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Abstract: This study is devoted to the investigation of the Josephson phase qubit spectrum consider-
ing the anharmonic current-phase relation of the junction. The change in energy difference in the
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was shown that the presence of the anharmonic term in the current-phase relation and frustration
effects in the junction electrodes leads to changing effective plasma frequencies in the different cases
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1. Introduction

In contrast to classical computation, in quantum computation we have quantum
mechanical operations on the input state to derive an output [1]. It is well known that a
qubit is the basic element of a quantum computer. For the study of the properties of the
qubits, it is necessary to solve the corresponding stationary Schrödinger equation with an
appropriate boundary condition

HΨ = EΨ (1)

where H is the Hamiltonian operator, Ψ is the wavefunction, and E is the eigenenergy. The
quantum dynamical behavior of a single Josephson junction can be described using the
periodical potential in the framework of the Mathieu-Bloch picture [2,3].

A phase qubit using a single Josephson junction is schematically presented in Figure 1.
The Hamiltonian of this qubit has the form [4].
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where H is the Hamiltonian operator, Ψ is the wavefunction, and E is the eigenenergy. 
The quantum dynamical behavior of a single Josephson junction can be described using 
the periodical potential in the framework of the Mathieu-Bloch picture [2,3]. 

A phase qubit using a single Josephson junction is schematically presented in Figure 
1. The Hamiltonian of this qubit has the form [4]. 

 
Figure 1. Schematic presentation of a phase qubit on the Josephson junction. 
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HΨ = EΨ (1)

Figure 1. Schematic presentation of a phase qubit on the Josephson junction.

H = −EC
∂2

∂2φ
− EJ{cos φ + ibφ} (2)

In Equation (2): ib = Ib
Ic

is the normalized bias current applied to the junction; Ic is the
critical current of the Josephson junction; and C is the electrical capacity of the Josephson
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junction. Notation EJ = }Ic
2e corresponds to Josephson coupling energy, EC = e2

2C is the
Coulomb energy, and φ means the phase difference at the Josephson junction. In the case of
a small bias current and the conventional current-phase relation, I = Ic sin φ, the potential
energy has a form U(φ) = −EJ{cos φ + ibφ} (Figure 2).
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In this case, the energy spectrum of the phase qubit is identical to the spectrum of the
harmonic oscillator [3,4]

En = }Ωp(n +
1
2
) (3a)

where Ωp is the plasma frequency corresponding to phase oscillations near the minimum
of potential U(φ) (Figure 2) and calculated as [2,4].

Ωp =

(
2eIc

}C

)1/2
(1− ib

2)
1/4

(3b)

The energy difference between 0 and 1 levels is determined by the plasma frequency
of junctions

∆E = E1 − E0 = }Ωp (4)

For the study of the Josephson dynamics, the current-phase relation of the junction
is usually considered as I = Ic sin φ [2,4]. The Josephson junction-based low-temperature
superconductor reveals the sinusoidal current-phase relation. However, in the case of
junctions on high-Tc superconductors, the current-phase relation includes the second
term [3,5,6],

I = Ic fα(φ) = Ic0(sin φ + α sin 2φ) (5)

where the value of parameter α is determined by the technology. In general, the value of
anharmonism α in the current-phase relation is associated with the d-wave character of the
superconducting gap parameter in high-Tc superconductors and multiband behavior of
the superconducting state in new iron-based compounds [3,7].

In the case of Josephson junctions, when one electrode is formed by a single- and
another by the multiband superconducting compound, the phase dynamics are influenced
by the frustration effects [6,7]. In particular, the inclusion of the frustrated ground state in
multiband superconductors leads to the ϕ-junction peculiarity. The influence of frustration
effects in multiband compounds and Josephson junctions on these bases is studied in
Refs. [8–13]. The influence of frustration effects in multiband superconductors on the
escape rate in a single junction was considered in papers [14,15]. Detailed calculations of
the escape rate for the ac SQUID on the junction with a generalized current-phase relation
were conducted in the study [16].
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As follows from Equations (3b) and (4), when the bias current approaches the critical
current, level broadening due to macroscopic quantum tunneling starts to play a role [2–4].
The macroscopic quantum tunneling rate for the lowest level is given by

ΓMQT =
52Ωp

2π

√
Umax

}Ωp
e
− 7.2Umax

}Ωp (6)

where Umax =
√

2}
e (1− Ie

Ic
)

3/2
is the height of the potential barrier at a given bias current.

This means that the relaxation and decoherence effects in phase qubits are sensitive to the
intrinsic noise of the critical current of the junction [4]. The control of qubit characteristics
can be tuned by the interlevel distance ∆E. From this point of view, the energy difference
between levels of phase qubits ∆E on the Josephson junction based on single-/multiband
superconductors and with an anharmonic current-phase relation seems interesting.

Thus, in this paper, we discuss the influence of anharmonic effects in the current-phase
relation on the energy spectrum of phase qubits. We also calculate the plasma frequency
and, as a result, the spectrum of phase qubits on the base of a single-/multiband Josephson
junction, considering frustration effects in multiband superconductors.

2. Results

As shown in [17,18], the additional second harmonic in the current-phase relation
causes the renormalization of critical current Ic0. For this purpose, it can be obtained by an
analytical solution for the extremum point of the dependence fα(φ) (5) in a similar manner
to paper [17]. The final result of the expression for the renormalized critical current at a
small value α can be written as

Ice f f

Ic0
= 1 + 2α2

As followed from the calculations, with the increased value of α, the effective critical
current

Ice f f
Ic0

also increased. At high values of the anharmonicity parameter α, expression (6) is
converted to linear behavior. The experimental results related to the changing critical current
as a function of anharmonicity parameter α are presented in Ref. [18].

For the junctions on single- and multiband junctions (in single-band/single-band case
I = Ic sin χ), the Josephson current is the sum of different tunneling channel currents [14–16]

I = Ic1 sin χ + Ic2 sin(χ + φ) + Ic3 sin(χ + θ) + . . . . (7)

where Ic1,2,3,... critical currents in the different channel, φ,θ, . . . are the phase differences
between order parameters in a frustrated state of multiband superconductor. In a single-
band superconductor with the zeroes phase, we have Ψ0 = |Ψ0| exp(0). The multiband
superconductor can be written as follows: Ψ1 = |Ψ1| exp(χ), Ψ2 = |Ψ2| exp(χ + φ),
Ψ3 = |Ψ3| exp(χ + θ), . . . The Ginzburg–Landau free energy functional with the multiband
character of superconducting state [19–21] is true

F =
∫

d3r(∑
ij
(Fii − Fij +

H2

8π
) (8)

where

Fii =
}2

4mi

∣∣∣∣∣∣
∇− 2πi

⇀
A

Φ0

Ψi

∣∣∣∣∣∣
2

+ αi(T)|Ψi|
2 + βi|Ψi|

4/2 (9)

Fij = εij(Ψ∗i Ψj + c.c.) + ε
ij
1


∇+

2πi
→
A

Φ0

Ψ∗i

∇− 2πi
→
A

Φ0

Ψj + c.c.

 (10)
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mi are the masses of the carriers in different bands, (i = 1–3); αi= γi(T − Tci) which are
linearly dependent on temperature T; βi and γiare constants; εij = εji and ε1

ij
= ε1

ji mean
the interaction between superconducting gaps and their gradients, respectively; H is the
external magnetic field applied to example; and Φ0 is the magnetic flux quantum. In the
case of single- and two-band junctions, for the phase differences φ of gap parameters, we
have the effective critical current, as presented in Ref. [14].

Ice f f = (Ic1 + Ic2) for φ = 0 (11a)

Ice f f = (Ic1 − Ic2) for φ = π (11b)

In [15], for single-/three-band junctions, in the case of identical and positive interband
interaction term εij = εji = ε > 0, the phase differences in frustration states are given as(

φ
θ

)
=

(
2π/3
−2π/3

)
and

(
φ
θ

)
=

(
−2π/3
2π/3

)
[15]. In other possible frustration

states, we have
(

φ
θ

)
=

(
0
π

)
;
(

π
0

)
and

(
φ
θ

)
=

(
π
π

)
. From the expression

for the potential energy of single-/three-band junctions U(φ), we can get effective critical
current

Ice f f = Ic1

(
(1− Ic2

2Ic1
− Ic3

2Ic1
)

2
+ (

Ic3

Ic1
− Ic2

Ic1
)

2
)1/2

(12)

In the derivation of the last equation, it was found that the Josephson junction reveals
the ϕ-junction peculiarity I = Ice f f sin(φ− ϕ), with ϕ = arctan Ic3−Ic2

Ic1−
Ic2
2 −

Ic3
2

. In the other

frustration state
(

φ
θ

)
=

(
−2π/3
2π/3

)
, the terms Ic2 and Ic3 in Equation (12) were replaced

by the places. The frustration case
(

φ
θ

)
=

(
0
π

)
corresponds to the effective critical

current
Ice f f = (Ic1 + Ic2 − Ic3) (13)

In the
(

φ
θ

)
=

(
π
π

)
state, we have the following expression for the effective

critical current:
Ice f f = (Ic1 − Ic2 − Ic3) (14)

3. Discussion

Quantum computation for using Josephson phase qubits needs to use a working
temperature at the level mK [1–3]. The low-temperature anharmonic character of the
current-phase relation becomes important and, as a result, this effect must be considered in
the realization to phase qubits [3–5]. Using numerical calculations for the effective critical
current in Equation (5) leads to the results for the energy differences between 0 and 1 levels
in phase qubits, which are presented in Figure 3 α < 0.5. The α > 0.5 second term in
Equation (5) becomes dominant and the effective critical current is determined by this term.
The increase of ∆E/∆E0 (∆E0 is the energy difference in the harmonic case) results in the
increase of anharmonicity parameter α.

The numerical results for the normalized ratio ∆E/∆E0 (∆E0 is the energy distance of
single-/single-band junction) in a single-/two-band junction-based qubit versus Ic2/Ic1 is
presented in Figure 4. As can be seen, the ∆E0 (Ic2/Ic1) dependence reveals the increasing
character at φ = 0. The calculations of ∆E0 (Ic2/Ic1) in the limit φ = π are also plotted in
Figure 4 and reveal the opposite character to the case φ = 0.
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φ
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=
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−2π/3
2π/3

)
for different values of Ic2/Ic1 = 0, 0.5, 1 (from top to bottom). The changing character
of the ratio ∆E/∆E0 results in increasing the ratio Ic3/Ic1. At high values of Ic2/Ic1 = 1,
we have the behavior similar to the single-band/two-band case with the opposite phase
difference φ = π. The ratio ∆E/∆E0 reveals a minimum in the case of low values of the

ratio Ic2/Ic = 0, 0.5. In the frustration case,
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φ
θ
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φ
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)
, using

the effective critical current (see Equations (13) and (14)), has a form similar to Figure 4 in
the case of a single-/two-band structure.
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It is useful to note that no direct observation of the change in ∆E/∆E0 phase qubits
is based on single-/multiband junctions. However, there is experimental evidence of a
decreasing critical current in the case of single_/two-band junctions with positive interband
interaction parameters. In Ref. [22], single-/three-band junction was investigated, and
it described the effects of the asymmetric critical current, Shapiro steps. The effect of
the asymmetrical critical current has been observed in the edge-type junction between
PbIn and many-band Co-doped BaFe2As2 thin film, as presented in Ref. [23]. In such
junctions, a critical voltage IcRN of about 12 µV. In Ref. [24], the junction between PbIn
and the Ba1−xKx(FeAs)2 x = 0.29 and 0.49 was realized. In this study, it was studied
experimentally as a PbIn/BaK(FeAs)2 point-contact junction. It was also theoretically
shown that the three-band superconducting state scenario provides better results for the
treatment of the observed data. In papers [25,26], Nb/BaNa(FeAs)2 junctions were reported
with very a small critical voltage IcRN, approximately 3 µV. This fact can be explained
by the cancellation of the opposite supercurrents in the frustrated state of multiband
iron-based superconductors. The reduction of the Josephson plasma frequency in such
three-band structures was also obtained by the theoretical investigation in paper [27].
We hope that the obtained theoretical results for changing ∆E/∆E0 phase qubits will be
observed experimentally.

4. Conclusions

In this study, the energy difference between the levels of phase qubits on the Josephson
junction, based on single-/multiband superconductors, was calculated. It was shown that,
in all cases, the frustration effects in multiband superconductors lead to a change in energy
difference between levels ∆E/∆E0. The change ∆E/∆E0 is determined by the value of
the critical currents in different channels. The phase qubit on the junction with anhar-
monic current-phase relation ∆E/∆E0 increases with an increase in the amplitude of the
second term.
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