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Abstract: Employing charge–flux duality for Josephson junctions and superconducting nanowires,
we predict a novel effect of fluxon cotunneling in SQUID-like nanorings. This process is strictly dual
to that of Cooper pair cotunneling in superconducting transistors formed by a pairs of Josephson
tunnel junctions connected in series. Cooper pair cotunneling is known to lift Coulomb blockade
in these structures at low temperatures. Likewise, fluxon cotunneling may eliminate the magnetic
blockade of superconducting phase fluctuations in SQUID-like nanorings, driving them into an
insulating state.
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1. Introduction

Recent technological progress made in the miniaturization of superconducting circuits
and devices has led to a large number of new interesting effects [1]. Among these de-
vices, superconducting circuits with ultrasmall tunnel junctions [2] and superconducting
nanowires/nanorings [3,4] attract a lot of attention in the community, demonstrating the
non-trivial interplay occurring between quantum coherent phenomena and dissipative effects.

A fundamentally important property of the above structures is the so-called charge–
phase (or charge–flux) duality. This property was initially discovered for ultrasmall Joseph-
son junctions [5–7], implying that under a certain transformation for the junction parame-
ters, the quantum dynamics of Cooper pairs (with the charge 2e) in such systems is identical
to that of magnetic flux quanta Φ0 = π/e. Later on, the same duality arguments were
extended to superconducting nanowires [8,9]. In particular, charge–flux duality allows us
to establish and understand a profound relationship between the superconducting and
insulating behavior of these systems.

Manifestations and implications of the charge–flux duality in Josephson junctions and
superconducting nanowires were observed in a variety of experiments. These observa-
tions include the coherent tunneling of magnetic flux quanta through superconducting
nanowires [10], Coulomb blockade and Bloch steps [11–14], as well as the coexistence of
the local superconductivity and global localization of Cooper pairs [15]. These and other
observations open new horizons for applications of such systems in modern nanoelec-
tronics, metrology, and information technology. For instance, operations of duality-based
single-charge transistor [16] and charge quantum interference devices [17] have been
demonstrated. Superconducting junctions and nanowires have also been proposed to serve
as central elements of both charge- and flux-based qubits [18–20], as well as for creating an
electric current standard [13,14,21].

In this work, we further extend the duality arguments explicitly involving the effect of
cotunneling. The importance of the cotunneling of single electrons in systems of coupled
normal tunnel junctions in the Coulomb blockade regime was pointed out by Averin and
Nazarov [22,23]. At low temperatures, the sequential tunneling of electrons across different
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tunnel barriers involves intermediate states with substantially higher energies and, hence,
yields a vanishing contribution to the system conductance ∝ exp(−EC/T), where EC is
some characteristic charging energy. In this case, cotunneling—i.e., the (almost) simultane-
ous tunneling of electrons across different barriers—may lift the Coulomb blockade and
dominate the system conductance, as it does not cause any extra charging in the course of
tunneling. Golubev and Zaikin [24] demonstrated that charge fluctuations in a chain of N
normal tunnel junctions are dominated by the process of electron cotunneling, which gener-
ates the power–law I−V curve in the form I ∼ V2N−1+1/2gs (where gs is the dimensionless
conductance of the external leads), in agreement with earlier experimental findings [25,26].
The significance of electron cotunneling for current fluctuations was also emphasized
in [27,28], where the super-Poissonian behavior of shot noise in chains of tunnel-coupled
quantum dots was demonstrated in the Coulomb blockade regime. Cooper pair cotunnel-
ing in the superconducting single charge transistor was also discussed theoretically [29]
and realized in a number of experiments [30,31].

In all the above examples, one essentially deals only with the cotunneling of discrete
charges—single electrons or Cooper pairs. Below, we predict and analyze a novel effect
of flux cotunneling. We will demonstrate that this effect may crucially influence the low-
temperature properties of SQUID-like nanorings, turning their superconducting behavior
into an insulating one.

2. Results

We begin our analysis by considering the system displayed in Figure 1. This system
represents a Copper pair transistor, which consists of three superconducting islands con-
nected in series via tunnel junctions with capacitances of C1 and C2 and Josephson coupling
energies of EJ1 and EJ2. The charge of the central island is controlled by the gate voltage Vg
via gate capacitance Cg. We will also assume that the superconducting phase difference
for the two outer islands is externally kept equal to ϕ0 and does not fluctuate in time. This
phase may either stay constant (provided an externally applied voltage Vx is equal to zero)
or depend linearly on time according to the Josephson relation ϕ̇0 = 2eVx.

Figure 1. Cooper pair transistor.

The Hamiltonian of our Cooper pair transistor reads

ĤCPT = EC(q̂− qg)
2 − ∑

n=1,2
EJn cos

(
ϕ̂− (−1)n ϕ0

2

)
, (1)

where the first term on the right-hand side accounts for the charging energy of the system
(with EC = 2e2/(C1 + C2 + Cg)) being the charging energy for a Cooper pair) and the
last term describes the Josephson coupling energies of two tunnel junctions. Here, we
introduced the (dimensionless) charge operator for the central island q̂ ≡ Q̂/2e and the gate
charge qg = VgCg/2e normalized to that of a Cooper pair 2e. The operator ϕ̂ corresponds
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to the superconducting phase of the central island being canonically conjugate to that of
the charge q̂—i.e., these two operators obey the commutation relation [q̂, ϕ̂] = −i.

Consider the limit of low temperatures and high charging energies T, EJ1,2 � EC. In
this case, for qg, not very close to the values ±1/2,±3/2, . . . , the sequential tunneling of
Cooper pairs in both Josephson junctions is strongly suppressed because each tunneling
event of a Cooper pair to/from the central island increases the system energy by a large
amount∼ EC, thus being energetically unfavorable. Hence, one could naively conclude that
in this regime charge transfer across CPT would be impossible due to Coulomb blockade
of Cooper pairs, and the system would behave as an insulator.

This conclusion, however, turns out to be premature due to the presence of Cooper
pair cotunneling, which dominates the charge transfer across CPT in the above “Coulomb
blockade” regime. According to this mechanism, Cooper pairs may tunnel across two junc-
tions (see Figure 1) almost simultaneously, keeping the system charging energy unchanged
except for a short time interval δt ∼ 1/EC.

Merely for pedagogical purposes, we now present a detailed calculation of the ground
state energy E0(qg, ϕ0) of CPT perturbatively in EJ1,2. In doing so, we will closely follow
the analysis [2] (see, e.g., Section 3.3.5 of that work). The grand partition function of our
system can be represented as a path integral over all possible charge configurations of the
central island q(τ) in the form

Zqg =
∞

∑
p=−∞

Z̃(qg + p), (2)

where

Z̃(qg) =
∫ qg

qg

Dq(τ)
∞

∑
n,m=0

1
n!m!

(
En

J1Em
J2

2n+m

) ∫ 1/T

0
dτ1...

∫ 1/T

0
dτn

∫ 1/T

0
dτ′1...

∫ 1/T

0
dτ′m

× ∑
εj=±1,νk=±1

exp

 iϕ0
2

 n

∑
j=1

εj +
m

∑
k=1

νk

δ(q̇(τ)− q̇n,m(τ)) exp
(
−EC

∫ 1/T

0
dτq2(τ)

)
(3)

and

qn,m(τ) =
n

∑
j=1

εjθ(τ − τj)−
m

∑
k=1

νkθ(τ − τ′k). (4)

All charge trajectories q(τ) start and end at a value of the gate charge qg, implying
that the sum in Equation (3) runs only over positive and negative unity charges εj and νk,
obeying the neutrality condition

n

∑
j=1

εj −
m

∑
k=1

νk = 0. (5)

These trajectories describe charge jumps corresponding to tunneling events of Cooper
pairs across the first and second junctions, respectively, at τ = τj and τ = τ′k.

In the limit EJ1,2 � EC, we can proceed perturbatively in the Josephson coupling
energies EJ1,2. In this case, the main charge configurations are those in the second order in
such energies corresponding to two tunneling events of Cooper pairs (see Figure 1), either
across one of the junctions (∝ E2

J1 or ∝ E2
J2) or across both of them (∝ EJ1EJ2). The first

class of trajectories can be safely disregarded, as it plays no significant role except for an
immediate vicinity of the gate charge values qg = ±1/2, where the charge states q = qg and
q = qg ∓ 1 become degenerate. Taking into account the remaining trajectories describing
two successive tunneling events across the first and the second Josephson junctions, in the
limit T → 0 we obtain

Z̃(qg) ∼ exp[−E0(qg, ϕ0)/T], (6)
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where the ground state energy has the form

E0(qg, ϕ0) ' ECq2
g −

EJ1EJ2

2
e−ECq2

g/T cos ϕ0

∫ 1/T

0
dτ ∑
±

e−EC(1±2qg)τ

= ECq2
g −

EJ1EJ2 cos ϕ0

EC(1− 4q2
g)

, |qg| <
1
2

. (7)

Taking the derivative of E0 (7) with respect to ϕ0, one immediately arrives at the
cotunneling contribution to the supercurrent IS flowing across CPT in the form

IS = IC sin ϕ0, IC =
2eEJ1EJ2

EC(1− 4q2
g)

, |qg| <
1
2

. (8)

Thus, even in the “Coulomb blockade” regime EC � T, EJ1,2, the system of Figure 1
actually behaves as a superconductor rather than as an insulator due to the effect of Cooper
pair cotunneling.

Let us now turn to a somewhat different structure displayed in Figure 2. This structure
represents a SQUID-like nanoring formed by thicker superconducting wires containing two
weak links, which can be either Josephson junctions (again with coupling energies EJ1,2
and charging energies EC1,2) or, alternatively, segments of ultranarrow superconducting
wires of lengths L1,2 and normal state resistances R1,2. In the first case, we will assume the
condition EJi > ECi (i = 1, 2) to be fulfilled, while in the second one an analogous condition
reads Ri/Li < Rq/ξi, where Rq = 2π/e2 ' 25.8 kΩ is the quantum resistance unit and ξi
is the superconducting coherence length for the i-th wire. The ring has inductance L and
is pierced by external magnetic flux Φx. It can also be biased by an external current I, as
shown in the Figure 2.

Figure 2. SQUID-like nanoring.

Under the above conditions, most important fluctuations of the superconducting
phase across both weak links are instantons [1,2] or quantum phase slips (QPS), which are
the same [1,3,4]. Physically, each QPS event describes the process of quantum tunneling
of the phase difference across a weak link by δϕ = ±2π accompanied by the voltage
pulse δV = ϕ̇/2e, which, in turn, implies the tunneling of one magnetic flux quantum
Φ0 ≡ π/e =

∫
|V(t)|dt between the outer and inner parts of the ring, as is schematically

indicated in Figure 2.
In our further analysis, we will essentially employ phase-charge duality arguments.

Slightly generalizing the results [4,9], one can write the Hamiltonian of our SQUID-like
nanoring in the form

ĤSR = EL(φ̂− φx)
2 − ∑

n=1,2
γn cos

(
χ̂− (−1)n χ0

2

)
, (9)
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where the first term is responsible for the magnetic energy of the ring, while the second
one takes care of QPS effects in both superconducting weak links. Here, we introduced the
magnetic flux operator (normalized to the flux quantum Φ0) φ̂ = Φ̂/Φ0 and defined the
magnetic energy for a flux quantum EL = Φ2

0/2L, as well as the dimensionless magnetic
flux φx = Φx/Φ0. The operator χ̂/Φ0 controls the charge flowing around the ring. The
value χ0/Φ0 is set by the charge Q that has passed across the structure up to some moment
of time. It can either stay constant, provided an external current I is turned off, or depends
linearly on time, obeying the equation χ̇0 = Φ0 I. As before, the flux and charge are
canonically conjugate operators obeying the commutation relations [φ̂, χ̂] = −i.

The quantities γ1,2 represent QPS amplitudes for two weak links. For the problem
in question, they take the standard form γi = Bi exp(−Ai), where Ai ∼

√
EJi/ECi, Bi ∼

E3/4
Ji E1/4

Ci in the case of Josephson junctions [2] and Ai ∼ (Rq/Ri)(Li/ξ), Bi ∼ Ai∆i(Li/ξ)
in the case of superconducting nanowires [32], with ∆i being the mean field value of the
superconducting order parameter in the corresponding nanowire.

One can easily observe that the two Hamiltonians (1) and (9) are exactly dual to each
other under the transformation

q̂↔ φ̂, ϕ̂↔ χ̂, EC ↔ EL, EJn ↔ γn, ϕ0 ↔ χ0. (10)

Hence, all physical properties of the systems displayed in Figures 1 and 2 are dual to
each other and one can immediately translate the results derived for CPT to the SQUID-like
nanoring of Figure 2 without any extra calculation.

In the absence of quantum phase slips, the structure should sustain a non-vanishing
supercurrent and, hence, remain superconducting. By contrast, proliferating quantum
phase slips in each of the weak links (the process dual to sequential tunneling of Cooper
pairs) destroy the superconductivity and turn these weak links insulating at T → 0 [2].
On the other hand, in the limit T, γ1,2 � EL and for φx outside an immediate vicinity
of the points |φx| = 1/2, 3/2, . . . , the sequential quantum tunneling of single fluxons
in each of the wires is essentially prohibited, as it takes too much energy to change the
magnetic flux inside the ring. Such a magnetic blockade is a complete dual analogue of the
Coulomb blockade in CPT. This blockade would restore the superconducting properties of
our system.

Analogously to the previous example, this magnetic blockade is, however, lifted due
to flux cotunneling: Two fluxons (see Figure 2) can tunnel through both superconducting
nanowires (almost) simultaneously, thus keeping the magnetic energy of the ring un-
changed. Making use of a similar analysis to that employed above (2), (3) and (7) together
with the duality property (10) and proceeding perturbatively in γ1,2, we immediately arrive
at the ground state energy for the superconducting nanoring in the form

E0(φx, χ0) ' ELφ2
x −

γ1γ2 cos χ0

EL(1− 4φ2
x)

, |φx| <
1
2

. (11)

Outside the interval |φx| < 1/2, this expression should be periodically continued in φx
with the period equal to unity. Here, however, we are merely interested in the contribution
to E0, which depends on the parameter χ0 and defines the lowest Brillouin zone of our
device. Taking the derivative of E0(φx, χ0) with respect to χ0 and keeping in mind the
relation χ0 = Φ0Q from Equation (11), we immediately reconstruct the voltage value
corresponding to the charge Q placed across our SQUID-like ring

V = VC sin
πQ

e
, VC =

Φ0γ1γ2

EL(1− 4φ2
x)

, |φx| <
1
2

. (12)

Equation (12) represents the main result of this work. This result implies that flux
cotunneling restores the insulating regime in our superconducting nanoring: At T → 0
and for γ1,2 � EL, no dc current will flow across the device, provided the voltage V does
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not exceed the critical value VC (12). As soon as the regime V = VC is reached, the charge
Q starts increasing with time as Q = It, and Equation (12) describes Bloch oscillations of
the voltage (with period I/2e) dual to the Josephson oscillations of the supercurrent IS (8)
in CPT.

In order to complete our analysis, let us present a rough order-of-magnitude estimate
for the maximum value of the critical voltage VC (12). In the case of Josephson junctions,
this value is reached at the border of applicability of our theory—i.e., at EJi ∼ ECi. Then,
for (almost) identical junctions with EJi = IC/2e, we have γ1 ' γ2 . IC/e. For the case
of diffusive metallic wires with the diameter of order superconducting coherence length
ξ, the kinetic inductance strongly exceeds the geometric one, in which case we have [9]
EL ∼ gξ ∆ξ/r, where ∆ and ξ are, respectively, the order parameter and the coherence
length of a superconductor forming the ring, gξ is the dimensionless conductance of a ring
segment of length ξ, and r is the ring radius. Combining these estimates with Equation (12)
and employing the Ambegaokar–Baratoff formula Ic = gN∆/2 (where gN is the normal
state dimensionless junction conductance), we obtain

eVC .
g2

N
gξ

r
ξ

∆
1− 4φ2

x
. (13)

If we set, e.g., gN ∼ 0.1, gξ ∼ 10÷ 100 and r/ξ ∼ 10÷ 100, we immediately arrive
at the order-of-magnitude estimate for the maximum value eVC reaching up to ∼0.1∆.
Although in most cases one can expect eVC to be smaller, nevertheless the effect of Coulomb
blockade induced by the cotunneling of fluxons should still remain in the measurable range
and could be easily detected in modern experiments.

3. Discussion

In this work, we employed the charge–flux duality property for Josephson junctions
and superconducting nanowires, extending it to explicitly account for the effect of cotun-
neling. Provided two Josephson junctions are connected in series—thus forming a Cooper
pair transistor (Figure 1)—the cotunneling of Cooper pairs may play a dominant role at
low temperatures, turning the Coulomb blockade regime into a superconducting one.

On the other hand, when connecting superconducting weak links in parallel in the
form of a SQUID-like nanoring (Figure 2), one may realize a regime of cotunneling of
fluxons strictly dual to that of Cooper pairs. At low enough temperatures, the cotunneling
of fluxons—in contrast to its dual counterpart—may turn the behavior of such structures
from superconducting to insulating. In a way, one can argue that at low T, a SQUID-
like nanoring can behave as a superconductor, provided the sequential tunneling of flux
quanta through weak links is suppressed, as this costs too much energy ∼ EL � T.
This regime can be called a magnetic blockade of superconducting phase fluctuations.
Fluxon cotunneling lifts this magnetic blockade, thereby destroying superconductivity and
restoring the insulating regime.

For the sake of simplicity, in the above analysis we did not include the effect of
dissipation that may arise, e.g., due to the presence of an external circuit. Note that, for
instance, in the case of the Ohmic impedance of the external circuit—similarly to the case
of single Josephson junctions [2,5–7]—the duality property remains applicable; it embraces
both the sequential tunneling and cotunneling of Cooper pairs and fluxons and yields an
even richer physical picture that includes— among other features—a dissipation-diven
quantum phase transition (the so-called Schmid phase transition [2]). This issue, however,
is beyond the scope of the present paper.
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