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Abstract: This modelling work concerns the effects of the interference between two partial subband
condensates in a quasi-one-dimensional superconducting superlattice. The iterative under-relaxation
with phase control method is used to solve Bogoliubov–de Gennes equations in the envelope ansatz.
This method—easily generalisable to a wide class of multiband superconducting systems—allows us
to obtain both the constructive and the destructive interference solution. The discussion is centred on
the latter case, with one of the condensates collapsing with increased inter-subband coupling strength,
due to the other—the dominating one—imposing its symmetry on the overall order parameter. The
in-depth qualitative analysis is made of underlying intra-subband and inter-subband dynamics, such
as the possible factors determining the dominant subband condensate or the ones determining the
region where the destructive solution coexists with the constructive one. A comprehensive discussion
with the recent works concerning inter-band coupling effects follows, pointing that the destructive
solution is nearly universally omitted.

Keywords: Bogolubov–de Gennes equations; multiband superconductivity; condensate interaction

1. Introduction

There is a long and well-established history of research employing the effective mass
method (envelope ansatz) in the study of quantum size effects in superconducting nanos-
tructures. The naturally occurring superlattice (SL) of stripes was suggested as a model for
the cuprate perovskites already in [1], with continuation in [2] reporting a Feshbach–Fano
(FF) resonance. The quantum size effects and related resonant processes in nanowires of a
µm length and nm diameter were studied in [3–6]. The superconducting nanofilms were
theoretically investigated as early as 1963, when the well-known work [7]. Analogous meth-
ods were employed in later works, including [8,9]. Similar systems were also studied in the
recent years, e.g., [10–12]. The effects of quantum confinement in the step-like nanosystems
were under investigation in [13,14]. Other recent works consider advanced methods of the
topological resonance-driving of SL systems, such as the Rashba spin coupling in [15,16]
and applying pressure to the doped SL systems in [17,18]. The two latter works develop
the earlier ideas presented in, e.g., [2,19,20].

Nanosystems of reduced dimensionality with strong coupling are vulnerable to order
parameter fluctuations effectively suppressing the superconductivity. However, as dis-
cussed in the works [21,22], with the help of a Ginzburg–Landau-like model, said fluctua-
tions can be screened in multiband systems by a relatively small coupling of a shallow band
with strong pairing and a deep band with weak pairing, recovering the mean field result.
The very recent work [23] addressed the topic of complex superconducting condensates,
to the formation of which contribute both quasi-one-dimensional (Q1D) bands as well as
the “reservoir condensates” of higher dimensionality energy bands.

Our previous works [24,25] studied the Q1D SLs to be realised in materials with
superconductivity of multiband character. The present work is focused on these solutions
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of the Bogoliubov–de Gennes equations (BdG) in which the interaction between the con-
densates corresponding to two different material subbands is destructive in character. As a
general rule, in the case of a single condensate, the global phase φ of the order parameter
∆ exp iφ is arbitrary in BdG. The same is true for two uncoupled condensates. In the case
of a system containing two condensates A and B coupled in a way that can be called,
e.g., exchange-like inter-band pairing [26] or Josephson-like pair transfer [27], the system is
invariant under the global phase shift applied to both order parameters, ∆A → ∆A exp iφ1
and ∆B → ∆B exp iφ1, but it depends on relative phase between the A and B. In the absence
of the magnetic field, the order parameters can be defined as real quantities. This leaves
two possible relative phases of the band condensates in the solutions of BdG: of the same
or of the opposite signs. Correspondingly, the interaction of the condensates can be either
constructive or destructive.

In the previous works describing the effects of the multiband interactions, most focus
is given to the constructive interactions, while the destructive ones are typically omitted.
A notable exception is the work [26], which is discussed at length in Appendix C.

In [25], the single-particle energies of the envelope ansatz model were fitted to the
few-monolayer MgB2 dispersions as described by the experiments and ab initio calculations.
In this kind of material, due to the few-monolayer thickness, the usual σ and π bands of
the bulk MgB2 split to form a series of subbands each (σL1, σL2, σU1, σU2, . . . , π1, π2, . . . ).
The quantum size effects of the SL itself lead to further splitting and the formation of a
set of Q1D minibands for each of the mentioned subbands. While the mentioned work
focused on the formation of single-subband condensates in such a system, here the model
is purposefully simplified in order to sharply focus on the basic dynamics of the destructive
interference in an easy-to-interpret theoretical environment. The application of the same
method to a more sophisticated model would be the topic of forthcoming work.

2. Materials and Methods

The system under investigation is a periodic SL, transversally confined and con-
sisting of alternating constricted and unconstricted parts in the longitudinal direction.
The constriction is introduced by the imposition of the prohibitively large potential energy
in the constriction barrier, as seen in Figure 1a. Originally [25], the kinetic parts of the
single-particle energies were modelled on the few-monolayer MgB2, which is also true
in the present work. Here, only two subbands were taken into account, called σL1 and
σL2, and only one miniband for each of the subbands was included, the one closest to the
Fermi energy. The minibands represent the single-particle energies at each point of the
SL Brillouin zone (SLBZ), with the SL longitudinal wavenumber Q (not to be confused
with the material Brillouin zone of the underlying crystal structure). However, while in
the mentioned previous work the subband condensates were non-interacting, here we
introduce the coupling between them as governed by the inter-subband coupling constant
J1, which has the dimension of energy and is a natural counterpart to the intra-subband
coupling constant J0. To summarise, the coupling between the different parts of the SLBZ
for the same miniband are included, the miniband–miniband coupling in the scope of the
same subband is omitted for simplicity, while the σL1 ↔ σL2 coupling is taken into account.
As was mentioned in Section 1, the goal of this definition of the system is to expose the
underlying mechanism of the condensate interaction in an environment where relatively
simple but in-depth interpretations can be made.

For the details of the geometrical definition and parametrisation of the model at
the single particle level, the reader is directed to Sections 3.1–3.3 of [25]. The single-
particle miniband spectrum is shown in Figure 1c for σL1 and in Figure 1d for σL2. In this
work, only miniband 2 of Figure 1c—thick red line—and miniband 5 of Figure 1d—thick
green line—are taken into account, as explained above. Furthermore, the first case to be
studied has an additional simplification, with the Fermi energy shifted by +11.6 meV—
corresponding to the horizontal dash-dotted line and marked as E′F—in order to lie in the
middle of the miniband 5 of σL2. This way, the system is composed in the single-particle
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picture of two different metallic subbands (henceforth called the double-metallic system
or M-M). After that, the default system without this shift is studied, which is a mixed
metallic/semiconductor or insulating-like system (henceforth called the metallic-insulating
system or M-I). This way, it is possible to illustrate how the additional insulating-like gap
qualitatively changes the characteristics of the system.

Figure 1. (a) SL geometry, showing three consecutive primary cells and the log10 of the potential
energy in eV. (b) Schematic general illustration of the model. Note that in this work only one miniband
per each subband is taken into account. (c) The single-particle miniband energy ε spectrum for the
σL1 subband. The thick line shows the miniband included in the model. (d) The same as (c) but for
the σL2 subband. The shifted EF for the M-M (see text) is shown by the horizontal dash-dotted line.

The BdG model differs from the previous work, as described above. It is developed
in the scope of envelope ansatz and the Anderson approximation, with the self-consistent
under-relaxation iteration of the order parameter matrix elements. The phase control of
the condensates is introduced both for the initial random guess and at each iterative step.
The details can be found in Appendix A. Most critically, there are two order parameters
∆̃σL1 and ∆̃σL2 describing the σL1 and σL2 condensates. Here, the ∼ signifies that they
are (dimensionless) quantities corresponding to partial one-subband condensates, not the
overall order parameter as experienced by any of the two subbands. From the point of
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view of the σL1 subband, the overall order parameter—the quantity corresponding to the
off-diagonal term in BdG—is ∆σL1 = J0∆̃σL1 + J1∆̃σL2 , whereas from the point of view of
the σL2 subband, it is ∆σL2 = J0∆̃σL2 + J1∆̃σL1 . In specific, this means that the inter-subband
phonon coupling strengths of the two subbands are relatively similar and can both be
represented by a single parameter J0 and that the inter-subband σL1 ↔ σL2 coupling is
symmetric and can be represented by a single parameter J1. The general scheme of the
model is shown in Figure 1b.

3. Results
3.1. The Double-Metallic System

The results for the M-M system are shown in Figure 2. The dependence of the en-
ergy gaps on the inter-subband coupling strength J1 for the two subbands is shown in
(a)—σL1 gap or GσL1—and in (b)—σL2 gap or GσL2—for three chosen values of the intra-
band parameter J0 (the black line for 10 meV, the red line for 11 meV and the blue line for
12 meV, respectively). The three lines follow the same general trend, with the initial value
at J1 = 0—uncoupled condensates—increasing with the relative inter-subband coupling
strength J0, as expected. The dashed lines correspond to the case where the condensates
have the same phase and hence interact constructively. In this case, a simple linear increase
in the gap as J1 increases is observed in both (a) and (b). The solid lines, on the other
hand, correspond to the situation where the phase of the two condensates is opposite
and thus they interact destructively. Starting from J1 = 0, a linear decrease in the both
gaps is encountered at first. Eventually, however, in all three cases the GσL1 in (a) gap
drops rapidly to zero, while the GσL2 gap in (b) reaches a minimum a moment before this
happens, and then increases towards the value it had for the uncoupled case. Note that the
results are missing the part in the immediate vicinity of the point where the σL1 condensate
collapses. This is due to the fact that the behaviour of the GσL1 as it approaches zero is
of the ∼ (±x− x0)

c kind, with c < 1, typical for many quantities near the vicinity of the
critical point of a phase transition. At the critical point, the (negative) derivative approaches
infinity, which in practical terms means that, in order to obtain approximately equal drop
interval of GσL1 , progressively exponentially denser mesh of J1 values must be employed.
Furthermore, in each of the self-consistent iterations, a progressively smaller value of the
under-relaxation parameter α—as defined in Appendix A—needs to be used, leading to
the even faster growth of the required computational time. Consequently, at the limit of
practical computational complexity, the a1(−J1 − a2)

a3 functions were instead fitted to the
several last computed values. These are shown in (a) as the dotted curves.

Figure 2c,d show the Q-dispersion of the BdG solutions for the three chosen J1 values,
for σL1 and σL2, respectively. These values correspond to the A, B and C points on the
J1 = 11 meV lines in (a) and (b). The BdG solutions are shown as the symbols. The electron-
like and hole-like single-particle energies are marked with the solid red line and the dashed
blue line, respectively. The GσL1 is located at the points in the SLBZ named q1, where
the single-particle miniband energy crosses the Fermi level. This is usually—but not
always—the case, as described in [24]. The gap itself is represented with the black vertical
arrow in the C case. The BdG spectrum is shifted the most strongly from the single-particle
energy at q1 and precisely this shift is what determines the value of the GσL1 in (a). The A
case corresponds to the uncoupled subbands scenario, with the greatest superconducting
shift over the whole SLBZ. In the B case, the GσL1 is already out of the initial linear regime,
but with still a significant nonzero value. Finally, in the C case, the GσL1 is on the verge of
abrupt decrease to zero, with the simultaneous collapse of the corresponding condensate.
The A→B→C dynamic in (c) pictures the monotonic collapse of the whole BdG miniband to
the electron/hole-like spectrum. In the case of the gap for the σL2 subband GσL2 , shown in
(d), the dynamic is different. Here, the B case also corresponds to the point out of the linear
regime, but where the GσL2 value is minimal, while for B→C the value of the gap increases,
as shown in (b). Hence, in (d), the BdG miniband for the B case lies wholly, if slightly,
below the one for the C case. The GσL2 is located at the q2 points in SLBZ, which are not
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aligned with the q3 points where the single-particle miniband crosses the EF, in contrast to
the GσL1 case.

Figure 2. Results for the M-M system . (a) The σL1 gap for chosen values of J0, as a function of J1.
(b) The same as (a) but for the σL2 gap. (c) The Q-dispersion for the σL1 miniband for J0 = 11 meV
and chosen J1 values, corresponding to points A, B and C in (a,b). (d) The same as (c) but for the
σL2 gap.

The linear regime in (b) and (c) can be intuitively interpreted, both in the case of the
constructive interaction increase and in the case of the destructive interaction decrease, as a
situation where the individual partial subband condensates ∆̃σL1 and ∆̃σL2 remain quasi-
constant. Then, all the dynamic of the off-diagonal term is caused by the change of the J0
and J1 parameters. Recall that the diagonal terms of BdG are the electron-like and hole-like
parts, equal to the plus/minus single-particle energy ±ε. Therefore, the diagonal part is
zero at the crossing point q1. The σL1 energy gap is then GσL1 =

∣∣J0∆̃q1,σL1 + J1∆̃q1,σL1,σL2

∣∣—
see Equations (A6)–(A8), which is a linear function of J1 if J0 is kept constant (and vice versa)
and the partial condensate elements remain quasi-constant. If the phase of ∆̃σL1 is assumed
to be positive, then the sign of the derivative is the phase of the ∆̃σL2 , which corresponds
to the constructive or destructive interference of the condensates. In the case of GσL2 ,
the dependence is not as strict, due to the misalignment of q2 and q3 (cf. Figure 2d),
however the general idea is the same.

In order to explain the behaviour of the non-linear part, one should investigate the
symmetry of the order parameter itself. The momentum space maps ∆̂nX ,nY ,S for M-M,
described in detail in Appendix B are shown in Figure 3. The LHS column corresponds to
the σL1 condensate, while the RHS one to the σL2 condensate. The rows correspond top-to-
bottom to the points A, B and C in Figure 2a–d, respectively. The maps are spanned over
the space of the allowed momentum basis functions, as dictated by the periodic/hardwall
boundary conditions for x or y, and numerated by nkx and nky , respectively. The pictures
show only the small relevant subspace, where all of the dominating components are.
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The colour scale of the pictures is as follows: the largest absolute value corresponds to pure
red, its opposite to pure blue, and zero is white. In the A case, the subbands are uncoupled,
so the order parameter in the top row is in fact the pure ∆̃σL1 in (a) and pure ∆̃σL2 in (b).
Indeed, the phase of the order parameter in (a) is purely positive, and in (b) purely negative.
This remains the case in the whole linear regime. Recall that the B case is the one where
both the GσL1 and GσL2 are already outside of the linear regime, with the latter one at the
minimum. As shown in (c), the order parameter symmetry for the σL1 subband is already
broken, with the ∆̃σL2 phase and symmetry partially imposed over the ∆̃σL1 ones. On the
other hand, there is almost no change in the order parameter for the σL2 subband, as shown
in (d). Finally, the results in the bottom row (the C case) are almost identical to the ones in
the middle row, with the phase/symmetry erosion of the (e) case somewhat more advanced.
To sum up, the phase and momentum space symmetry of the order parameter of the σLq
subband is qualitatively redefined, which leads at first to the deviation from the linear
regime of the G(J1) dependence, and subsequently to the closing of the σL1 gap and collapse
of the corresponding condensate. Conversely, the phase and the momentum symmetry of
the order parameter for the σL2 subband is nearly unaffected by J1, and therefore by the
corresponding coupling between the condensates, so the non-monotonic behaviour of the
GσL2 can be understood as a secondary quantitative effect. To be more specific, when the
σL1 condensate very rapidly proceeds to collapse, the decrease in the absolute value of the
second factor in the relevant minor destructive component, J1∆̃q2,σL2,σL1 , happens much
faster than the increase of J1.

Figure 3. The momentum space ∆ maps ∆̂nX ,nY ,S, for the M-M and J0 = 11 meV. (a) The ∆̂nX ,nY ,σL1

map, where J1 corresponds to the A case of Figure 2. (b) ∆̂nX ,nY ,σL2 , A case. (c) ∆̂nX ,nY ,σL1 , B case.
(d) ∆̂nX ,nY ,σL2 , B case. (e) ∆̂nX ,nY ,σL1 , C case. (f) ∆̂nX ,nY ,σL2 , C case. Each map is colour-coded so that the
largest absolute value corresponds to pure red, its opposite to pure blue, and zero is white.

The reason why the competition to dominate the characteristics of the system is won
by the σL2 condensate over the other one can be easily identified with the relation of the
bandwidths of the corresponding single-particle minibands. The bandwidths are marked in
Figure 1c,d on the RHS scale by the vertical arrows of the same colour as the corresponding
minibands. They are equal to 42 meV in case of the σL1 and to 9.4 meV in the case of σL2,
making the latter one approximately 4.5 times smaller. The bandwidths are inversely corre-
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lated with the DOS, as the equal number of states is dispersed over a larger energy interval,
which leads to the relatively stronger ability of the σL2 to generate superconductivity.

3.2. The Metallic-Insulating System

This section describes the study of the original system without the EF→E′F shift for σL2,
see Figure 1d. In this case, none of the minibands of the σL2 subband crosses the Fermi level.
The miniband 5, which is the closest one to EF is included in the model. Consequently,
in the single-particle system, there already exists an insulating-like or semiconductor-like
gap of G0

σL2
= 9.2 meV at Q = q5 on the edges of the Brillouin zone. The total gap in the case

of this subband is GσL2 = Gs
σL2

+ G0
σL2

, with the Gs
σL2

being the additional gap introduced
by the superconductivity, as illustrated with the two vertical arrows in Figure 4d. The G0

σL2
itself is trivial—it does not depend on any superconducting parameter—and thus the
behaviour of Gs

σL2
will be investigated.

Figure 4. The results for the M-I system . (a) The σL1 gap for chosen values of J0, as a function of J1.
(b) The same as (a), but for the σL2 gap. (c) The Q-dispersion for the σL1 miniband for J0 = 10 meV
and chosen J1 values, corresponding to points D, E and F in (a,b). (d) The same as (c), but for the
σL2 gap.

Figure 4 is analogous to Figure 2, with the M-I taken into consideration this time. The J1
dependence in this system is similar to the one observed previously, but the dynamics
of the subbands are swapped. In addition, the linear regime is present for sufficiently
small J1 and then one of the gaps rapidly drops to zero. In this instance, it is the Gs

σL2
one,

as can be observed in (b). The other one—GσL1 in (a)—first reaches a minimum and then
increases towards the value it has for J1 = 0. For comparison, three curves are shown in (a)
and (b), corresponding to the J0 = 9, 10 and 11 meV cases, respectively. The Q-dispersion
of the J0 = 10 meV system in the points D, E and F is shown in (c) in the case of σL1
subband and in (d) for the σL2 subband. Again, the dynamic of the subbands is swapped
here, with the σL2 dispersion collapsing to the single-particle dispersion. In this instance,
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it tends to the pure ε electron-like dispersion, as the −ε hole-like part is absent from the
Debye window (0 < E < ED = 75 meV) due to the lack of crossing with the EF. The BdG
dispersion reaches values of ε much quicker in comparison to the comparatively large shift
remaining at q5 even for the F case, just before the sudden drop to zero, in analogy to what
happened in Figure 2c. On the other hand, GσL1 in Figure 4c remains open at Q = q4 for
all J1, reaching the minimum in the E case. The D→E→F dynamic of the order parameter,
shown in Figure 5 is also analogous to the A→B→C of Figure 3, keeping in mind the swap
of the subband dynamics. In the M-I case, the phase and momentum space symmetry of
the σL1 is imposed on the other subband outside the linear regime, as seen in (d) and (f).

Figure 5. The momentum space ∆ maps for the M-I, where J0 = 10 meV. (a) The ∆̂nX ,nY ,σL1 map, where
J1 corresponds to the D case of Figure 2. (b) ∆̂nX ,nY ,σL2 , D case. (c) ∆̂nX ,nY ,σL1 , E case. (d) ∆̂nX ,nY ,σL2 , E
case. (e) ∆̂nX ,nY ,σL1 , F case. (f) ∆̂nX ,nY ,σL2 , F case. Each map is colour-coded so that the largest absolute
value corresponds to pure red, its opposite to pure blue, and zero is white.

The change of the dominating condensate between the M-M and the M-I cases can
be understood as a consequence of the distancing of the DOS involved in the creation of
the σL2 condensate from the EF, which takes place in the latter case. As a consequence, in a
σL2 system with no inter-subband coupling, the condensate tends to the maximal mixing
only as J0→∞. This is in a stark contrast to the typical metallic-like case, where the mixing
is saturated almost immediately after J0 is sufficient to generate any superconductivity.
For the details, see the Figures 3 and 4 and the associated text of [25]. In the current model,
this G0

σL2
distance overcomes the advantage that the σL2 had over the σL1 coming from the

difference in their bandwidths, as described before, leading to the σL1 one dominating now
the σL2 one instead.

3.3. The Destructive Interference Parameter Subspace

In this section, the topic of what is the set of the (J0, J1) parameters where the destruc-
tive interference solution exists prior to the collapse of one of the condensates is discussed.
Intuitively, it should be expected that J0 needs to be sufficiently large and J1 sufficiently
small, for the J0 to support the generation of the superconducting condensate against
the workings of the J1. The BdG equation was solved over the J0 and J1 meshes and the
results are presented in Figure 6, for M-M in (a–d) and for M-I in (e–h). The value of
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J1, below which the destructive interference solution exists and at which the collapse of
the relevant condensate happens, will be further called Jc

1. Indeed, Jc
1 is a monotonically

increasing function of J0, as shown in (a) for GσL1 and in (e) for Gs
σL2

. The error bars in the
figures correspond to the mesh spacing δJ, as in the obtained results the solution exists for
some n-th point, but does not exist for the (n + 1)-st mesh point. To pinpoint the Jc

1 exactly
is computationally very demanding because of the exponentially increased computational
complexity near the critical point, as was explained before. The value δJ = 0.125 meV was
adopted as a practical compromise for the 2-dimensional (J0, J1) search, as it is sufficiently
precise to illustrate the general trend. For example, the trend in (a) is monotonic but clearly
not linear. The blue line, which shows the linear fit to the BdG results, describes them
very poorly, as opposed to the red line, which shows the parabolic fit. In comparison,
the corresponding trend in (e) is much closer to linear, but still in this case the blue line
undershoots the Jc

1 at the edges of the figure and overshoots it in the central part, clearly
missing a non-zero curvature. In the following part of this section, the existence of these
curvatures is explored, as well as the difference in magnitude between them.

As was explained before, in the dependence of the subband gap on the J1, for a
constant J0, there is the quasi-linear regime for small J1 and the sudden drop power-law
regime near the critical point. There are two parameters governing the linear regime: the
value of the gap for the uncoupled condensates (J1 = 0) and its derivative at that point.
Concerning the former element, the GσL1(J1 = 0) is shown in Figure 6b and the Gs

σL2
(J1 = 0)

in (f). Comparison of the two cases shows a visible curvature for the M-M—see the fit-
ted lines in (b)—but the corresponding trend for the M-I is very much linear—see the
blue line in (f). In the former case, the gap is located at the Fermi crossing point in the
SLBZ, thus for the uncoupled system, it is equal to J0∆̃σL1(J0), where the dependence of
the latter factor on J0 was explicitly pointed out. In order for this expression to have a
curvature, the second derivative over J0 must not be identically zero. In this case, more

specifically
∂∆̃σL1

∂J0
+ J0

∂2∆̃σL1
∂J2

0
> 0, as the curvature seen in (b) is positive. In the M-I case,

there is a non-zero G0
σL2

and, as a consequence, Gs
σL2

(J1 = 0) takes a more complicated

form of
√
(G0

σL2)
2 +

(
J0∆̃σL2(J0)

)2 − G0
σL2

. The exact form of J0∆̃σL2(J0) would depend on
the detailed characteristic of the system, but if it is a growing function of J0, then the whole
Gs

σL2
(J1 = 0) expression grows slower as a function of J0. This fact links the flattening of

the trend in (f) towards a straight line with the existence of G0
σL2

. The second parameter
characterising the linear regime is the slope of the function, that is G′σL1

(J1 = 0) in the
M-M case—see (c)—or G′σL2

(J1 = 0) in the M-I case—see (g), where ′ = ∂
∂J1

. Qualita-

tively, the trend is the same in the both cases, specifically of the ∼ 1
(x−x0)c kind, where

0 < c < 1. This means that the slopes of the quasi-linear parts of the different J0 curves in
Figures 2a and 4b are not parallel, but they tend to the horizontal line in the J0→∞ limit.

The quantity Jlc
1 =

GσL1 (J1=0)
G′σL1

(J1=0) for the M-M, or Jlc
1 =

Gs
σL2

(J1=0)
G′σL2 (J1=0) for the M-I, can be postu-

lated, corresponding to the predicted collapse value Jc
1 if the gaps had always followed

the initial linear trend. If the initial value of the gaps for the uncoupled system G(J1 = 0)
increased linearly and if the slopes G′(J1 = 0) were parallel, than the Jlc

1 would increase
linearly with J0. As it really happens, there is a positive curvature in the Jlc

1 (J0) trend; not
shown for conciseness. The Figures 6d and h show the dependence between the Jlc

1 and Jc
1,

for the M-M and the M-I cases, respectively. In both figures, the trend is completely linear,
with the parabolic fit not explaining the data visibly better than the blue one, especially in
(d). The meaning of this result is that, if the effects coming from the quasi-linear regime
are controlled for, there is no additional non-linearity coming from the rapid collapse in
Figures 2a and 4b. In fact, the latter effect simply re-scales the Jlc

1 down to Jc
1 by a constant

factor. To sum up, the non-linear trend of Figures 2a and 4b can be wholly explained
by two factors connected with the quasi-linear regime only, one of which is of purely
single-subband origin, as G(J1 = 0) does not depend on J1, while the another one is of
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the inter-subband nature (the derivative over J1). The difference in the G(J1 = 0) was also
identified as a source of the qualitative discrepancy between the M-M and the M-I result.

Figure 6. The M-M. (a) Values of J1 at which GσL1 closes and the corresponding condensate collapses,
as a function of J0. (b) Values of GσL1 for the uncoupled system J1 = 0 as a function of J0. (c) The
derivative of GσL1 over J1 for the uncoupled system J1 = 0 as a function of J0. (d) Values of J1 at which
GσL1 closes and the corresponding condensate collapses, as a function of the extrapolated initial linear
trend gap closing value Jlc

1 . The M-I. (e) Analogous to (a), but for the Gs
σL2

. (f) Analogous to (b) but
for the Gs

σL2
. (g) Analogous to (c), but for the GσL2 . (h) Analogous to (d), but for where the Gs

σL2
closes.

The points show the results of the BdG simulation, the blue line is the linear fit, and the red line is the
parabolic one.
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4. Discussion

It needs to be especially underlined that—as opposed to many previous works,
e.g., [26,28–31]; see also Appendix C for a detailed discussion—this work does not concern
whether the intra-subband and the inter-subband couplings are of the same character (attrac-
tive/attractive or repulsive/repulsive) or of a opposite character (attractive/repulsive) and,
consequently, whether the phases of the partial condensates in the same or the opposite—or
s++/s± in another notation. In fact, the present work considers the region of the cou-
pling strengths where both the s++ as well as /s± exists for both the attractive/attractive
or attractive/repulsive systems. The authors of one of the previously cited works [31]
note that

It (the relative sign of the gaps on different bands) generally encodes important in-
formation about the microscopic pairing interaction, since same-sign gaps (called
s++ pairing) generally arise from an attractive inter-band interaction, whereas
opposite-sign gaps (called s+− pairing) are usually the result of repulsion.

This work studies the frequently omitted opposite case. The BdG iterative under-relaxation
with the phase control method presented here is the tool for this specific task, easily generalis-
able to other superconducting systems.

In many publications cited in this work, the enhancement of the superconductivity in
multiband systems is attributed to the multiband interaction coinciding with the resonant
phenomena of a topological nature. However, the formation of an alternative hypothesis
in [32] should be acknowledged.

5. Conclusions

In this work, the consequences of the destructive interference of two partial subband
condensates were investigated in Q1D SLs in the scope of a simplified model, which
includes a single miniband per each subband. It was shown that the destructive solution to
the BdG exists in a region where the intra-subband coupling J0 dominates over the inter-
subband coupling J1. For a fixed intra-subband coupling J0, two regimes were identified in
the dependence of the gap on the inter-subband coupling J1: the dependence is quasi-linear
for sufficiently small J1 and then the gap abruptly closes according to the power-law-like
function. The internal dynamics of the mentioned regimes were quantitatively described
with the help of in-depth analysis of the off-diagonal term in BdG. Two systems were
taken into account, one where minibands of both the subbands cross the Fermi level and
another one—corresponding to the original fit of the material band dispersions—where
one of the minibands has a finite single-particle energy gap. The swap of the dominating
partial subband condensate between the two cases is linked to the change from (I) the
miniband bandwidth to (II) the separation of the DOS from EF as the determinant in the
system characteristics.

There are several possible ways to develop the model in the future. The most immedi-
ate is to include multiple minibands per each subband. A calculation taking into account
all the minibands lying in the Debye window was already performed in [25], describing,
e.g., the remote inter-miniband resonance, although there was no inter-subband coupling
in the latter work. Integrating the miniband–miniband coupling and the subband–subband
one into a unified model is the next logical step. The second one is to study the coupling
effects between subbands of different types, e.g., the coupling between low-momentum
σ subbands with the high-momentum π subbands in MgB2. In the latter case, the model
cannot depend on the single J0 constant to govern over the intra-coupling in two subbands
that differ so strongly. Next to mention is the phase difference of the order parameter ∆φ in
the longitudinal direction, per each primitive SL cell, as described by previous works of
the same authors in similar systems [24,25]. It should be noted that any system without
any phase difference in the order parameter is necessarily electrically passive, and the
enhancement/modulation of the supercurrent flow is one of the more intuitive possible
applications of the Q1D SLs.
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Finally, the electron–hole cross-pairing as opposed to exchange pair coupling between
different minibands and/or subbands should be addressed. The model as described
in this work allows only for a direct pairing (in the sense of the electron- and hole-like
mixing to form the BdG solution) at a given Q between the same SL miniband of the same
subband. Only the indirect inter-subband coupling is taken into account. In contrast,
the implications of the direct band cross-pairing were investigated in [27] in the bulk MgB2
and Ba0.6K0.4Fe2As2. The intraband–crossband regime crossover, gapless state, gap splitting
and a temperature dynamic going beyond the BCS were reported. Taking this into account
in the model used in the present work seems to be the hardest challenge, as it would require
going beyond the Anderson approximation of the BdG, increasing the computational
complexity of the model by many orders of magnitude.

An another direction altogether would be the refinement of the description of the
underlying crystal structure. The current simple fit, as was mentioned in Section 2, describes
the momentum dispersion of each subband as a parabola. The inclusion in this model of a
more sophisticated energy–momentum dependence of a single particle is straightforward.
Furthermore, the~k-dependent re-scaling of the coupling constants Jn(~k) may be taken into
account, especially that the single-particle wavefunctions are already spanned over the set
of (kx, ky) basis functions.
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Appendix A. Detailed Description of the BdG Model

In general, the quantities in the Q1D SL model depend on the subband index S,
on the miniband index n, and on the SL wavenumber Q, as the symmetry of the envelope
wavefunction changes with all three of the mentioned quantum numbers. In the simplified
version of the model used in this work, there is only one miniband included per subband,
and thus the miniband index is omitted.

Appendix A.1. The SL Geometry and Material Parametrisation

This work inherits both the nanostructure and the material model from the previous
work of the same group [25]. The material band structure is based on the few-monolayer
MgB2; see, e.g., [33]. The nanostructure is a Q1D SL, the longitudinal axis of which
runs parallel to the ΓK line of the underlying crystal structure and is called x. The sys-
tem is confined along the perpendicular transverse direction, which runs along the ΓM
direction and is called y. A single periodic cell of the SL is of the general dimensions
LX = LY = 10 nm, with the imposed potential energy forming effectively a barrier in
the middle-x large-y part of the cell. At the y edges of the cell, the hardwall boundary
conditions are used while on the x edges the periodic ones are used.

As mentioned in the main text, several subbands are formed from the σ and π material
bands of MgB2 due to the strong confinement in the width z direction and, furthermore,
for each of these material subbands a set of SL miniband ladders is formed by the quantum
size effect of the SL itself. The material parameters (band edges and effective masses)
were fitted for each material subband and along both the ΓK direction for x as well as the
ΓM direction for y. The dispersions were fitted by parabolas with vertices at the Γ point,
with the help of the data of [33]. For more detailed description of the fit, see Section 3.2
of [25]. The values of the fitted parameters that are relevant to this work are shown in
Table A1.

Table A1. The values of effective masses and energy offsets used in this work.

Quantity Band Direction: Crystal (SL) Value

m σ lower M (y) −0.150
m σ lower K (x) −0.289

E1,Γ σ 267.0 meV
∆EΓ σ 95.2 meV

Appendix A.2. Single-Particle Model

The Hamiltonian of the single particle for subband S is

HS = E1,Γ + δS,σL2 ∆EΓ +
k2

x
2mx

+
k2

y

2my
+ U(x, y). (A1)

The smooth potential energy U is effectively equal to zero in the unconstricted region
while forming prohibitively large barrier (U0 = 1 keV) in the constricted part. The exact
shape of the barrier is defined as product of two one-dimensional factors: U(x, y; sX , sY) =
U0 fX(

x
LX

; sX) fY(
y

LY
; sY), with a single Fermi–Dirac-type function as the fY factor and a sum

of two of these functions as the fX factor. The following constraints are imposed:

fY(0; sY) = 0, fY(1; sY) = 1, fY(1/2; sY) = 1/2,
fX(0; sX) = fX(1; sX) = 0, fX(1/2; sX) = 1, fX(1/3; sX) = fX(2/3; sX) = 1/2.

(A2)

The sX and sY scaling factors have the values such that the log10(U[eV]) behaves as in
Figure 1a.

The imposition of the periodic boundary conditions in x results in the envelope
wavefunctions of the

ΨQ,S(x, y) = ΦQ,S(x, y) exp(iQx) (A3)
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kind, with −π/LX < Q < π/LX as the SL wavenumber and the Bloch-like SL function
ΦQ,S(x, y). However, for simplicity Q is given in units of the SLBZ, which is 2π

LX
, so that

−1
2 < Q < 1

2 . The SLBZ is represented by mesh of nQ = 97 points. The HS is diagonalised
in a set of basis functions

fB

(
x

LX
,

y
LY

; nX , nY

)
=

√
2

LX LY
exp

(
2iπnX

x
LX

)
sin
(

πnY
y

LY

)
, (A4)

with −21 6 nX 6 21 and 1 6 nY 6 37, which corresponds to the kx and ky lying inside the
first crystal Brillouin zone.

Appendix A.3. Anderson Model

The BdG equations are solved within the Anderson approximation, assuming the
electron-like u(x, y) parts and the hole-like v(x, y) parts to be proportional to the single-
particle wavefunctions of the corresponding subband S and SL wavenumber Q. In this
scope, the following 2×2 matrix describes the Hamiltonian part of the BdG model:(

εQ,S ∆Q,S
∆∗Q,S −εQ,S

)(
UQ,S
VQ,S

)
= EQ,S

(
UQ,S
VQ,S

)
, (A5)

where UQ,S and VQ,S are the electron- and hole-like coefficients, U2
Q,S + V2

Q,S = 1. The
mean-field part of the BdG becomes the equation for the matrix elements of the order
parameter ∆Q,S:

∆Q,S1 = J0∆̃Q,S1 + J1∆̃Q,S1,S2 ; S2 6=S1, (A6)

∆̃Q,S1 = ∑
Q′

UQ′,SV∗Q′,SκQ,Q′,S1

[
1− 2FD

(
EQ′,S, T

)]
FD
(
EQ′,S − ED, TD

)
, (A7)

∆̃Q,S1,S2 = ∑
Q′

UQ′,S2 V∗Q′,S2
κ′Q,S1,Q′,S2

[
1− 2FD

(
EQ′,S, T

)]
FD
(
EQ′,S − ED, TD

)
, (A8)

where FD(E, T) is the Fermi–Dirac function for energy E and temperature T. This work
does not investigate the temperature dependence of the system and T = 0.5 K is adopted
for simplicity. The contribution to the order parameter from the states lying inside the
Debye window (0 < E < ED = 75 meV) is switched on, and for the ones outside it is
switched off. This is realised with the help of the last term in Equations (A7) and (A8),
where a smooth transition with TD = 50 K is assumed. J0 is the constant corresponding to
the general strength of the intra-subband coupling while J1 is its inter-subband equivalent.
Both have the units of energy.

The Josephson coupling of the Q, S1 and the Q′, S1 states of a single subband S1 is
described by the dimensionless four-orbital contact term:

κQ,Q′,S1 = LX LY

∫∫
Φ∗Q,S1

ΦQ,S1 ΦQ′,S1 Φ∗Q′,S1
dxdy, (A9)

while the equivalent for the inter-subband Josephson coupling between the Q, S1 and the
Q′, S2 states is

κQ,S1,Q′,S2 = LX LY

∫∫
Φ∗Q,S1

ΦQ,S1 ΦQ′,S2 Φ∗Q′,S2
dxdy. (A10)

In Equations (A5)–(A10), the complex conjugates are included for the sake of generali-
sation, but in the system under study all the relevant quantities can be taken as real. This is
relevant to what follows below, as the phase of the condensate is also a real number.

Appendix A.4. The Self-Consistent Under-Relaxation with Phase Control

The Hamiltonian part of the BdG Equation (A5), together with the mean-field part
Equations (A6)–(A8), need to be solved self-consistently. In this work, the under-relaxation
iterative procedure is used, as described in the following. The required phase control of
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the condensates is realised in practice by employing the ∆ phase factor χS, as defined in
Appendix B. In the case of the constructive interference, it is demanded that χL1 > 0 and
χL2 > 0. In the case of the destructive interference, it is demanded instead that χL1 > 0 and
χL2 < 0—compare the signs of the corresponding ∆ momentum maps in Figures 3 and 5.

The procedure starts with assuming a random initial condition UQ,S and VQ,S for each
possible Q value in the case of each subband S, while respecting U2

Q,S + V2
Q,S = 1. The first

phase control is realised at this stage. If any of the mentioned conditions are not met,
the phase of the corresponding condensate is swapped with the following substitutions:
VQ,S → −VQ,S. Each of the iterations consists of solving Equation (A5) where all of the
order matrix elements, both intra- and inter-subband, are the ones given after the previous
iteration. This set will be called {∆}old. This way, the BdG eigenenergies and eigenvectors
are obtained in the current iteration. Knowing the latter ones allows in turn for the mean-
field equations Equations (A6)–(A8) to be solved, with the result being the new set of order
matrix elements, or {∆}new. The phase control and possible phase swaps are performed at
this moment every iteration. This is necessary to exclude the possibility of a random phase
wiggling between the {∆}old and {∆}new. Finally, the under-relaxation step is performed
by taking the substitution

{∆}old → α{∆}new + (1− α){∆}old (A11)

for the next iteration. The sufficiently small value of α for the iteration to converge was
found by trial and error, being eventually settled at α = 0.01.

Appendix B. Definition of the Momentum Maps of ∆

The starting point for the ∆ momentum maps formula is the definition of the partial
subband condensate momentum maps:

∆̄nX ,nY ,S = ∑
Q

ζQ,S(nX , nY)
2UQ,SVQ,S

[
1− 2FD

(
EQ,S, T

)]
FD
(
EQ,S − ED, TD

)
, (A12)

where ζQ,S(nX , nY) is the relevant coordinate of the projection of the single-particle wave-

function ΦQ,S(x, y) of Equation (A3) onto the basis function fB

(
x

LX
, y

LY
; nX , nY

)
of

Equation (A4). The phase factor χS used in the phase control procedure is simply the
average of the ∆̄nX ,nY ,S over the momentum space:

χS =
1

nXnY
∑

nX ,nY

∆̄nX ,nY ,S. (A13)

Finally, the explicit formula for the ∆ momentum maps is:

∆̂nX ,nY ,S1 = J0∆̄nX ,nY ,S1 + J1∆̄nX ,nY ,S2 ; S2 6=S1. (A14)

This defines a single ∆̂nX ,nY ,S momentum space map per subband, allowing the kx/ky
symmetry to be studied.

Appendix C. Detailed Discussion about the Character of the Exchange-like Inter-Band
Interactions and the Phases of the Partial Condensates

In [26], an SL of quantum wells is employed to model an SL of honeycomb boron
layers intercalated by Al and Mg spacers. For a two-band superconductor, the “usual”
amplification of the superconducting gaps at the topological Lifshitz transition is predicted
when the chemical potential is tuned near the band edge of the second miniband by the
quantum confinement effects. However, what is the most relevant from the point of view
of the present work, the repulsive character of the exchange-like inter-band interactions is
assumed along an attractive intra-band coupling leading to the formation of condensates
of opposite signs in the first and second minibands, which is referred to as a s± system.
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The direct evidence for the band-interference effects in the form of “deep band” gap minima
underlines the importance of the intra-inter coupling ratio control. Nevertheless, Inno-
centi et al. note that the critical temperature and the absolute values of the gaps does
not depend on the sign of the inter-band coupling. This observation should be discussed
in the context of the present results. In Equation (6) of [26], there is the V l,l′

k,k′∆l′ ,k′ term,
where the k symbols correspond to the SL momenta in their notation and are irrelevant
to the current argument. The l symbols are the band indices. V l,l′

k,k′ correspond to the
effective coupling strengths and, as was noted before, in the l = 1 version of the afore-
mentioned Equation (6) ibid., the V1,1

k,k′ and V1,2
k,k′ have the opposite signs. Similarly, in the

l = 2 version, the V2,1
k,k′ and the V2,2

k,k′ have different signs. However, this is compensated
by the partial gaps parameters having exclusively the opposite signs, as can be seen in
Figures 5 and 6 ibid. with −∆2/∆1 > 0. In that case, the s++ quantum system—with
V1,1

k,k′/V
1,2
k,k′ > 0— and s± systems—where V1,1

k,k′/V
1,2
k,k′ < 0— indeed differ only trivially,

as V∆ = (−V)(−∆). In the terminology used here, they would both be called the con-
structive interference solution. In contrast, the destructive interference solution would be
obtained if V1,1

k,k′/V
1,2
k,k′ < 0, ∆2/∆1 > 0 or, in more direct analogy to the results presented

in the present work, if V1,1
k,k′/V

1,2
k,k′ > 0, ∆2/∆1 < 0. The latter solution can be obtained,

if it exists, by introducing the phase (sign) control in the iterative solving of the mentioned
Equation (6) ibid. and it would be essentially different to the former solution.

A very similar situation takes place in [28] where the possibility of multiband super-
conductivity in SrTiO3 films and interfaces is investigated using a 2D two-band model,
with the chemical potential shifted due to doping or applied electric fields to resonate
with the second band. A strong enhancement of the Tc and a sharp feature in the gaps are
obtained. Moreover, it is concluded that the intra-band coupling dominates over inter-band
coupling. Fernandes et al. make the following observation:

Our results are independent of the character of the interband interaction: for an
attractive (repulsive) interaction, the gaps on two bands have the same (opposite)
signs, but the thermodynamic properties discussed here remain the same.

BCS superconductor is studied in [29], in the regime where the Fermi energy is smaller
than the Debye energy in the low-density limit. Two opposing non-analytic types of Tc
dependence on the low density n are found, depending on dimensionality. A model for
multiband systems was also included, relevantly to the present work, in the discussion of
which the authors concluded:

Both attractive and repulsive inter-band interactions increase Tc for two bands
(. . .), as illustrated by the fact that Equation (9) involve only λ̄2

12: inter-band
interactions do not induce inter-band pairing in the present model, but reinforce
the intra-band pairing by second-order processes involving the other band.

It is however sufficient to note that there is no intra-band pairing in Equation (1a) ibid.,
in accordance with the Vββ = 0 assumption. In order for any interference to take place,
two quantities of variable relative phases are required. In the very well known example of
the wave interference, the energy as a measure of interference is proportional to (A + B)2

instead of A2 + B2. The roles of A and B are played by the J0∆̃Q,S1 and J1∆̃Q,S2 terms in our
system. A similar effect, to the one found in [29], can also be found in Sections III and IV
of [30].

Finally, the experimentally observed suppression of Tc across the Lifshitz transition in
doped SrTiO3 with the chemical potential tuned by the carrier concentration was addressed
in [31] with the help of a two-band model. In this system, the intra-band attractive coupling
is dominating over the repulsive inter-band one. The non-monotonicity was attributed to
the strong pair-breaking effect, promoted by disorder, which re-scales the corresponding
coupling parameters. The change of the relative signs of the gaps from opposite to the
same is reported when moving away from the Lifshitz transition. However, it is not clear
whether a transition between the constructive and destructive inter-band interference
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happens in that case. It can be noticed that the matrix of the “bare” coupling λij, constants
characterising the clean system, needs to be effectively replaced by the following one in the
presence of disorder:

(
λ̃ij
)
=

λ11
Ad

11
Ac

11
+ λ12

Ad
21

Ac
11

λ11
Ad

12
Ac

22
+ λ12

Ad
22

Ac
22

λ21
Ad

11
Ac

11
+ λ22

Ad
21

Ac
11

λ21
Ad

12
Ac

22
+ λ22

Ad
22

Ac
22

, (A15)

where the Ac
ii and Ad

ij are elements of the Âclean and Âdirty matrices, as defined in [31].
While the signs of the λ parameters do not depend on the disorder characteristics, the signs
of the λ̃ ones may change. The comparison between the latter signs and the signs of the
gap parameters would yield the answer.
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