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Article

Euclidean Q-Balls of Fluctuating SDW/CDW in the ‘Nested’
Hubbard Model of High-Tc Superconductors as the Origin of
Pseudogap and Superconducting Behaviors
Sergei Mukhin

Theoretical Physics and Quantum Technologies Department, NUST “MISIS”, Leninskiy Ave. 4,
119049 Moscow, Russia; si.muhin@misis.ru; Tel.: +7-495-955-0062

Abstract: The origin of the pseudogap and superconducting behaviors in high-Tc superconductors is
proposed, based on the picture of Euclidean Q-balls formation that carry Cooper/local-pair conden-
sates inside their volumes. Euclidean Q-balls that describe bubbles of collective spin-/charge density
fluctuations (SDW/CDW) oscillating in Matsubara time are found as a new self-consistent solution
of the Eliashberg equations in the ‘nested’ repulsive Hubbard model of high-Tc superconductors.
The Q-balls arise due to global invariance of the effective theory under the phase rotation of the
Fourier amplitudes of SDW/CDW fluctuations, leading to conservation of the ‘Noether charge’
Q in Matsubara time. Due to self-consistently arising local minimum of their potential energy at
finite amplitude of the density fluctuations, the Q-balls provide greater binding energy of fermions
into local/Cooper pairs relative to the usual Frohlich mechanism of exchange with infinitesimal
lattice/charge/spin quasiparticles. We show that around some temperature T∗ the Q-balls arise with
a finite density of superconducting condensate inside them. The Q-balls expand their sizes to infinity
at superconducting transition temperature Tc. The fermionic spectral gap inside the Q-balls arises in
the vicinity of the ‘nested’ regions of the bare Fermi surface. Solutions are found analytically from the
Eliashberg equations with the ‘nesting’ wave vectors connecting ‘hot spots’ in the Brillouin zone. The
experimental ‘Uemura plot’ of the linear dependence of Tc on superconducting density ns in high-Tc

superconducting compounds follows naturally from the proposed theory.

Keywords: cooper-pairing ‘glue’; Euclidean Q-balls; Eliashberg equations; ‘nesting’; high-temperature
superconductivity

1. Introduction

We propose here a theory of Euclidean Q-ball phase of high-Tc superconductors in
the ‘nested’ Hubbard model that may explain both the high-Tc superconductivity, as well
as the ‘pseudo gap’ phase that precedes it. Namely, it is demonstrated analytically that
Euclidean action of the strongly correlated electron system may possess stable saddle-point
configurations in the form of finite size bubbles (Q-balls) with superconducting density fluc-
tuations coupled to oscillating in Matsubara time fluctuations of spin or charge. This result
is obtained via a self-consistent solution of the Eliashberg equations in combination with
the condition of vanishing the first variational derivative of the effective Euclidean action
with respect to an amplitude of the spin-/charge fluctuations; see Sections 4 and 5. The pre-
sented Q-balls picture is reminiscent of the famous Q-balls formation in the supersymmetric
standard model, where the Noether charge responsible for baryon number conservation is
associated with the U(1) symmetry of the squarks field [1,2]. Here, we found that near some
temperature T∗ the leading collective spin-/charge fluctuations acquire a form of finite
volume Q-balls filled with Cooper/local-pair condensates. The phase of the dominating
Fourier component of the Q-ball spin-/charge density fluctuations rotates with bosonic
frequency in Matsubara time and causes local/Cooper pairing. Simultaneously, the Q-ball
potential energy possesses a local minimum at a finite value of the modulus of this Fourier
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component. It is demonstrated that the ‘gas’ of Q-balls arises near some temperature T∗ as
a 1st order phase transition. This mechanism of local/Cooper pairing differs from the usual
Frohlich mechanism of exchange with infinitesimal lattice/charge/spin quasiparticles in
e.g., phonon- or spin–fermion coupling models considered for high-Tc cuprates [3] and
underlying t–J–U Hubbard models reviewed in [4–6]. The superconducting transition
in the Q-ball system happens at some temperature Tc, where the Q-balls energy crosses
zero and becomes negative, thus making the Q-ball volume infinite. At couplings stronger
then some critical value κ∗ found below, another scenario of superconducting transition
is possible, when Cooper-/local pairs percolate between Q-balls forming an infinite su-
perconducting cluster. The plan of the article is as follows: in Section 1, an effective U(1)
symmetric Euclidean model of the SDW/CDW fluctuations described by a scalar amplitude
field is outlined and the condition for the Q-ball emergence is derived. Section 2 contains
derivation of the effective potential energy of the SDW/CDW fluctuations, induced by
formation of a local superconducting condensate inside the Q-balls. The local supercon-
ducting ‘pseudo gap’ inside a Q-ball is self-consistently derived from the Eliashberg like
equation that acquires the form of the Mathieu equation with the Matsubara time as a
coordinate, while the propagator of the semiclassical SDW/CDW fluctuations plays the
role of the periodic potential. In Section 3, the T∗ and Tc temperatures are expressed in
analytic form as functions of the spin/charge–fermion coupling constant, density of the
‘nested’ states, and short-range coherence length of the spin-/charge density waves in the
strongly correlated electron system. Finally, a linear dependence of Tc on the supercon-
ducting density ns is derived theoretically and demonstrates qualitative correspondence
with the famous Uemura plot for high-Tc superconductors [7]. Possible applications of the
presented theory for description of the other properties of high-Tc cuprates are discussed
in Conclusions.

2. Effective Model

We consider a simplest model Euclidean action SM with a scalar complex field M(τ, r)
related with spin-/charge- density fluctuations :

SM =
∫ β

0

∫
V

dτdDr
1
g

{
|∂τ M|2 + s2|∂r M|2 + µ2

0|M|
2 + gU f (|M|)

}
, M ≡ M(τ, r) (1)

where M(τ + 1/T, r) = M(τ, r) is a periodic function of Matsubara time at finite temper-
ature T [8], s is bare propagation velocity, and correlation length ξ of the fluctuations is
defined by the ‘mass’ term µ2

0/s2 ∼ 1/ξ2. The last term contains effective potential U f (|M|)
that depends on the field modulus |M|, and the explicit expression for U f is derived below
by integrating out superconducting fluctuations, which are found self-consistently from
an Eliashberg like equation in the ‘nested’ Hubbard model with spin-/charge–fermion
interactions, see Equation (15). The model (1) is U(1) invariant under the global phase
rotation φ: M → Meiφ. Hence, corresponding ‘Noether charge’ is conserved along the
Matsubara time axis. The ‘Noether charge’ conservation makes possible Matsubara time
periodic, finite volume Q-ball semiclassical solutions that otherwise would be banned in
D > 2 by a Derrick theorem [9] in the static case. Previously Q-balls were introduced by
Coleman [1] for Minkowski space in QCD, and have been classified as non-topological soli-
tons [2]. As shown below, the Euclidean Q-balls describe stable semiclassical short-range
charge/spin ordering fluctuations of finite energy that appear at finite temperatures near
some temperature T∗ found below. The fermionic spectral gap inside Euclidean Q-balls
arises in the vicinity of the ‘nested’ regions of the bare Fermi surface (corresponding to the
antinodal points of the cuprates Fermi-surface) and scales with the local superconducting
density inside Q-balls. Hence, T∗ defines temperature of a phase transition into the ‘pseudo
gap’ phase, as was proposed previously [10].

Consider now time-dependent phase shift: φ = Ωτ, with frequency Ω = 2πnT that
satisfies Matsubara time periodicity. Then, the corresponding conserved ‘Noether charge’
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is found readily. First, one defines D + 1-dimensional ‘current density’ {jτ ,~j} of the scalar
field M(τ, r):

jα =
i
2
{M∗(τ, r)∂α M(τ, r)−M(τ, r)∂α M∗(τ, r)}, α = τ, r. (2)

Next, Euclidean trajectories of the field, defined by ‘classical’ equations of motion, are
considered:

δSM
δM∗(τ, r)

= −∂2
τ M(τ, r)− s2 ∑

α=r
∂2

α M(τ, r) + µ2
0M(τ, r) + gM(τ, r)

∂U f

∂|M(τ, r)|2 = 0. (3)

Using Equations (2) and (3), it is straightforward to prove the following relation:

∂

∂τ

∫
V

jτdDr = −s2
∫

V
div~j dDr = −s2

∮
S(V)

~j · d~S , (4)

where the last integral in Equation (4) is taken over the surface S of the volume V due to
the Gauss theorem. Hence, for the non-topological field configurations that occupy finite
volume V, i.e., M(τ, r /∈ V) ≡ 0, one finds:

∂

∂τ

∫
V

jτdDr = −s2
∮

S(V)

~j · d~S = 0 , (5)

and, in turn, conserved ‘Noether charge’ Q equals:

Q =
∫

V
jτdDr = ΩM(τ)2V , (6)

where we have approximated the ‘Q-ball’ field configuration with a step function Θ(r):

M(τ, r) = e−iΩτ MΘ{r} ; Θ(r) ≡
{

1; r ∈ V;
0; r /∈ V.

(7)

In general, to find equilibrium volume of the Q-ball, one has to minimise the action
SM with respect to V under the conserved ‘charge’ Q defined by Equation (6). First, we do
this in the step function approximation above, Equation (7). In this case, one finds action
SM using Equations (1) and (6), and neglecting the boundary contribution ∝

∫
|∂r M(τ, r)|2:

SM = V
1

gT

{
[Ω2 + µ2

0]M
2 + gU f

}
=

1
gT

{
Q2

VM2 + V[µ2
0M2 + gU f ]

}
. (8)

Minimising Euclidian action of the Q-ball in Equation (8) with respect to volume V,
one finds:

∂SM
∂V

=
1

gT

{
− Q2

V2M2 + [µ2
0M2 + gU f (M2)]

}
= 0. (9)

Solving Equation (9), one finds equilibrium volume VQ of the Q-ball and its energy EQ:

VQ =
Q

M
√

µ2
0M2 + gU f (M2)

. (10)

Substituting Equation (10) into Equation (8), one finds:

EQ = TSmin
M =

2Q
√

µ2
0M2 + gU f (M2)

gM
=

2QΩ
g

, (11)
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where the last equality follows directly after substitution of expression VQ from Equation (10)
into Equation (6). Since Q cancels in Equation (11), the following self-consistency equa-
tion follows:

Ω =

√
µ2

0M2 + gU f (M2)

M
. (12)

In a more careful procedure that follows below, one uses saddle-point equation (3) for
Euclidean action that provides coordinate dependence of M(τ, r). For this purpose, one
has to add to the action SM an extra term with the Lagrange multiplier that takes care of
the ‘charge’ Q conservation:

SM =
∫ β

0

∫
V dτdDr

1
g

{
|∂τ M|2 + s2|∂r M|2 + µ2

0|M|
2 + gU f (|M|2) +

iµ{M∗(τ, r)∂τ M(τ, r)−M(τ, r)∂τ M∗(τ, r)}}, M ≡ M(τ, r) (13)

It is easy to find that the value of the ‘chemical potential’ µ should be µ = −Ω,
in order to recover from Equation (13) the approximate self-consistency Equation (12) in
the step-function approximation Equation (7). Then, substituting SM from Equation (13)
into dynamic Equation (3) in Euclidean space-time and, using for the time-dependence
M(τ, r) ∝ exp{−iΩt}, one finally obtains the coordinate dependent self consistency equa-
tion, to be solved below:

−s2∆M + g∂U f /∂M + (µ2
0 −Ω2)M = 0, (14)

compare [1]. A Euclidean Q-ball described by Equations (6), (12), and (14) differs from
the Q-ball in Minkowski space [1]: at fixed temperature T, a choice of the values of the
Matsubara frequencies Ω = 2πnT in Euclidean space-time is discrete due to integer n and
starts from Ω = 2πT, contrary to a continuum of the frequency values in the Minkowski
space-time. Hence, the highest temperature T∗, at which Equation (12) possesses a solution,
would be for n = 1, and would manifest a transition into a Q-ball ‘gas’ phase, corresponding
to a pseudogap phase, as will be shown below. Next, at temperature Tc < T∗, the Q-ball
becomes infinite according to the solution of Equation (14), and a phase transition into
bulk superconducting phase takes place. One has to derive an explicit expression for the
effective energy U f (M) in order to explore the phase diagram of the Q-balls ‘gas’ in the
next sections.

3. Free Energy of the Cooper-Pairing Fluctuations inside the Q-Balls

Here, we derive an effective potential U f (|M(r)|), the density of the free energy
decrease ∆Ωs being due to superconducting fluctuations. Consider a simple model of
fermions on a square lattice that are linearly coupled to the dominant Q-ball type charge-
or spin density fluctuations that obey Equation (3), and possess amplitude M(τ, r) ≡
e−iΩτ M(r) with wave vectors QCDW or QSDW , respectively. In what follows, we accept
generalised notation QDW for both cases. Thus, the fermionic part of the Euclidean action
S f takes the form:

S f =
1
V

∫ β

0
dτ
∫

V
dDr ∑

q,σ

[
c+qσ(∂τ + εq)cq,σ +

(
c+q+QDW ,σ M(τ, r)σcq,σ + H.c.

)]
, (15)

and antiferromagnetic fluctuations are considered below for definiteness using standard
Hamiltonian [3] with spin–fermion coupling. Then, the Matsubara time periodic complex
amplitude M(τ, r), considered in general in the preceding section, acquires a particular
meaning of the amplitude of the SDW fluctuation, with the fast space oscillations on the
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lattice variable r being characterised by a wave-vector QDW , and slow variations happen
on the scale of the correlation length or Q-ball radius:

Mτ,r = M(τ, r)eiQDW ·r + M(τ, r)∗e−iQDW ·r,

M(τ, r) ≡ |M(τ, r)|e−iΩτ , Ω = 2πnT, n = 1, 2, ... (16)

Here, Ω is bosonic Matsubara frequency, and σ in Equation (15) is a local z-axis pro-
jection of the fermionic spin assumed to be collinear with the direction of the spin density
inside a Q-ball. Actually, spin–fermion coupling action (15) could be obtained after decou-
pling of the on-site inter-fermion repulsive U-term: Uni,↑ni,↓ in the Hubbard Hamiltonian
via auxiliary Hubbard–Stratonovich field M(r, τ), see e.g., [10,11]. Then, before renor-
malisations, the constant g in Equation (1) is formally inferred from the term µ2

0|M|
2 and

Equation (15): g ∼ Uµ2
0 ∼ 10−2 eV3, where the last estimate is based on the value of U∼

4–6 eV for the single band Hubbard model [4,6], and on results of neutron measurements,
µ0 ∼ 100–200 meV, of the spin-wave excitations in doped high-Tc cuprates [12,13]. An
effective theory is then obtained by formally integrating out fermions, assuming that they
undergo local Cooper pairing fluctuations with emerging Bogoliubov anomalous averages
< cq,σc−q,−σ >, < c+q,σc+−q,−σ > entering the diagrammatic expansion of the free energy
Ωs [10]:

VU f (|M(τ, r)|) = ∆Ωs = −T ln
Tr
{

e−
∫ β

0 Hint(τ)dτG(0)
}

Tr{G(0)} ≡ Ωs −Ω0; G(0) ≡ e−βH0 ; (17)

Hint =
1
V

∫
V

dDr ∑
q,σ

(
c+q+QDW ,σ M(τ, r)σcq,σ + H.c.

)
, (18)

where H0 is inferred from the first and Hint from the second term in the sum in (15) re-
spectively. Next, we multiply Hamiltonian Hint in (18) with a dimensionless amplitude
0 < α < 1, as a formal variable coupling strength in the spin–fermion interaction, and cal-
culate the free energy derivative in accordance with the usual prescription [8]:

∂∆Ωs

∂α
= T

∫ β

0

〈
∂Hint(τ)

∂α

〉
dτ = −T

α

∫ β

0

∫ β

0
dτdτ1〈Hint(τ)Hint(τ1)〉 =

− 1
α
|M|2T ∑

ω,p,σ
σσ̄Fσ,σ̄(ω, p)Fσ̄,σ(ω−Ω, p−QDW)α2 , (19)

where we have neglected slow dependence of the modulus of the SDW amplitude |M| on
τ, r in the step function approximation (7). The loop of Gor’kov anomalous functions F†, F
connected with the ‘gluon’ line D(τ − τ′) ∼ M(τ′)∗ ·M(τ), depends now on parameter
α. The amplitudes M in Equation (16) of spin-/charge density fluctuations obey ‘classical’
equations of motion Equation (3) that extremize Euclidean action. In the case when wave
vector QDW connects ‘nested’ points on the Fermi surface belonging to the regions with
opposite signs of the d-wave superconducting order parameter, the following algebraic
relations hold for the dispersion and self-energy functions [10]:

εp−QDW = −εp ≡ −ε; Σ2p−QDW ,σ = −Σ2p,σ; Σ∗1p,σ(ω) ≡ Σ1,−p,σ(−ω) ; (20)

Fp,σ(ω) =
−Σ2p,σ

|iω− εp − Σ1p,σ(ω)|2 + |Σ2p,σ(ω)|2 , ω = π(2n + 1)T; n = 0,±1, . . . (21)

In what follows, we neglect renormalisations [10] entering via self-energy Σ1p,σ(ε, ω) in
denominator in Equation (21) for the anomalous fermionic Green function Fp,σ(ω), and use
d-wave symmetric behaviour of superconducting order parameter Σ2p−QDW ,σ = −Σ2p,σ
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represented by the self-energy function Σ2p,σ. The latter is approximated with a parabolic
function of bare fermionic dispersion εp in the vicinity of the Fermi energy:

|Σ2p,σ(ω)|2 = g2
0 − ε2

p . (22)

Simultaneously, the fermionic spectrum inside the Q-ball acquires the form, see
Figure 1:

Ep =

{
g0; |εp| ≤ min{g0, ε0};
εp; |εp| > min{g0, ε0}.

(23)

g0-ε0  

Σ2p,Ep

εp

g0

0-g0 ε0  

Figure 1. Anomalous self-energy Σ2p,σ (short-dashed line) and fermionic dispersion Ep (solid line)
as a function of bare fermionic dispersion εp in the vicinity of the Fermi-level µ f = 0 near the
‘nested’/anti-nodal points of the bare Fermi surface inside a Q-ball with local superconducting
(pseudo)gap g0, see Equations (22) and (23).

Hence, the superconducting (pseudo)gap g0 in the spectrum of fermions populating
the Q-balls arises under such a scheme only in the vicinities of the antinodal points. A prob-
lem of creation of the Fermi arcs is, in principle, treatable in the presented Q-ball gas picture
but demands elaboration of the self consistency equation for momenta p also outside the
antinodal points. An explicit 2D momentum dependence of the superconducting gap is
not considered in the simplified picture used in the present work and will be considered
elsewhere. The consequence of the latter approximation is discussed below in Section 6.1.
Now, substituting expressions in Equations (20) and (21) into Equation (19), one finds:

∂Ωs

∂α
= −TVRα; R =

4M2νg0ε0

3T(Ω2 + 4g2
0)

tanh
g0

2T
tanh

g0

ε0
. (24)

Here, expression for R in Equation (24) is obtained after summation over fermionic
frequency ω = π(2n + 1) in Equation (19), while neglecting ω-dependence of the self-
energy Σ2p,σ(ω) ≈ Σ2p,σ(0), since summation in Equation (19) over ω is quickly convergent.
Summation over momenta p in Equation (19) is substituted by integration over εp (counted
from the Fermi level µ f ) over bare density of ‘nested’ states ν(εp) approximated as:

ν(εp) =

{
ν; |εp| ≤ ε0;
0; |εp| > ε0.

(25)

Since |Σ2p,σ(ω)|2 = g2
0 − ε2

p ≥ 0, see Figure 1, differs from zero inside an interval:
−g0 ≤ εp ≤ g0, the product νg0ε0 tanh g0/ε0 in Equation (24) interpolates between the
cases g0 > ε0 and g0 < ε0. Now, one has to bear in mind that g0 = g0(α), and, hence,
R(α) defined in Equation (24) depends on the integration variable α introduced above.
To complete derivation of the effective potential U f (|M(τ, r)|), one has to find constant g2

0
entering expression for R. The local ‘superconducting pseudogap’ g0 is found from the
self-consistency condition derived below, see also [10]. Importantly, the final expression



Condens. Matter 2022, 7, 31 7 of 14

of the kind obtained in Equation (24) appears also in the case when charge fluctuations
instead of spin fluctuations couple to the fermions via interaction Hamiltonian:

HCDW
int =

1
V

∫
V

dDr ∑
q,σ

(
c+q+QDW ,σ M(τ, r)cq,σ + H.c.

)
, (26)

where σ spin factor is missing in the charge–fermion coupling vertex c+Mc. This would,
in turn, lead to the absence of the factor σσ̄ = −1 in Equation (19). Hence, in order to
keep U f < 0 (the driving force of the Q-ball transition), one has to compensate for this
sign change. For this, it is necessary to change the sign of the Green’s functions product
Fσ,σ̄(ω, p)Fσ̄,σ(ω−Ω, p−QDW) in Equation (19). Then, allowing for the structure of the
Gor’kov’s anomalous Green’s function in Equation (21), one concludes that, in order to
change the sign of the Green’s functions product, one has to change the relation between
the signs of superconducting order parameters in the points connected by the ‘nesting’
wave vector QCDW . Hence, in case of CDW-mediated pairing [14,15], the ‘nesting’ wave
vector should couple points with the same sign of a superconducting order parameter
corresponding to the s-wave coupling [3]: Σ2p−QCDW ,σ = Σ2p,σ. Such choice then changes
the sign of the product Fσ,σ̄(ω, p)Fσ̄,σ(ω − Ω, p − QDW) in the free energy integral in
Equation (19) just compensating for the absence of the factor σσ̄ = −1, and, hence, keeping
intact the major condition : U f < 0.

4. Eliashberg Equations and Bound States along the Axis of Matsubara Time

Now, using definition of the anomalous fermionic Green’s function Fp,σ(ω) in
Equation (21), one obtains the Eliashberg equation for the self-energy Σ2p,σ(ω) [10,16]
in the form:

Σ2p,σ(ω) =
−TDQDW (Ω)Σ2,p−QDW ,σ(ω−Ω)

|i(ω−Ω)− εp−QDW − Σ1p−QDW ,σ(ω−Ω)|2 + |Σ2p−QDW ,σ(ω−Ω)|2 (27)

DQDW (Ω) ≡ M2

T
(28)

where expression in Equation (28) for the ‘glue boson’ propagator is inferred from the defini-
tion of the considered above ‘classical’ Q-ball field M(τ, r), as defined in Equations (7) and (16),
and monochromaticity of the ‘glue boson’ propagator is taken into account, thus trans-
forming Equation (27) into the algebraic. It is easy to compare Equations (27) and (21) and
obtain readily an equation for the anomalous Green function Fp,σ(ω) in the closed form
(compare [10]):

Fp,σ(ω) = −Σ2p,σ(ω)Kp(ω) = −Kp(ω)
[
DQDW (Ω)Fp−QDW ,σ(ω−Ω)

]
, (29)

Kp(ω) =
{
|iω− εp − Σ1p,σ(ω)|2 + |Σ2p,σ(ω)|2

}−1
≈
{

ω2 + ε2
p + |Σ2p,σ(ω)|2

}−1
. (30)

Now, after applying inverse Fourier transform to both sides of Equation (29), one
finds:

Fp,σ(τ) =
∫ 1/T

0
Kp
(
τ − τ′

)
DQDW

(
τ′
)

Fp,σ
(
τ′
)
dτ′ . (31)

When writing Equation (31), the d-wave symmetry of the self-energy: Σ2p−QDW ,σ =
−Σ2p,σ was taken into account. Approximating denominator of Kp(ω) as indicated in
Equation (30), one finds:

Kp(τ) = T ∑
ω

e−iωτ

|iω− εp − Σ1p,σ(ω)|2 + |Σ2p,σ(ω)|2 ≈
sinh

[
g0

(
1

2T − |τ|
)]

2g0cosh
( g0

2T
) , (32)
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where g0 is defined in Equation (22). It is straightforward to check that (32) possesses the
following property:

∂2
τKp(τ) = g2

0Kp(τ)− δ(τ), (33)

Hence, using the above relation (33) and differentiating Equation (31) twice over τ,
we obtain the following Schrödinger like equation for the wave function Fp,σ(τ) of the
local/Cooper pair along the Matsubara time axis τ:

− ∂2
τ Fp,σ(τ)−DQDW (τ)Fp,σ(τ) = −g2

0Fp,σ(τ). (34)

Using now Equation (28) for the ‘glue boson’ propagator DQDW , one finds that
Gor’kov’s anomalous Green function Fp,σ(τ) of the superconducting condensate inside the
Q-ball obeys the Mathieu equation [17]:

∂2
τ Fp,σ(τ) +

(
2M2 cos (Ωτ)− g2

0

)
Fp,σ(τ) = 0, Fp,σ

(
τ +

1
T

)
= −Fp,σ(τ) , (35)

where the anti-periodicity condition of the fermionic Green function Fp,σ(τ) [8] is explicitly
indicated. Since Ω = 2πnT in (35) is bosonic Matsubara frequency, the anti-periodicity
condition in Equation (35) imposes a self-consistency relation between the SDW ampli-
tude M and the ‘superconducting pseudogap’ g0, which is a necessary condition for the
existence of solution Fp,σ(τ). To find this self-consistency relation in approximate analytic
form, one may consider Equation (35) as Schrödinger equation and substitute potential
V(τ) = −2M2 cos (Ωτ) with rectangular potential of the amplitude 2M2 in the interval
−1/2T ≤ τ ≤ 1/2T, looking for the odd bound state inside this potential well. Then, it is
known that such a potential well contains the second lowest possible eigenvalue −g2

0 just
crossing zero of energy under the condition [18]:

g2
0 ≈ 2M(M−Ω)→ g2

0(α) ≈ 2Mα(Mα−Ω) , (36)

where, at the last step, an amplitude M is substituted with αM according to the definition of
the formal variable coupling strength parameter α in Equation (19). Then, after substitution
of solution from Equation (36) into Equation (24), one finds the following expression for
the function R(α):

α2R(α) =
4M2νε0α2

√
2αM(αM−Ω)

3T(Ω2 + 8αM(αM−Ω))
tanh

√
2αM(αM−Ω)

ε0
tanh

√
2αM(αM−Ω)

2T
. (37)

Now, using Equation (24), one obtains the following expression for the pairing-induced
effective potential energy of SDW/CDW field that enters a Q-ball self-consistency condition
in Equation (12):

Ue f f (M) = µ2
0M2 + gU f = µ2

0M2 − 4gνε0Ω
3

I
(

M
Ω

)
, M ≡ |M(τ)| (38)

I
(

M
Ω

)
=
∫ M/Ω

1
dα

α
√

2α(α− 1)
(1 + 8α(α− 1))

tanh

√
2α(α− 1)Ω

ε0
tanh

√
2α(α− 1)Ω

2T
. (39)

Figure 2 contains plots of Ue f f (M) at different temperatures, manifesting characteristic
‘Q-ball local minimum’ [1]: near T∗ temperature, where the Q-ball phase has emerged,
and, close to Tc, at which the Q-ball volume becomes infinite and bulk superconductivity
sets in.
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1

2

Ueff (M) arb. units

M/Ω

Figure 2. Effective potential energy Ue f f of the SDW/CDW fluctuation as a function of the amplitude
M weighted by Matsubara frequency Ω = 2πnT at two different temperatures T1 = T∗—curve 1,
and T2 = Tc—curve 2, see text.

Then, it is straightforward to substitute Ue f f (M) from Equation (38) into self-consistency
Equation (12) rewritten using a definition of ‘shifted’ by −M2Ω2 potential energy Ue f f :

Ũe f f ≡ (µ2
0 −Ω2)M2 − 4Ωgνε0

3
I
(

M
Ω

)
= 0. (40)

The contour plots of Equation (40) in the plane {M/Ω, Ω} are represented in Figure 3
for different ranges of the coupling strength.
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Figure 3. The contour plots of self-consistency Equation (40) in the plane {M/Ω, Ω} are presented:
(a) the numerated 1–3-. . . curves are plotted for different values of parameter κ ≡ 4gνε0 in the ‘weak
coupling’ interval of values κ < κ∗ , see text after Equation (42); (b) same as (a), but with added
curves numerated 1–3 in the interval of ‘strong’ couplings κ ≥ κ∗, and with curves numerated 4–7
in the ‘weak coupling’ interval κ < κ∗ kept for convenience of comparison.

It will be demonstrated in the next section that Figure 3 signifies the following: (1) at
weak couplings, the pseudogap phase terminates at temperatures T∗ that are much higher
than the temperatures Tc of a bulk superconducting transition; (2) there is some limiting
coupling strength, at which T∗ touches Tc; (3) at even stronger couplings, the expression on
the l.h.s of Equation (40) never touches zero at its minimum but always crosses zero at two
different values of M/Ω, of which one approaches limit M/Ω = 1 of zero superconducting
density, and the opposite one goes to ‘infinity’. It is also noticeable from Figure 3 that local
minima of Ũe f f , which obey Equation (40) for the different coupling strengths, are located
nearly at one and the same coordinate along the M/Ω axis, i.e., at fixed ratio: M/Ω ≈ 2.
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Using this fact, one obtains from Equation (40) the following approximate cubic equation
for Ω that provides the T∗(κ) and Tc(κ) boundaries in the phase diagram:

(µ2
0 −Ω2)− c

4gνε0

3Ω
= 0; c =

(
Ω
M

)2
I
(

M
Ω

)
M
Ω =2
≈ 0.01 . (41)

The value of κ ≡ c
4gνε0

3
, at which T∗ meets Tc, and respective temperature T0 are:

κ∗ =
2µ3

0
33/2 ; Tc = T∗ = T0 =

µ0

2π
√

3
(42)

The phase diagram that follows from Equation (41) is plotted in Figure 4. To the right
of the T(κ) curve, i.e., for κ > κ∗, the ‘pseudo-gap’ and superconducting phases are not
divided, the Q-balls possess finite radii and M/Ω ≈ 1, according to the coordinates of the
‘vertical’ contours in Figure 3b; hence, the superconducting density becomes small again:
g0 =

√
2M(M−Ω)→ 0 together with the pseudogap, see Figure 1, and superconducting

transition may acquire a percolative character due to Josephson tunneling between Q-balls
forming infinite percolating clusters. The normal conductivity itself in the not supercon-
ducting (pseudogap) state above T∗ has to be considered using a percolation approach
for the electron current path that contains ‘short-circuits’ formed by finite size clusters of
Q-balls possessing Josephson links between them, as well as resistive parts in the regions
outside the Q-balls. This picture will be considered elsewhere and compared with the
known properties of the ‘strange metal’ phase [19].

κ    arb. units

κ*

T*

Tc

ar
b.

 u
ni

ts

Q-balls gas PG phase

bulk SC phase

Q
-b

al
ls

 g
as

Figure 4. The phase diagram that follows from Equation (41), where κ ≡ c
4gνε0

3
, see text.

The phase diagram in Figure 4 obtained in the 2D plane {temperature, coupling
constant} is actually in qualitative correspondence with the right half of the diagram for
the stripe-phase bubbles formation experimentally found in the 2D plane {temperature,
micro-strain ε in the CuO2 plane of all high-Tc cuprates}, see [20]. The other half is assumed
to be possible to find by considering the percolative behaviour for the Cooper-pairs of
the Q-balls gas. On the other hand, to calculate phase diagram in the plane {temperature,
doping concentration}, one has to solve an extra microscopic problem to find a relation
between the effective coupling constant κ and the doping concentration of holes. This is an
interesting problem to be solved in the future.

5. The Q-Balls’ Sizes

It is possible to understand the relation between the Q-balls radii R and the contour
plots presented in Figure 3 by investigating a complete coordinate dependent Equation (14)
for the Q-ball field M that minimises Euclidean action. Namely, using the definition of Ũe f f
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in Equation (40) and representation of Laplacian operator in a spherically symmetric case,
one rewrites Equation (14) in the equivalent form:

d2M
dr2 = −2

r
dM
dr
−

d{−Ũe f f }
s2dM

(43)

that formally coincides with a Newtonian equation of motion for a particle of unit mass in
viscous environment moving in the potential −Ũe f f /s2, where radius r plays the role of
‘time’ and fluctuation modulus M plays the role of ‘coordinate’, compare [1]. Neglecting
‘damping’ at large enough r, one finds an ‘integral of motion’:

1
2

{
dM
dr

}2
− Ũe f f = Ẽ = 0 (44)

The integral of ‘motion’ Ẽ is chosen to be zero taking into account finiteness of the
Q-balls: M(r >> R) = 0. Finally, {Ṁ2}/2 plays the role of ‘kinetic energy’. Then, consider
the plots of the potential −Ũe f f obtained using Equations (38) and (40), see Figure 5. It is
straightforward to conclude from the conservation law (44) and Figure 5 that coordinate
M of the ‘particle’ would take nearly ‘infinite time’ (R→ ∞) to reach point M = 0 when
it starts close to the top of the potential at an ‘initial time’ (r = 0) that happens when the
maximum of −Ũe f f touches axis M/Ω. On the other hand, when −Ũe f f crosses axis M/Ω
at ‘initial time’ r = 0, it will take finite ‘time’ R to reach point M(R) = 0. Finally, when
−Ũe f f never crosses the axis M/Ω at any finite initial ‘time’ r = 0, the finite time travel is
not possible, i.e., no Q-ball solution exists for the case of the lowest curves Ω = 0.1; 0.11 in
Figure 5a,b respectively.
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b
Figure 5. The plots of the potential energy −Ũe f f for different values of Matsubara frequency
Ω = 2πT at fixed coupling strength value κ corresponding to contour curves 4 in Figure 3b. (a) The
set of curves in the superconducting domain T ≤ Tc in Figure 3; (b) the set of curves in the T ≥ T∗

domain in Figure 3.

Finally, in order to distinguish different behaviours of the system when the radius of
the Q-ball becomes infinite at T = Tc and T = T∗, it is important to check the sign of the
Q-balls potential energy Ue f f given by Equation (38), (39) in the two temperature intervals.
It is most simple to check using approximate Equation (41), from which it readily follows
that Ue f f < 0 when T ≤ Tc, hence bulk superconductivity at R → ∞ takes place, while
Ue f f > 0 when Tc ≤ T ≤ T∗, and, therefore, the probability of the Q-ball with R→ ∞ goes
to zero; hence, no Q-ball phase is inside the loop Tc(κ)− T∗(κ) in Figure 4.

6. The Tc vs. Superconducting Density Ns: The Uemura Plot

The above obtained solutions of the Q-ball self-consistency Equation (41) and Eliash-
berg Equation (36) allow one to calculate the density of the superconducting condensate
inside the Q-balls represented by diagonal value of the Gor’kov Green’s function F:

ns =
1
V ∑

p

∣∣∣∣∣T ∑
ω

Fp(ω)

∣∣∣∣∣
2

=
1
V ∑

p


√

g2
0 − ε2

p

2g0
tanh

g0

2T

2

(45)
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where, in the last step, an expression for the self-energy Σ2 from Equation (22) was used.
One has to take into account an expression for the density of the fermionic ‘nested’ states
Equation (25) in order to accomplish summation over momentum space in Equation (45),
thus leading to the final result:

ns = 2
∫

0

g0
ν

(
1

2g0
tanh

g0

2T

√
g2

0 − ε2
)2

Θ(ε0 − ε) dε ≈ νε0

2
tanh2 g0

2T
tanh

2g0

3ε0
(46)

where Θ(x) is Heaviside function, and the last factor extrapolates between the two cases
g0 < ε0 and g0 > ε0. Now, it is straightforward to substitute in Equation (46) an expression
for g0 from the self-consistency Equation (36), and then use approximate relation M = 2Ω,
valid for points on Tc curve just above the superconducting transition, see Figure 4 :

g0 =
√

2M(M−Ω) ≈ 2Ωc ; ns =
νε0

2
tanh2 2Ωc

2Tc
tanh

2Ωc

3ε0
≈ νε0

2
tanh

4πTc

3ε0
(47)

where one takes into account Ωc ≡ 2πTc, leading to tanh 2Ωc
2Tc

= tanh 2π ≈ 1. Expression (47)
is remarkable: in the limit of relatively small transition temperatures Tc � ε0/π, it produces
linear dependence of superconducting Tc on the density ns of the local Cooper-pair Bose-
condensate in the Q-balls with the radius approaching infinity (bulk superconductivity
transition):

ns ≈
2πν

3
Tc . (48)

Here, ν is the density of fermionic ‘nested’ states (e.g., in the antinodal regions of
cuprates fermi-surface). Thus, Equation (48) may explain qualitatively the linear depen-
dence of Tc on superconducting density ns in high-Tc superconducting compounds found
experimentally [7].

6.1. The Size of the Cooper-Pair Function

Using an expression for the anomalous Gor’kov Green function Fp(ω) from Equation (45),
it is straightforward to evaluate the Cooper-pair ‘size’ inside a Q-ball by calculating coordi-
nate dependence of the pair wave-function Ψ(r):

Ψ(r = r1 − r2) = F(r1, r2, τ = 0) = T ∑
p,ω

Fp(ω) exp{ipr} =

1
2g0

tanh
g0

2T ∑
p

√
g2

0 − ε2
p exp{ipxx} ∝

πg0ν

2
tanh

g0

2T
cos(p f x)

(
J0(

g0x
v f

)+

J2(
g0x
v f

)

)
≈ πg0ν

2
tanh

g0

2T
cos(p f x)


1; x � v f /g0;

1
(g0x/v f )3/2 ; x � v f /g0.

(49)

where J0, J2 are the Bessel functions of the first kind of order 0 and 2, respectively; the x-axis
goes along the ‘antinodal’ direction of the ‘nesting’ wave-vector QDW , and there is no
dependence on the coordinate in the ‘nodal’ direction perpendicular to QDW . Hence, in our
rough approximation for the anomalous self-energy Σ2 being non-zero only in the vicinity
of the ‘antinodal’ points in Brillouin zone the ‘shape’ of the Cooper-pair is ‘starfish’ like: it is
characterised by the length scale v f /g0 in the ‘antinodal’ direction, and by the Q-ball radius
in the ‘nodal’ direction, in qualitative correspondence with experiment [21]. Substituting
g0 ∼ T∗ ∼ µ0 according to Equation (42), one estimates the characteristic size scale along
the ‘antinodal’ direction: v f /g0 ∼ v f /µ0 ∼ (v f /s)ξ, where ξ is correlation length of the
spin-/charge fluctuation inside the Q-ball, see Equation (1). Power law decrease of the
wave-function in Equation (49) formally indicating divergence of the pairs size has its
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origin in the crude ansatz for the anomalous self-energy Σ2 momentum dependence in
Equation (22) mentioned after Equation (23).

7. Discussion

To summarise, a ‘pairing glue’ by exchange with coherent semiclassical fluctuations
inside finite volume nontopological Euclidean solitons, Q-balls, is proposed as a mecha-
nism of pseudogap phase and high temperature superconductivity in high-Tc cuprates. It
is demonstrated that Euclidean Q-balls of semiclassical spin-/charge density-wave fluc-
tuations that self-consistently support formation of local superconducting condensates
can emerge as the ‘smoking gun’ of the pseudogap phase and high temperature super-
conductivity in strongly enough coupled repulsive Fermi systems with ‘nested’ regions
of the Fermi surface with finite density of fermionic states. The proposed theory of pair-
ing via exchange with semiclassical fluctuations of finite amplitude populating the local
minimum of potential energy of SDW/CDW inside the Q-balls differs from the standard
Frohlich pairing mechanism via an exchange between fermions with incoherent bosons
of infinitesimal amplitudes, e.g., phonons [16], spin–waves [3], or polarons [15,22]. The
theory proposed here is simple enough, so that it could provide a basis for an analytically
treatable calculations of spectral [23,24], transport, thermal [25], and electromagnetic [26]
properties of the high temperature superconductors in pseudogap and superconducting
states. As a first step, a theory of Q-balls formation is demonstrated in the above sections,
which may naturally explain the linear dependence of Tc on superconducting density ns
in high-Tc superconducting compounds found experimentally [7]. It is also interesting to
admit that obtained Q-ball solutions fall into the category of finite size thermodynamic
time crystals, considered previously [27–30].
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