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Abstract: We studied the miscibility of two dipolar quantum gases in the limit of zero tempera-
ture. The system under study is composed of a mixture of two Bose gases with dominant dipolar
interaction in a two-dimensional harmonic confinement. The dipolar moments are all considered
to be perpendicular to the plane, turning the dipolar potential in a purely repulsive and isotropic
model. Our analysis is carried out by using the diffusion Monte Carlo method, which allows for an
exact solution to the many-body problem within some statistical noise. Our results show that the
miscibility between the two species is rather constrained as a function of the relative dipolar moments
and masses of the two components. A narrow regime is predicted where both species mix and we
introduce an adimensional parameter whose value quite accurately predicts the miscibility of the two
dipolar gases.

Keywords: quantum dipolar gases; quantum bose mixtures; quantum monte carlo

1. Introduction

Ultracold Bose and Fermi gases have proved to be the best platform for the study
of quantum many-body systems [1]. Their versatility and fine tuning of the interatomic
interactions allow for the study of many phenomena, which are difficult to attain in real
systems. They offer the opportunity of using a laboratory as a quantum simulator of
Hamiltonians proposed from theory, which could be difficult to manage using classical
computers and algorithms [2,3]. Many of the atoms used to achieve the Bose-Einstein
condensate (BEC) state interact among themselves with a contact short-range potential,
which depends only on the s-wave scattering length, due to the extreme low density of
these gases. However, it has also been possible to cool down to degeneracy gases composed
by atoms with a permanent magnetic moment [4]. Exploiting Feshbach resonances, it
is proved that the dominant interaction is no more the contact potential but the dipolar
interaction between the atomic magnetic moments [5]. The dipolar potential decays as r−3

and thus the interaction effects become fundamental in the properties of the gas.
First experiments showing dipolar effects were carried out with Cr, with a magnetic

moment µ = 6µB [5]. In the last years, two more candidates have joined this class of materi-
als, Dy [6] with µ = 10µB and Er [7] with µ = 7µB, significantly widening the possibilities
for observing the two main features of these systems: anisotropy and slow-decaying two-
body interactions [8]. The different interaction between side-by-side moments (repulsive)
and head-to-tail ones (attractive) leads to the formation of self-bound liquid drops if the
number of atoms is above a threshold known as critical atom number [9]. By changing the
total scattering length of the system, one can see how the critical atom number increases
when the scattering length also increases [10]. Under proper harmonic confinement, and
when the number of atoms is large enough, one observes that the system arranges in drops
forming a linear array, if the trapping is cigar-shaped, and a triangular one is in a plane,
it has a pancake form. Interestingly, these patterns emulate a crystal, but where every
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site is not monoatomic but occupied by a multiparticle drop. Recent experimental work
claims that these solid-like patterns show coherence and thus are examples of the pursued
supersolid state of matter [11–13].

The field of ultracold dipolar gases has entered an even more rich landscape with
the realization of Er-Dy mixtures [14–16]. The interplay between the two dipolar species
opens new scenarios like the formation of mixed dipolar drops and the possible stability of
mixed supersolids, with arrays composed by single-species drops or mixed drops. A key
ingredient in this discussion is the miscibility of the two species since inmiscibility would
hinder the observation of these new intriguing phases. Recent measures on this system
show that both components tend to be phase separated, both due to the gravitational sag
originated by the different masses of Er and Dy and by an overall repulsive interaction
between both condensates [16]. Dipolar mixtures in three dimensions have also been
theoretically studied, focusing on the miscibility of both species [17–19], the structure of
emerging vortices under rotation [20,21], and the formation of mixed dipolar drops [22,23].

Dipolar mixtures add long-range and anisotropy in the field of quantum mixtures.
The case of short-range or contact repulsive interactions in the mixtures is well understood,
both from theory and experiment [24–32]. The miscibility criterion when the mixture is
harmonically confined was analyzed in Refs. [33,34], concluding that in dilute mixtures the
criterium for the bulk also works quite well in the confined case.

In the present work, we use the ab initio diffusion Monte Carlo (DMC) method to
study a mixture of two dipolar Bose gases harmonically confined in two dimensions (2D).
In our analysis, we assume that all the dipoles are oriented perpendicularly to the plane
and thus interact with a fully repulsive 1/r3 potential. A single dipolar gas in the same
conditions was studied some time ago with DMC but in an extended configuration, free
from confinement. It was shown that the gas becomes a triangular crystal when the density
increases [35]. If the dipoles are not perpendicular to the plane but tilted at a certain angle,
the interaction becomes anisotropic and, beyond a certain critical angle, it collapses. That
anisotropy produces a rich diagram, with a stable stripe phase [36], which is indeed a
supersolid or superstripe that suffers a Berezinskii–Kostrelitz–Thouless phase transition at
finite temperature [37].

As a function of the ratio between both the dipolar moments and the masses of the
two species in the mixture, we analyze the miscibility of the two gases. Our results show
that both species are miscible only in a restricted area in the dipolar moment, a mass ratio
plane where both ratios are close to one. In the majority of situations that we analyzed,
we observe that the two confined gases do not mix: one species remains in the center and
the second goes to the surface. If the trap is deformed, we observe that in some cases the
external component appears in two separated blobs, separated by the inner species. Finally,
we particularize our study to the Er-Dy mixture and predict that both species do not mix,
in agreement with available experimental data.

The rest of the paper is organized as follows. In Section 2, we discuss the quantum
Monte Carlo methods used in our study and the miscibility criterion that accounts well
for the phase diagram. In Section 3, we present the results obtained for both isotropic and
anisotropic traps and analyze the particular case of an Er-Dy mixture, which is the one
observed recently in experiments. Finally, Section 4 comprises the summary of the main
results and the conclusions of our work.
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2. Quantum Monte Carlo Methods
2.1. Hamiltonian

The object of study of this work are two-component dipolar bosonic mixtures at zero
temperature, in a purely two dimensional geometry. We consider that all the magnetic
moments are perpendicular to the plane and the gas is confined by either an isotropic
harmonic trap or an anisotropic one. The dipole–dipole interaction (DDI) potential between
two identical particles is given by

Vdd(r) =
Cdd
4π

p̂1 · p̂2 − 3(p̂1 · r̂)(p̂2 · r̂)
r3 , (1)

with Cdd = µ0µ2, µ0 being the magnetic permeability of free space and µ the particle’s
magnetic moment. p̂1 and p̂2 are the vectors pointing in the direction of the dipole’s
moment of particles 1 and 2, respectively, and r̂ = r/r is the unit position vector. In our
case, with the particles confined to the xy plane and polarized parallel to the z axis, the
interaction is always isotropic and repulsive,

Vdd(r) = Vdd(r) =
Cdd
4π

1
r3 . (2)

This is the dipolar potential of a purely 2D system and it corresponds to a pancake
geometry where the transverse confinement has an energy h̄ω � E/N, with E/N being
the interaction energy per particle. In other words, the oscillator length of the transverse
confinement is assumed to be much smaller than the mean interparticle distance. If this is
not the case, one needs to include a short range repulsive (contact) interaction that stabilizes
the system [10,38]. The mixture is confined by a 2D harmonic oscillator (ho) potential,
which in the isotropic case is given by

Vho(ri) =
1
2

mω2r2
i , (3)

where m is the mass of the particle, ω is the ho’s trapping frequency, and ri is the particle’s
distance to the origin, which matches the center of the trap. The full Hamiltonian of the
system is then given by

H(R) = − h̄2

2m1
∇2

R1
− h̄2

2m2
∇2

R2
+

1
2

m1ω2
1

N1

∑
i=1

r2
i +

1
2

m2ω2
2

N

∑
k=N1+1

r2
k

+
µ0µ2

1
4π

N1−1

∑
i=1

N1

∑
j=i+1

1
r3

ij
+

µ0µ2
2

4π

N−1

∑
i=N1+1

N

∑
j=i+1

1
r3

ij
+

µ0µ1µ2

4π

N1

∑
i=1

N

∑
j=N1+1

1
r3

ij
, (4)

with N = N1 + N2, N1 and N2 being the number of particles of each type in our mixture,
and m1 and m2 the corresponding mass of the particles. In order to simplify Equation (4),
we have used R = {r1, r2, · · · , rN} as the whole coordinate set such that ∑i∇2

i = ∇2
R.

Finally, ω1 and ω2 are the trapping frequencies and µ1 and µ2 are the magnetic dipole
moments of type 1 and 2 particles, respectively, with rij = ri − rj.

As in previous studies [35], we use dipolar units (for species 1),

r0 =
m1C(11)

dd

4πh̄2 =
m1µ0µ2

1

4πh̄2 & E0 =
h̄2

m1r2
0

, (5)
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with r0 and E0 being the units of distance and energy, respectively. Then, in these units, the
Hamiltonian is written as

H(R∗) = −1
2
∇2

R∗1
− 1

2
m1

m2
∇2

R∗2
+

1
2

A1

N1

∑
i=1

r∗,2i +
1
2

A2

N

∑
k=N1+1

r∗,2k

+
N1

∑
i=1

N1−1

∑
j=i+1

1

r∗,3ij

+

(
µ2

µ1

)2 N−1

∑
i=N1+1

N

∑
j=i+1

1

r∗,3ij

+
µ2

µ1

N1

∑
i=1

N

∑
j=N1+1

1

r∗,3ij

, (6)

where the superscript ‘∗’ denotes the use of normalized units r∗ = r/r0. The strength of the
harmonic confinement in both species is

A1 =
m2

1ω2
1r4

0

h̄2 =

(
r0

l1

)4
& A2 =

m1m2ω2
2r4

0

h̄2 =
m1

m2

(
r0

l2

)4
=

m2ω2
2

m1ω2
1

A1 , (7)

with l1 =
√

h̄/m1ω1 and l2 =
√

h̄/m2ω2 being the harmonic oscillator lengths.
We have also explored the effects induced by an anisotropic confinement. The Hamil-

tonian in this case is

H(R∗) = −1
2
∇2

R∗1
− 1

2
m1

m2
∇2

R∗2
+

Ax,1

2

N1

∑
i=1

x∗,2i +
Ax,2

2

N

∑
k=N1+1

x∗,2k +
Ay,1

2

N1

∑
i=1

y∗,2i

+
Ay,2

2

N

∑
k=N1+1

y∗,2k +
N1−1

∑
i=1

N1

∑
j=i+1

1

r∗,3ij

+

(
µ2

µ1

)2 N−1

∑
i=N1+1

N

∑
j=i+1

1

r∗,3ij

+
µ2

µ1

N1

∑
i=1

N

∑
j=N1+1

1

r∗,3ij

, (8)

with

Ax,1 =
m2

1ω2
x,1r4

0

h̄2 =

(
r0

lx,1

)4
, Ax,2 =

m1m2ω2
x,2r4

0

h̄2 =
m1

m2

(
r0

lx,2

)4
=

m2ω2
x,2

m1ω2
x,1

Ax,1

Ay,1 =
m2

1ω2
y,1r4

0

h̄2 =

(
r0

ly,1

)4

, Ay,2 =
m1m2ω2

y,2r4
0

h̄2 =
m1

m2

(
r0

ly,2

)4
=

m2ω2
y,2

m1ω2
y,1

Ay,1 . (9)

The oscillator lengths are now: lx,1 =
√

h̄/m1ωx,1, lx,2 =
√

h̄/m2ωx,2, ly,1 =
√

h̄/m1ωy,1,

and ly,2 =
√

h̄/m2ωy,2.
To reduce the number of variables of our numerical simulations, we assume that

both types of particles are under the presence of the same harmonic potential, with
strengths Ax in the x-direction and Ay in the y-direction. Therefore, m1ω2

x,1 = m2ω2
x,2

and m1ω2
y,1 = m2ω2

y,2, ωx,α and ωy,α are the confinement frequencies for type α particles
along the x and y axes, respectively. This also applies to the isotropic case, where we
consider A1 = A2 via the use of different confinement frequencies verifying m1ω2

1 = m2ω2
2 .

2.2. Diffusion Monte Carlo

The main theoretical tool used in this work is the diffusion Monte Carlo (DMC)
method, which finds the ground-state energy of a many-particle system by propagating the
imaginary-time Schrödinger equation exploiting the similarities with a diffusion process.

The time-dependent Schrödinger equation associated to a system of N particles,
written in imaginary time τ = it/h̄, is

− ∂|Ψ(τ)〉
∂τ

= (Ĥ − ET)|Ψ(τ)〉. (10)
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Its solution is given by |Ψ(τ)〉 = Û(τ, 0)|Ψ(0)〉, where Û(τ, 0) = exp[−(Ĥ − ET)τ)]
is the imaginary-time evolution operator and ET is the reference energy. Projecting
in coordinate space,

Ψ(R, τ) =
∫

dR′ G(R, R′, τ)Ψ(R, 0) , (11)

with 〈R|Û(τ, 0)|R′〉 ≡ G(R, R′, τ) being the Green function and G(R, R′, 0) = δ(R− R′)
its initial condition. The above integral (11) is in principle intractable due to the non-
commutativity of the kinetic and potential operators that appear in the Green function. As
we will shortly discuss, we may avoid this by computing short-time approximations for
G(R, R′, τ) and using the convolution property of Equation (11).

As in many Monte Carlo simulations, it is convenient to introduce importance sam-
pling to reduce the variance to a manageable level. In DMC, this is carried out by solving
the Schrödinger equation for the wave function

f (R, τ) ≡ Ψ(R, τ)ΨT(R), (12)

where ΨT(R) is a time-independent trial wave function, which in our case is previously
optimized using the variational Monte Carlo (VMC) method [39], and whose specific form
for the present problem will be discussed in Section 2.3. ΨT acts as a guiding wave function,
which drives the system away from regions of the phase space where the interatomic
potential is strongly repulsive, or even divergent, and increases the sampling of regions
where the wave function is expected to be large. With that, the Schrödinger equation may
be rewritten as

− ∂ f (R, τ)

∂τ
= (ÔK + ÔD + ÔB) f (R, τ) , (13)

where

ÔK = −D∇2
R , ÔD = D[(∇R · F(R)) + F(R) · ∇R] & ÔB = EL(R)− ET (14)

are known as the kinetic, drift, and branching operators, respectively. D = h̄2/(2m) and
EL(R) = H(R)ΨT(R)

ΨT(R)
is the local energy. The kinetic term, which gives DMC its name, is

the same as a classical diffusion operator, ÔD guides the diffusion process, and, as we will
see, ÔB promotes lower energy configurations and removes higher energy ones. Then, in a
formal sense, this leads to

f (R, τ) =
∫

dR′ G(R, R′, τ) f (R, 0), (15)

with G(R, R′, 0) = δ(R− R′). Specifically, G(R, R′, τ) = exp[−(ÔK + ÔD + ÔB)τ]. The
situation is formally the same as in the non-importance sampling case, as these three
operators do not commute, and thus a short-time approximation needs to be used. In fact,
the Green functions associated to each operator can be calculated in the limit τ → 0.

The kinetic part, GK(R, R′, τ), is straightforwardly obtained by using the completeness
relation of the momentum basis and gaussian integration, leading to

GK(R, R′, τ) = 〈R|e−ÔKτ
∣∣R′〉 = (4πDτ)−dN/2exp

[
− (R− R′)2

4Dτ

]
, (16)

with d the dimension of the system. Concerning the drift term, it verifies [40]

GD(R, R′, τ) = 〈R|e−ÔDτ
∣∣R′〉 = δ(R−R′(τ)) , (17)

whereR′(τ) is deterministically calculated by solving the differential equation

dR(τ)
dτ

= D F(R(τ)) , (18)
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with the initial conditionR(0) = R. Finally, the Green function associated to the branching
term is easily obtained as

GB(R, R′, τ) = 〈R|e−(EL(R)−ET)τ)
∣∣R′〉 = e−(EL(R)−ET)τδ(R− R′) . (19)

One might then be tempted to approximate G(R, R′, ∆τ) for small ∆τ in terms of GK,
GD and GB linearly in ∆τ as

G(R, R′, ∆τ) = 〈R|e−(ÔK+ÔD+ÔB)∆τ
∣∣R′〉 = 〈R|e−ÔK∆τe−ÔD∆τe−ÔB∆τ

∣∣R′〉+O(∆τ2) . (20)

However, that would lead to a strong dependence with ∆τ, which would require to
use very small time-steps. Instead, we use an approximation accurate to order ∆τ2 given
by

G(R, R′, ∆τ) = 〈R|e−ÔB∆τ/2e−ÔD∆τ/2e−ÔK∆τe−ÔD∆τ/2e−ÔB∆τ/2∣∣R′〉+O(∆τ3) , (21)

which gives name to the method known as quadratic diffusion Monte Carlo [41,42], which
is used throughout this work.

Having discussed the formal concepts associated with the DMC method, let us then
comment how it is applied in practice. In order to evolve the system, one represents it using
sets of coordinates {R1, R2, · · · , RNw} known as walkers, each one being a configuration of
the N-particle system, which is to be propagated separately. One then makes use of the
approximation (Equation (21)), with each operator in this expression applied in the same
order each time-step.

The diffusion operator is straightforwardly applied, as one can use the Box–Muller algo-
rithm to sample from the desired Gaussian distribution. The drift operator exp(−ÔD∆τ/2)
is deterministic, and requires solving Equation (18) exactly to order ∆τ2. We do this by
using the second-order Runge–Kutta method. Finally, the branching operator kills or
reproduces walkers based on the difference between their local energy EL and the reference
energy ET . This way, we promote the configurations with the lowest energy and remove
the ones with a higher energy. To implement the branching term, the number of copies of a
given walker is calculated as

Nsons =

[
exp

{
−
(

EL(R) + EL(R′)
2

− ET

)
τ

}
+ η

]
, (22)

where η is sampled from the uniform probability distribution U[0, 1), [· · · ] denotes the
integer part, and R, R′ are walkers at two successive times.

In a DMC simulation, one fixes the time-step ∆τ, the desired number of walkers Nw,
and chooses a guiding wave function whose parameters are previously optimized using
the VMC method. Then, after each time-step, a new set of walkers is obtained and after
every block ET is updated to be the average local energy of the previous set. Approaching
the limit τ → ∞, we get the ground-state energy E0 as a mean of the local energies of the
walkers set. It is important to remark, however, that this estimate is only exact in the limits
∆τ → 0 and 1/Nw → 0. This way, different simulations approaching these two limits
have to be made in order to obtain the result as an extrapolation to such limits. This is the
method used throughout this work, and any result shown in Section 3 has been obtained by
an initial optimization of the trial wave function via VMC, followed by its use as a guiding
function in DMC, and the check for the optimum Nw and ∆τ values.

Finally, to conclude this discussion on the DMC method we briefly describe the
estimation of observables. In a DMC simulation we sample the mixed wave function
f (R, τ) = Ψ(R, τ)ΨT(R) as τ → ∞, such that f (R, τ → ∞) → φ0(R)ΨT(R), where φ0 is
the exact ground state wave function, in a process known as mixed estimation. In case
the operator being estimated is the Hamiltonian or commutes with it, this leads to an
exact estimation within some statistical errors. However, for other operators, such as the
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potential energy or the density profile, the estimation is biased in a way that makes it
difficult to assess a priori. The simplest way to approximately correct this bias is to use
an extrapolated estimator, which makes use of both mixed (DMC) and variational (VMC)
results. This result, however, is still biased in an unknown way as it still depends on the
trial wave function. The solution to definitely eliminate that bias is by means of the pure
estimation, a technique based on forward walking, which we use throughout this work as
implemented in Ref. [43].

2.3. The Trial Wave Functions

As we have discussed in the previous Section, a reasonable choice for the ground-state
wave function is necessary to guide the diffusion process in DMC. The usual approach, and
the one taken in this work, is to use the VMC method to optimize the trial wave function
before using it in the DMC method.

Our system is a bosonic one, so the wave function must be symmetric with respect
to exchange of particles. We include one- and two-body correlation factors in the usual
Bijl–Jastrow form [44],

Ψ(R) = ψ1(R)ψ2(R) , (23)

with

ψ1(R) = exp

(
N1

∑
i=1

u(1)
1 (ri) +

N

∑
i=N1+1

u(2)
1 (ri)

)
(24)

the one-body terms and

ψ2(R) = exp

(
N1−1

∑
i=1

N1

∑
j=i+1

u(11)
2 (rij) +

N−1

∑
i=N1+1

N

∑
j=i+1

u(22)
2 (rij) +

N1

∑
i=1

N

∑
j=N1+1

u(12)
2 (rij)

)
(25)

the two-body ones. The one-body terms u(α)
1 (r) are chosen as the analytical solutions

(Gaussian functions) of a single particle confined by the harmonic trap, either isotropic
or anisotropic. These terms are Gaussian functions and depend on the specific species
of the mixture. For the two-body terms associated to the interatomic dipolar potentials,
we use the short-distance approximation of the solution for two untrapped interacting
dipoles [45],

u(αβ)
2 (rij) = −

√
2µαβC(αβ)

dd

4πh̄2
2
√rij

, (26)

with µαβ = mαmβ/(mα + mβ) the reduced mass of an α − β pair, and C(αβ)
dd = µ0µαµβ.

Wave functions (26) are too repulsive for intermediate and large inter-particle distances.
Therefore, we match Equation (26) with softer u2 terms for r∗ij = R(αβ)

cut ,

u(αβ)
2 (r∗ij) = c(αβ)

2 −
c(αβ)

3
r∗ij

, (27)

with c(αβ)
2 , c(αβ)

3 , and R(αβ)
cut constants for each type of α− β interaction, such that the wave

function and its first derivative are continuous at r∗ij = R(αβ)
cut . This is then introduced in the

VMC code with R(αβ)
cut = r(αβ)

p A−1/4
1 in the isotropic case, with r(αβ)

p being the only free varia-
tional parameters with respect to which the trial wave function is optimized. In the presence

of an anisotropic harmonic potential, this is adapted considering r(αβ)
p

√
A−1/4

x A−1/4
y as a

more convenient choice for the matching distance.
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2.4. The Miscibility Criterion

The miscibility in Bose–Bose mixtures is determined by the parameter ∆,

∆ =
g11g22

g2
12
− 1 , (28)

a criteria derived from the mean-field treatment of bulk mixtures [34]. Equation (28)
classifies the behavior of the mixtures: ∆ > 0 signals miscibility, ∆ < 0 phase separation,
and ∆ = 0 the critical value separating both regimes.

In three dimensions, the interaction strengths in Equation (28) read

gα,β =
2πh̄2aαβ

µαβ
, (29)

with µαβ = mαmβ/(mα + mβ) being the reduced mass and aαβ being the s-wave scattering
length. In a purely two-dimensional system, gα,β read [46]

gα,β =
2πh̄2

µαβ

1∣∣∣ln (nαβa2
αβ)
∣∣∣ , (30)

with nα and nβ being the densities of the α and β species, respectively, with nαβ normally
defined as the geometrical mean √nαnβ. The 2D scattering lengths for a purely repulsive
interaction (1/r3) are known [45],

aαβ = e2γ
2µαβC(αβ)

dd

4πh̄2 , (31)

with γ = 0.5772156649 . . . being the Euler’s constant.
It is worth noticing that, in contrast to Bose–Bose mixtures with contact interac-

tions [34] where the scattering lengths a11, a22, and a12 can all be changed independently, in
our dipolar system setting m2/m1 and µ2/µ1 does not only fix a11 and a22, but the crossed
scattering length a12 as well (see Equation (31)). This dependence constrains the accessible
regions of the phase-space given by a12/a22 and a11/a12, which means that certain regions
that would normally be mapped in order to find characteristic spatial configurations, given
by specific relations between the scattering lengths, are unreachable.

The miscibility criterion in 2D is more complex than that in 3D (29) because of the
explicit dependence of gα,β on the densities. In a bulk system, this is not an issue and
the phase-space can be determined using Equation (28). However, these densities are not
clearly defined in a finite system and, in addition, cannot be predicted exclusively from the
knowledge of the external parameters. One could think of different ways of approximating
them, such as considering n11 and n22 to be the central values of the density profiles ρ11(r)
and ρ22(r), respectively, or their peak values, among other options. In the present work,
we tried these approaches regarding the densities, and also other gαβ expressions based on
the chemical potentials and the harmonic confinement’s strength [46,47]. In all these trials,
we were not able to match the DMC results with the miscibility criterion (28). We conclude
that the complex 2D gαβ expressions and the uncertainties regarding the proper definitions
of n11, n22, and n12 in finite, confined systems make an exploration of the phase-space
according to Equation (28) unfeasible.

On the other hand, we observed that our results on the miscibility of the dipolar
mixture are quite well determined through the definition of the adimensional parameter

∆ =
m2

m1

(
µ1

µ2

)2
. (32)
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Parameter ∆ is a quotient between the dominant effect when the mass of one of the
components is changed (m2/m1) and the corresponding effect when the dipolar moment is
changed ((µ2/µ1)

2). Both factors are directly related to the kinetic and potential energies,
respectively (6). According to this empirical parameter, we concluded that ∆ ' 1 signals
miscibility, with both ∆ & 1.1 and ∆ . 0.9 indicating phase separation. The application of
this parameter is discussed in the next Section.

3. Results
3.1. Isotropically Trapped Mixtures

We focus exclusively on systems with N1 = N2 = 100 and a harmonic confinement of
strength A = 0.1 in reduced units. We do this to limit the number of free parameters and to
focus on a system size for which a balance is found between the importance of interactions
and the computational cost. Under these conditions, the central densities are of order one,
always in reduced units.

We start with the following paradigmatic mixtures: (m2/m1 = 1, µ2/µ1 = 2) and
(m2/m1 = 2, µ2/µ1 = 1). These will allow to understand the effects of the mass and
magnetic dipole moment relations between species before an exhaustive analysis of the
phase diagram is performed. The pure estimators for the radial density functions ρ(r) are
shown in Figure 1. We observe that if the mass of the two species is the same, the particles
with the larger magnetic dipole moment move out of the center and completely surround
the other species. This is due to the type 2 particles repelling each other more strongly
than type 1 particles do, leading the system to a configuration where type 2 particles are as
separated as possible from one another and from the other species. The DMC simulation
tells us that the most energetically favorable way to do this is by the second species forming
a ring around the first one. Regarding the right panel in Figure 1, we see that if the magnetic
dipole moment of the two species is the same, it is the lighter particles that now envelop
the heavier ones. This is a direct consequence of both species being under the presence of
the same confinement, as the lighter one presents a larger harmonic length.

Figure 1. Left column: pure estimators of the density for (m2/m1 = 1, µ2/µ1 = 2). Right column:
pure estimator of the density for (m2/m1 = 2, µ2/µ1 = 1).
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The phase diagram of the mixture is obtained by carrying out multiple simulations for
different m2/m1 and µ2/µ1 values. From the density profiles of both species, we determine
if they are miscible or not and these results are compared with the empirical criterion of
Equation (32). The results are shown in Figure 2.

As it can be seen in Figure 2, the criterion (32) matches almost perfectly with the DMC
results, with a very narrow region of miscibility at 0.9 . ∆ . 1.1, indicating the system’s
clear tendency to phase-separate as soon as it is possible due to the repulsiveness of the
DDIs. In addition, every system that phase separates does so via one species leaving the
center and surrounding the other one. The farther ∆ is from 1.0, the more completely it
surrounds the other, leaving the center entirely for values of ∆ = 3.0 and ∆ = 0.5, with
complete separation already happening for values closer to ∆ = 1.0 for specific m2/m1
and µ2/µ1 relations. In addition, we noticed that for the mixtures where µ2/µ1 is changed,
the phase-separation is clearer, with one species abandoning the center entirely for values
closer to ∆ = 1.0. Moreover, let us remark how ∆ can also be used to predict which particles
leave the core, as for ∆ > 1.1 species 1 does it, while for ∆ < 0.9 it is species 2 that occupies
the external shell.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2/ 1

0.25

0.50

0.75

1.00

1.25

1.50

1.75
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m
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m
1

= 0.5
mixed

= 0.9
species 1 outside

= 1.0
species 2 outside

= 1.1
two blobs

= 1.5 = 2.0 = 3.0

Figure 2. Miscibility of balanced mixtures as a function of m2/m1 and µ2/µ1 for N = 200 and
A = 0.1. The points indicate the performed simulations.

There is one exception in Figure 2 corresponding to the particular values µ2/µ1 = 1.0
and m2/m1 = 0.975 (green point). In this case, the system does not entirely mix, but neither
does it phase-separate in the usual form. As reported in Ref. [34] for 3D harmonically
trapped Bose–Bose mixtures with contact interactions, in certain cases the system clearly
phase-separates forming a “two-blobs” configuration, where each species occupies a semi-
circumference. As the trap is isotropic, the “two-blobs” structure is degenerate and the
axis, transverse to the line (2D) or surface (3D) separating the two phases, can appear in
any direction. Only when one plots the structure along this transverse axis the structure
can be observed. This effect produces in the density profile a maximum value which is
slightly displaced with respect to the center of the trap. In our case, under an isotropic
confinement the system does not phase-separate completely, and seems to only hint at such
a configuration. This seems to be an exception, as we were unable to find any other case
where this happened, and so we leave the analysis of this particular system to the next
subsection, where we will discuss how for a given deformation of the trap, the “two-blobs”
configuration can be observed before it disappears for stronger compressions.
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3.2. Anisotropically Trapped Mixtures

In this section, we focus on systems with N1 = N2 = 100 particles and analyze
progressively stronger sets of anisotropic harmonic confinements with Ax = 0.1 fixed and
Ay changing from 0.5 to 2.5. We do not want Ay to be too large as we do not wish to
enter the one-dimensional regime; we are interested in the effects of deforming the system,
not changing its behavior completely. We study three mixtures given by (m2/m1 = 1.0,
µ2/µ1 = 2.0), (m2/m1 = 2.0, µ2/µ1 = 1.0), and (m2/m1 = 0.975, µ2/µ1 = 1.0), which
hereinafter we label as A, B, and C, respectively. Mixture A will allow us to isolate the
effects of changing the magnetic dipole moment of one species and mixture B will do the
same with the mass relation. Finally, mixture C, as explained in Section 3.1, seemed to hint
at a two-blobs configuration under an isotropic confinement, and so we will study how it
evolves as it is compressed.

The density profiles of mixture A, obtained with pure estimators, are shown in Figure 3.
In this case, the type 2 particles intra-species interactions, and the cross interactions with
particles 1, are so repulsive that no matter how much we compress the system in the
y-direction, particles 2 always leave the center, forming a ring surrounding the species
with the smaller magnetic dipole moment. Therefore, if the DDIs are strong enough for
one species compared to the other, the ring configuration is maintained throughout the
compression.

Figure 3. Mixture A. First and second rows, from left to right: pure density profiles for Ay = 0.1,
Ay = 0.5 and Ay = 1.0, respectively. Third and fourth rows, from left to right: density profiles for
Ay = 1.5, Ay = 2.0 and Ay = 2.5, respectively. In all cases Ax = 0.1.

The density profiles for mixture B are displayed in Figure 4. We can see that in this
case the configuration is not maintained throughout the deformation. If the compression
is small (see Ay = 0.5) the ring is still present, as it is still energetically favorable for the
lighter species to leave the center, surrounding the others. However, as the compression
progresses, the equilibrium between the DDIs and the harmonic confinement for particles 1
cannot be reached with the ring configuration. Particles 2 now occupy the center in such
a way that the second species cannot keep enough distance between themselves and the
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other species at small and intermediate x values for it to be energetically favorable. As a
result, particles 1 form “wings” surrounding particles 2.

Finally, mixture C’s density profiles are shown in Figure 5. In this case, we start with
the system hinting at a two-blobs configuration, which gets completely clear and defined
for Ay = 0.5. Different simulations produce two mirroring degenerate structures, with
a particular species on the right or on the left (along the x-axis). In our plots, we break
this degeneracy by a proper rotation. The two-blobs configuration disappears for stronger
deformations, and gives way to the wing configuration described for mixture B. This
system, as far as we can tell from the analyzed mixtures, is an exception, as we have been
unable to find another system presenting these symmetric semi-ellipses. We suspect that
this type of configuration may only appear at very particular m2/m1 and µ2/µ1 relations
for which 1-2 interactions are the most repulsive and 1-1 and 2-2 interactions are of similar
strength. In this situation, the mixture could form symmetric distributions for each species,
allowing for large interparticle distances.

Figure 4. Mixture B. First and second rows, from left to right: pure density profiles for Ay = 0.1,
Ay = 0.5 and Ay = 1.0, respectively. Third and fourth rows, from left to right: density profiles for
Ay = 1.5, Ay = 2.0 and Ay = 2.5, respectively. In all cases Ax = 0.1.

Any other mixed isotropic configuration that we have analyzed turns into a phase-
separated system as it is compressed. As we saw in Figure 2, it required very specific mass
and magnetic dipole relations between the two species for the system to be in a mixed state.
Therefore, those very specific conditions move and maybe even disappear as the system is
compressed and the DDIs become more repulsive. It may be possible, though, that different
regions of existence for the miscible state exist for these anisotropic confinements. It is,
however, beyond the scope of this work to probe the full phase-space, as it was done for
the isotropic case, Figure 2.
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Figure 5. Mixture C. First and second rows, from left to right: pure density profiles for Ay = 0.1,
Ay = 0.5 and Ay = 1.0, respectively. Third and fourth rows, from left to right: density profiles for
Ay = 1.5, Ay = 2.0 and Ay = 2.5, respectively. In all cases Ax = 0.1.

3.3. Erbium-Dysprosium Mixture

Throughout this work we have studied a generic set of systems, given by changes in
the mass and magnetic dipole moment relations between species and the deformation of
the harmonic confinement applied to it. In this section, we perform a study of these effects
for an Erbium-Dysprosium (Er-Dy henceforth) system, as it is the first Bose–Bose dipolar
mixture that has been realized experimentally [14–16] and offers us a perfect opportunity to
predict potentially observable configurations. Both Er and Dy are part of the magnetic rare-
earth species group, and we are going to focus on the case of a 166Er-164Dy mixture, with
166Er having an atomic mass of 165.930293 uma and a magnetic dipole moment of 7µB, and
164Dy having a mass of 163.929175 and a magnetic dipole moment of 10µB. For convenience,
we define the Er atoms as the type 1 species and the Dy ones as type 2, so that the mass
and magnetic dipole moment relations characterizing the system are m2/m1 ' 0.9897
and µ2/µ1 ' 1.4285, respectively. As commented previously, we remain in a strictly 2D
geometry and the interaction is the dipolar potential (2) without any short-range (contact)
repulsive interaction. In this 2D limit, and all the dipoles oriented perpendicularly to
the plane, the dipolar interaction is fully repulsive and the contact interaction would not
change the present results in a significant way. Instead, in 3D the contact interaction is
crucial to avoid the collapse that the dipolar potential produces [10].

We start with a balanced mixture of Er-Dy atoms, with N1 = N2 = 100 particles
each, under the presence of an isotropic harmonic confinement of strength A = 0.1. The
pure density profiles for this case are shown in Figure 6. As it can be clearly seen, under
these conditions the system phase-separates, with the Dy atoms leaving the center and
surrounding the Er particles. In this case m2/m1 ≈ 1, meaning the mass difference between
species, is not a key factor, and the inmiscibility is due to the Dy atoms having a significantly
larger magnetic dipole moment, which forces them out of the center due to the stronger
repulsive DDI interactions between themselves and the Er atoms.



Condens. Matter 2022, 7, 32 14 of 18

Figure 6. ρpure(x, y) for an Er-Dy balanced mixture under an isotropic confinement of value A = 0.1
in reduced dipolar units.

In Figure 6, the confinement produces a central density of 1 in dipolar units. This
density is larger than the typical densities in experiments with dipolar gases. To analyze
the influence of the density and approach the experimental conditions better, we have
simulated the mixture with a smaller confinement. By choosing A = 1 · 10−5 we observe
central densities of 0.01 that are in the range of confined dipolar gases in experiments [48].
The results obtained are shown in Figure 7. As one can see, the reduction of the density
does not affect the prediction regarding the phase separated configuration of the 2D Er-Dy
mixtures.

Figure 7. ρpure(x, y) for an Er-Dy balanced mixture under an isotropic confinement of value
A = 1 · 10−5 in reduced dipolar units.

We expose the mixture to progressively stronger potentials in the y-direction, in the
same way as in Section 3.1. The pure density profiles are shown in Figure 8. In this case,
due to the mass relation between species essentially not playing any role, it is the DDIs that
are integral to the obtained spatial configurations. These are so repulsive that, again, the
ring configuration is the most favorable one, regardless of the applied deformation in the
y-direction. However, as we can see from the Ay = 2.5 result, it seems that by pushing the
system further, the wing configuration could eventually appear.
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Figure 8. First and second rows, from left to right: pure density profiles of the Er-Dy mixture for
Ay = 0.1, Ay = 0.5 and Ay = 1.0, respectively. Third and fourth row, from left to right: density
profiles for Ay = 1.5, Ay = 2.0 and Ay = 2.5, respectively. In all cases Ax = 0.1.

4. Discussion

In this study, we have presented a thorough analysis of dipolar binary Bose–Bose
mixtures at zero temperature in two dimensions, confined harmonically in the xy plane.
The results have been obtained by a combination of two quantum Monte Carlo methods:
variational Monte Carlo, for the optimization of the trial wave function, and diffusion
Monte Carlo, to get a statistically exact solution by means of solving the Schrödinger
equation in imaginary time. With this, we have been able to map the miscibility of balanced
mixtures under an isotropic harmonic confinement, studied anisotropic confinements by
progressively applying a stronger trapping in the y direction, and performed a study of the
Erbium-Dysprosium mixture, the first dipolar Bose–Bose mixture realized experimentally.

In Section 3.1, we performed a complete analysis of mixtures with a total number of
particles of N = 200 under an isotropic harmonic confinement of strength A = 0.1. We saw
how the masses were equal, as the species with the larger magnetic dipole moment left
the center and surrounded the other ones in a ring configuration, while µ1 = µ2 led to the
lighter particles leaving the core as a consequence of having a larger harmonic characteristic
length. We studied the miscibility of the system as a function of m2/m1 and µ2/µ1 with the
help of a dimensionless parameter ∆ (see Equation (32) and Figure 2), and concluded that
the miscibility region of the system is very narrow, as it only occurs around 0.9 . ∆ . 1.1,
otherwise the system phase-separates in two different ways: for ∆ > 1 species 1 leaves
the center, while for ∆ < 1 it is species 2 that abandons the core. Every system studied
that phase-separated did so by means of this ’ring’ configuration in which one species
occupies the core, and the other encircles it, as due to the repulsive DDIs this allows for the
maximum distance between particles of both the same and different species.

In Section 3.2, we focused on analyzing three mixtures (A, B, and C) given under
progressively stronger confinements in the y direction, keeping the x component constant.
We concluded that by changing the dipole moments, the ring configuration remained the
stable one in the deformation regime studied. When the mass ratio is changed, under
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strong enough compression, the ring configuration turns to a wing structure, in which the
lighter species is pushed to the edges of the system in the x axis. In addition, we studied
a very particular case, an exception from Section 3.1, the (m2/m1 = 0.975, µ2/µ1 = 1)
mixture, which under an isotropic confinement hinted at a ’two-blobs’ configuration, in
which two symmetrical semi-circumferences are formed by each species separately [34] for
a simpler contact interaction in a three-dimensional case. This system, under a moderately
strong deformation, turns to a two-blobs configuration along the squeezed axis, which
transformed into the wing one under stronger compressions. We tried to find other systems
with this behavior, but we were ultimately unable to discover them.

To conclude, we studied the Er-Dy mixture, the first experimentally realized one [14–16],
in order to make predictions on its miscibility. We observe how under an isotropic con-
finement the mixture phase-separated, with the Dy atoms leaving the center due to their
greater magnetic dipole moments. We then analyzed the same mixture under progressively
stronger confinements in the y direction and observed how the ring configuration held for
every single strength that we applied. The total number of particles in the DMC simula-
tions is clearly smaller than the corresponding one in experiments because of computer
limitations. Nevertheless, we are confident that the parameter ∆ defined in our work
would also be applicable in mixtures with a realistic number of particles since adimensional
∆ contains the relevant factors entering into the problem. Recent experiments on Er-Dy
mixtures in three dimensions show that the system prefers to be phase separated due to an
overall repulsion between the two species. Moreover, the gravitational sag between both
species, due to their different masses, makes it difficult to get a full overlap between both
species [16]. It would be interesting to deform the trapping potential and approach the 2D
limit, with the magnetic moments perpendicular to the plane, because then the gravitational
effect would be reduced and thus the possible miscibility between both components could
be better resolved. We also hope that our work can stimulate the analysis of the dipolar
mixture in two dimensions within mean-field theory, which can be compared with our
DMC results. A similar study, using the Gross–Pitaevskii equation, was recently carried
out for three-dimensional dipolar mixtures [49].
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