitted the system size N = 16 because it is too small to be used in a
linear extrapolation in 1/N. Symbols follow the legend in Figure 5.

5. Conclusions

We described an algorithm to perform unbiased PIMC simulations for Bose sys-
tems in the canonical ensemble with periodic boundary conditions. The formalism for
path-integrals suitable for periodic systems has been developed, and the technical details
required for a correct implementation of the PIMC algorithm have been discussed in a ped-
agogical manner. The formalism can be similarly applied to the simulation of systems in the
grand-canonical ensemble. Benchmark results have been presented for non-interacting Bose
gases, for which the energy can be exactly computed for any particle number. Many-body
systems with hard-sphere interactions have been addressed as well, and the convergence
to the continuous imaginary-time limit and to the infinite system-size limit have been
analyzed. The PIMC algorithm we presented provides unbiased results for non-interacting
Bose gases with periodic boundary conditions for any number of imaginary-time slices,
meaning that, e.g., non-interacting particles can be exactly simulated even setting M = 1.
Furthermore, all Monte Carlo updates can be performed without limitations on the length
of the paths that are involved in the update, even in regimes where the thermal wave-
length is comparable to the size of the fundamental cell. This is in contrast to previous
implementations of the worm algorithm [8], for which, even for non-interacting systems,
unbiased results are obtained only for a sufficiently large number of imaginary-time slices.
Furthermore, those implementations become ambiguous when the thermal wavelength
starts to be comparable to the size of the fundamental cell, possibly leading to biased
results unless the length of the paths that are involved in some updates is constrained. For
interacting systems, also the PIMC algorithm presented here requires a sufficient number
of imaginary-time slices, so that the high-temperature approximation for the density matrix
(in our case, the pair product approximation) becomes essentially exact. However, there is
no constraint on the length of the paths involved in any updates. It is worth emphasizing
that the original implementation of the worm algorithm provides unbiased results, even
without constraints in the Monte Carlo updates, if the size of the fundamental periodic cell
is much larger than the thermal wavelength. While such a system size is feasible for high
and for moderately low temperatures, it becomes impractical close to the zero temperature
limit. When the thermal wavelength starts to be comparable to the size of the fundamental
periodic cell, stringent constraints in some Monte Carlo updates have to be imposed in
order to avoid ambiguities due to the choice of periodic images. These constraints strongly
reduce the acceptance rates, leading to excessively long autocorrelation times and, there-
fore, to inefficient simulations. For these reasons, we expect the algorithm presented here
to allow extending the scope of the PIMC simulations, providing a better access to the
intriguing quantum phenomena occurring in the low temperature limit. Furthermore, the
possibility to perform exact benchmarks for small system sizes will help novel practitioners
in correctly implementing unbiased PIMC codes.
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Appendix A

In this appendix, we report the expressions needed to compute the internal energy
E and pressure P in a PIMC simulation, presenting two Monte Carlo estimators for each
of them.

Appendix A.1. Energy

The internal energy E can be computed in the diagonal sector as

E = − 1
ZN

dZN
dβ

. (A1)

Using the PIMC representation of ZN in Equation (14) and working out the derivative,
we obtain the thermodynamic estimator

Eth
N

=

〈
D

2δτ
− 1

4λδ2
τ NM

M−1

∑
j=0

(
Rj −Rj+1

)2
+

1
NM

M−1

∑
j=0

∂U
(
Rj, Rj+1

)
∂δτ

〉
, (A2)

where the average is taken on the configurations sampled in the Z-sectors. In addition, the
above quantity can be calculated in PIMC simulations using the so called virial estimator [3],
which usually suffers from smaller statistical fluctuations. Different expressions can be
derived, and we report here the version we have implemented in our code

Evir

N
=

〈
D
2β

+
(RM−1 −RM) · (RM −R0)

4λδ2
τ NM

+
1

NM

M−1

∑
j=0

∂U
(
Rj, Rj+1

)
∂τ

+
1

2βN

M−1

∑
j=1

(
Rj −R0

)
· ∂

∂Rj

[
U
(
Rj−1, Rj

)
+ U

(
Rj, Rj+1

)]〉
. (A3)

Appendix A.2. Pressure

Although we have not presented any results for the pressure, we report for complete-
ness the expression for its two estimators. The pressure is defined as

P =
1

βZN

dZN
dV

. (A4)
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To calculate the derivative of the partition function with respect to the volume V, we
use the identity VdRj/dV = Rj/D and apply the chain rule for every j. The thermodynamic
estimator reads

Pth
n

=

〈
1
δτ
− 1

2λδ2
τ NMD

M−1

∑
j=0

(
Rj −Rj+1

)2 − V
βN

M−1

∑
j=0

∂U(Rj, Rj+1)

∂V

〉
. (A5)

Notice that we have not used the chain rule on the last term because, depending
on the interatomic potential and on the adopted approximation for the density matrix, it
is sometimes easier to directly compute the derivative of the interaction term (e.g., the
expression in Equation (55)) with respect to the volume, obtaining an expression without
ambiguities due to periodic boundary conditions. The virial estimator can instead be
computed as

Pvir

n
=

〈
1
β
+

(RM−1 −RM) · (RM −R0)

2λδ2
τ NMD

− V
βN

M−1

∑
j=0

∂U(Rj, Rj+1)

∂V

+
1

βND

M−1

∑
j=1

(
Rj −R0

)
· ∂

∂Rj

[
U
(
Rj−1, Rj

)
+ U

(
Rj, Rj+1

)]〉
. (A6)
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