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Abstract: Scanning Tunneling Microscopy and Spectroscopy (STM/S), with its exceptional surface
sensitivity and exquisite energy resolution, is well suited for the investigation of surface states down
to atomic length scales. As such, it became an essential tool to probe the surface states of materials,
including those with non-trivial topology. One challenge, however, can be the preparation of clean
surfaces which allow the study of preferably unchanged surface properties with respect to the bulk
amount. Here, we report on the STM/S of two materials, ZrTe2 and TmB4. The former cleaves easily
and defects can be examined in detail. However, our STS data can only qualitatively be compared to
the results of band structure calculations. In the case of TmB4, the preparation of suitable surfaces is
highly challenging, and atomically flat surfaces (likely of B-termination) were only encountered rarely.
We found a large density of states (DOS) at the Fermi level EF and a mostly featureless differential
conductance near EF. Further efforts are required to relate our results to the electronic structure
predicted by ab initio calculations.

Keywords: Scanning Tunneling Microscopy; surface states; topology

1. Introduction

The interpretation of the quantum Hall effect, in terms of topology, has been well
established for several decades [1]. More recently, the quantum spin Hall effect was
predicted [2,3] and realized soon after [4]. These discoveries were followed by huge de-
velopments in the field of non-trivial topology, including materials such as topological
insulators, semimetals and superconductors [5–8]. In particular, enormous efforts were
undertaken to predict non-trivial topology in materials, see [9] and references therein. In
this respect, both spin-orbit coupling and crystalline symmetry, as well as their interplay,
are of particular importance.

Likewise, there have also been tremendous efforts to experimentally investigate
and/or verify non-trivial topology in these materials. One of the primary tools here
is angle-resolved photoemission spectroscopy (ARPES) as it can provide information on the
materials’ electronic structure [10–14], in some cases even in a spin-resolved fashion [15–17].
As an example, ARPES can reveal the linear dispersion relation expected for electrons on
a Dirac cone. One other method of choice is Scanning Tunneling Microscopy and Spec-
troscopy (STM/S) with its ability to get local insight into the single-particle spectrum [18]. It
is extremely surface sensitive and can be conducted at ultra-low temperatures, in magnetic
fields and with energy resolution in the meV-range or even below. As such, STM/S is well
suited to investigate surfaces of topological quantum matter [19–21], specifically in cases
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where the involved energy scales are as small as in the correlated topological insulators
SmB6 [22].

As a result of the extreme surface sensitivity of STM, a clean and atomically flat surface
is often required for the successful spectroscopic analysis of the material’s electronic struc-
ture: if the investigated surface is rough on an atomic level, then the local environment of
the surface atoms may differ from the one of the same atom in the bulk. Of course, this issue
adds to the already incurred modified material properties at the surface of any solid (see
e.g., the discussion in [23]) or possible surface reconstructions. As a consequence, special
attention may have to be paid to the preparation of clean surfaces for STM investigations.
Established methods here are in situ deposition of thin films or in situ cleaving of bulk
samples. The latter can easily be conducted on van-der-Waals-bound layered materials (like
Bi2Te3 [24]). However, for materials with a more three-dimensional (3D) crystallographic
structure (like SmB6 [25]) cleaving can be a challenge. It should be noted that surface
preparation for ARPES measurements is not quite as involved as for STM but it may need
to receive some attention nonetheless [26].

We here report on STM investigations on two materials: ZrTe2 and TmB4. The former
is a member of the extensively studied group of transition-metal dichalcogenides [27] and
is discussed as a topological Dirac semimetal [28–31]. Moreover, signatures of a weak
Kondo effect have been reported [32]. On the other hand, the material TmB4 crystalizes
in a Shastry–Sutherland lattice which gives rise to frustrated magnetic behavior and, in
particular, to fractional plateaus in its magnetization curves [33]. Interestingly, topology is
mentioned as one possible reason for the fractional plateau phase [34,35], and the related
compound PuB4 is discussed to be a strong topological insulator [36]. For both materials,
our spectroscopic results by STS reveal substantial discrepancies compared to the results of
bulk band structure calculations. These discrepancies are likely (at least in part) related to
the extreme surface sensitivity of STS and highlight the need for further experimental and
theoretical efforts to gain a comprehensive understanding of such materials, specifically
with respect to applications.

2. Samples and Experiments

In the first synthesis step, microcrystalline ZrTe2 was obtained starting from a molar
powder mixture of the elements zirconium (99.2% Alfa Aesar) and tellurium (99.999% Alfa
Aesar) annealed at 600 ◦C in the presence of iodine (99.998% Alfa Aesar) in an evacuated
fused silica ampoule for one week. In the second step, single crystals of ZrTe2 were grown
from this microcrystalline powder by chemical vapor transportation with iodine (4 mg/mL)
as a transport additive. Here, a temperature gradient from 700 ◦C (source with starting
material) to 800 ◦C (sink with deposited crystals) was applied. Single crystals grew in the
shape of well-formed, several mm wide platelets along the crystallographic a–b directions
with heights (along c) of order 0.2 mm. The characterization of the single crystals was
conducted by electron probe microanalysis (EDXS) and X-ray powder diffraction; the latter
confirmed the hexagonal structure (space group P3̄m1 with lattice constants a = 3.952 Å
and c = 6.66 Å), see Figure S1. For STM, ZrTe2 was cleaved along the crystallographic c
direction, i.e., by breaking the van-der-Waals bonds.

TmB4 samples were cut from a single crystalline rod grown by an inductive, crucible-
free-zone melting method described in detail in [37] (see also Supplementary Materials
Section II and Figures S2 and S3). The lattice constants of the tetragonal lattice (space group
P4/mbm, see Figure 1) are a = 7.05 Å and c = 3.98 Å. For STM measurements, samples
were attempted to cleave along the ab plane.

STM investigations were conducted using an ultra-high vacuum (UHV) system [38].
If not stated otherwise, the presented STM/STS data were obtained at its base temperature
of T = 4.6 K using electrochemically etched tungsten tips. STS was performed by utilizing
a lock-in technique; to this end, a small ac modulation voltage Vmod of 1.0 mV with a
frequency of 117 Hz was added to the bias voltage Vb. In some cases, the reported STM data
were obtained in a dual-bias mode, i.e., two different bias voltages (typically of opposite
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sign) were applied for the forward and backward scan of the fast scan direction. Bias
voltage Vb and set-point current Isp are given in the respective caption of each topography.

Figure 1. Crystalline structure of tetragonal TmB4. (a) View along the bc plane; red: Tm, gray:
B octahedra, blue: B dimers. (b) Tm plane visualizing the combination of square and triangular
arrangements. (c) B atoms in the ab plane. All panels share the same color code, with one unit cell
marked in gray.

To avoid possible degradation, the ZrTe2 sample investigated here was stored and
prepared for cleavage inside an Ar-filled glove box. All samples were cleaved in situ at
a temperature of ∼20 K. After cleaving, the samples needed to be transferred from the
cleaving stage into the STM head, during which time (few tens of seconds) the sample
temperature is not controlled. Because of its layered structure, ZrTe2 cleaves easily and
is exposed to large atomically flat surface areas. We, therefore, investigated one cleaved
surface at numerous different positions. In contrast, TmB4 is very difficult to cleave and
atomically flat areas could be found only rarely (see also Section 3.2.1 below). In order
to, nonetheless, ensure the reproducibility of our results, cleaves of three TmB4 samples
were studied.

3. Results
3.1. ZrTe2

3.1.1. Topography

Figure 2 exhibits a topography overview of a cleaved ZrTe2 surface. The hexagonal
structure can clearly be recognizedm along with two types of defects: the triangularly
shaped elevations with an extension of five protrusions and single missing atoms. Given
the crystalline structure of ZrTe2, the top-most layer of this material is expected to consist of
Te atoms exclusively. A zoom into an almost defect-free area of 5× 5 nm2, Figure 3a, reveals
a distance between the protrusions of approximately 0.38 nm, see the blue line in Figure 3a
and corresponding height profile in Figure 3b. Note that this topography resembles those
reported in [39], except for the STM-measured distance between the protrusions which is,
in our case, in very good agreement with the lattice constant a. The presented topographies
testify to an excellent overall sample quality and confirm that, primarily, only the top-most
Te layer is visualized.

The very few single-site dents observed for positive and negative bias voltage in
Figure 2 can certainly be related to missing Te atoms in the Te top-most layer (see also
discussion in [40]). In contrast, the more numerous triangularly shaped defects extend over
several lattice sites and appear to exhibit different contrast for opposite bias voltages in
Figure 2. Very similar defects have been observed on ZrTe2 [41], but also on TiSe2 [40,42,43].
Specifically, the comparison to the latter suggests that these triangular defects may be
caused by intercalated Zr atoms, i.e., by Zr at positions between two van der Waals-bound
Te layers. The distinctive shape of this type of defect—three neighboring Te atoms in
the top-most Te layer appearing bright—for negative Vb (Figure 2 right) compared to the
less bright appearance for positive Vb (left) points to an electron-donating defect, in line
with its assignment to an intercalated Zr [44]. However, in contrast to the observations
of TiSe2 where the intercalated Ti atoms were discussed in relation to a charge density
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wave (CDW) [42,43], we could not detect any indication of such a CDW in our ZrTe2 (see
also STS results below). To the best of our knowledge, a CDW has only been reported for
single-layer ZrTe2 [45].
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Figure 2. Topography overview of cleaved ZrTe2 over an area of 20 × 16 nm2 obtained in dual bias
mode, i.e. the two images show exactly the same sample area. (a) Vb = +0.6 V visualizing empty
states and (b) Vb = −0.6 V, occupied states; Isp = 200 pA in both cases. Two different types of defects
can be recognized: Single-site vacancies and triangularly shaped defects extending over several lattice
sites. The total height range of both topographies is 66 pm.
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Figure 2. Topography overview of cleaved ZrTe2 over an area of 20× 16 nm2 obtained in dual bias
mode, i.e., the two images show exactly the same sample area. (a) Vb = +0.6 V visualizing empty
states and (b) Vb = −0.6 V, occupied states; Isp = 200 pA in both cases. Two different types of defects
can be recognized: Single-site vacancies and triangularly shaped defects extending over several lattice
sites. The total height range of both topographies is 66 pm.

Version December 23, 2022 submitted to Condens. Matter 4 of 11

19.01.21

[19-1],	V=+0.6V,	Isp=200pA,	45°	

10x10nm2

[23-1],	V=+0.6V,	Isp=200pA,	53°	

5x5nm2

[24-1],	V=+0.6V,	Isp=200pA,	53°	

5x5nm2

[24-1],	V=-0.6V,	Isp=200pA,	53°	

5x5nm2

No	filtered

0 1 2 3 4 nm

pm

-15

-10

-5

0

5

10

Information

Layer 20210119-150230_ZrTe2-1--STM_Spectroscopy--2…

Parameters Value Unit

Length 4.137 nm A~3.8A

0 2 4- 1 5
- 1 0

- 5
0
5

1 0
1 5

He
igh

t (p
m)

L a t e r a l  d i s t a n c e  ( n m )

(a)

(b)

Figure 3. (a) Zoom into a mostly defect-free area of 5 × 5 nm2 on ZrTe2. Vb = +0.6 V, Isp = 200 pA.
(b) Height profile obtained along the blue line marked in (a).
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Figure 4. (a) Tunneling spectroscopy on a surface of ZrTe2. The inset shows a zoom into the low-
energy range of −0.15 V ≤ Vb ≤ +0.15 V. (b) Topography of an area of 6.2 × 6.2 nm2 within which
the spectroscopy result presented in (a) was obtained; Vb = +0.6 V, Isp = 200 pA.

122

Figure 3. (a) Atomically resolved, mostly defect−free area of 5× 5 nm2 on ZrTe2. Vb = +0.6 V,
Isp = 200 pA. (b) Height profile obtained along the blue line marked in (a).

3.1.2. Spectroscopy

As mentioned above, much of the recent interest in ZrTe2 stems from its classification
as a topological semimetal [28–31]. Hence, STS was conducted on ZrTe2 surfaces. The
spectroscopy results presented in Figure 4a were obtained on the surface shown in Figure 4b.
The spectrum averaged over the total area does not much differ from the one obtained
within the predominantly defect-free area (red rectangle), i.e., we did not observe any
significant differences in the local spectra despite the three obvious defects within the total
area of Figure 4b. As is clearly revealed in the inset, the density of states (DOS) in close
vicinity of the Fermi energy EF is small but finite (at least at the surface). This behavior is
in line with expectations for a semimetal [30] and the dI/dV follows the parabolic shape,
as observed for similar semimetals, e.g., MoTe2 [46]. We also note that the formation of a
CDW in a single layer of ZrTe2 resulted in a gap of ∼25 meV near EF [45]. The absence of
such a gap in our spectra is then a strong indication for the absence of a CDW in our bulk
material, at least down to T = 4.6 K.
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Figure 4. (a) Tunneling spectroscopy on a surface of ZrTe2. The inset shows a zoom into the low-
energy range of −0.15 V ≤ Vb ≤ +0.15 V. (b) Topography of an area of 6.2 × 6.2 nm2 within which
the spectroscopy result presented in (a) was obtained; Vb = +0.6 V, Isp = 200 pA.
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Figure 4. (a) Tunneling spectroscopy on a surface of ZrTe2. The inset shows a zoom into the
low−energy range of −0.15 V ≤ Vb ≤ +0.15 V. Spectra were averaged over the total (blue) area and
within the red rectangle. (b) Topography of total area 6.2× 6.2 nm2 studied to obtain the spectra in
(a); Vb = +0.6 V, Isp = 200 pA. The area of the red rectangle (4.2× 3.2 nm2) is largely free of defects.

It is instructive to compare the measured dI/dV, Figure 4, to the calculated band
structure and DOS of ZrTe2. In Figure 5, the results from [47–49] are reproduced within
an energy range −2 eV ≤ (E− EF) ≤ +2 eV. The overall behavior of the total DOS with a
very small magnitude at EF compares favorably to the dI/dV-data of Figure 4. The peak at
positive Vb can be recognized in the calculated DOS, albeit at a somewhat larger energy
(0.74 eV in the calculations). Here, we note that in our measurements, the position of this
maximum varied slightly between 0.47 V (as in Figure 4) and 0.54 V for different areas on
the sample surface. Moreover, a different calculation found a (double-) peak situated at
∼0.30 V and ∼0.47 V, while the overall parabola-shaped dI/dV-curve with a minimum
close to EF is not reproduced [50–54]. These comparisons emphasize that details of the local
electronic structure of the sample surfaces may vary slightly and may even be different
from band structure of the bulk.
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and consists of one ZrTe₂ sheet oriented in the (0, 0, 1) direction. Zr⁴⁺ is bonded to six equivalent Te²⁻ atoms to form
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Energy Above Hull $ 0.000 eV/atom

Predicted Formation
Energy

-1.162 eV/atom

Decomposition Path Not predicted to decompose

Amorphous Limit Not calculated

Phase Diagram at 0 K

How was this formation energy calculated?
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Band Gap 0.00 eV

Direct Gap No

Metallic Yes

Brillouin Zone

An incorrect calculation parameter may lead to errors in the band gap of 0.1-0.2 eV (LMAXIX is 2 and should be
4 for mp-1677780). A correction calculation is planned.

An incorrect calculation parameter may lead to errors in the band gap of 0.1-0.2 eV (LMAXIX is 2 and
should be 4 for mp-1594095). A correction calculation is planned.
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Materials Project is working on improving its phonon visualizations in the new website. For now, please visit the legacy
website here to view phonon information where available.
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Mode

Requests for live analysis tasks can take up to thirty seconds to return results.
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Requests for live analysis tasks can take up to thirty seconds to return results.
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Ordering Non-magnetic

Total Magnetization 0.00 µB/f.u.

Exchange Symmetry 164

Number of Unique
Magnetic Sites

0

Types of Magnetic
Species

No magnetic species.
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Stiffness Tensor (GPa)

Compliance Tensor (GPa)

Elastic Constants

Bulk Modulus, Voigt 18 GPa

Bulk Modulus, Reuss 10 GPa

Bulk Modulus, Voigt-Reuss-Hill 14 GPa

Shear Modulus, Voigt 16 GPa

Shear Modulus, Reuss 10 GPa

Shear Modulus, Voigt-Reuss-Hill 13 GPa

Poisson's Ratio 0.15

Universal Anisotropy 3.76

Visualie this elastic tensor with the ELATE tool.
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Absorbing Element

Spectrum Type

Charge Density "
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The charge density for this material is now available via the Charge Density API.

Requests for live data retrieval can take up to thirty seconds, especially for large charge densities. This feature is in beta.

Suggested Substrates "

Data Methods Calculations API

The following substrates are suggested as being compatible with this material based on their lattice parameters and
minimal co-incident area (MCIA) using the method of Zur and McGill and based on elastic energies, where elastic constants
are available. The current material is considered to be the film deposited on top of the substrate.
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peer-reviewed.
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Figure 5. Calculated band structure (left) and density of states (right) for ZrTe2. Figure reproduced
from [49].

The appearance of a weak Kondo effect in ZrTe2 was reported based on transport
measurements [32]. Typically, signatures of the Kondo effect can be seen in the dI/dV
spectra [18,55–57]. Our tunneling spectroscopy, Figure 4, does not provide any indication
for a Kondo effect being at play in ZrTe2. It should be noted, however, that the Kondo
effect may be suppressed at a sample surface due to a reduced Kondo screening as, e.g.,
experimentally observed in SmB6 [58].
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3.2. TmB4
3.2.1. Topography

Rare-earth tetraborides typically crystallize in the tetragonal ThB4 structure where the
B atoms form a continuous 3D network of octahedra and dimers, while the rare-earth atoms
lie in planes perpendicular to the c axis forming a two-dimensional (2D) Shastry–Sutherland
lattice [37] (cf. Figure 1). The resulting 3D conduction along with the 2D magnetism gives
rise to the interest in TmB4 [59]. TmB4 is difficult to cleave, albeit with a slightly higher
success rate compared to the hexaborides [25]. Only rarely did we observe the atomically
flat surfaces as those shown in Figure 6, where only a few step edges are found (Figure 6b).
The height of these step edges is estimated to be 0.41 nm (Figure 6c) and hence, confirms a
cleave along the crystallographic c direction.

Zooming into such terraces reveals two different types of termination: Type A is
presented in the atomically resolved surface of Figure 7 (left).

Here, the distance between the protrusions is estimated to be about 0.50 nm, corre-
sponding to a/

√
2 ≈ 0.498 nm. This, along with the linear arrangement of the protrusions,

likely indicates a B-terminated surface instead of a Tm one in Figure 1b. Indeed, one may
speculate that in the case of the red line, the tip scans over the apex B-atoms of the B
octahedra in TmB4, while the blue line scan involves the dimer B atoms (in the latter case,
the dimers are alternately aligned parallel and perpendicular to the scan direction). Such an
assignment is supported by the distance between the red and blue lines of 0.25 nm ≈ 1

4 a
√

2.
A Tm terminated surface is unlikely since an equal number of squares and triangles of Tm
would be expected to be observed in that case, along with a distance between Tm atoms of
3.62 Å.
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Figure 6. (a) Topography overview of cleaved TmB4 over an area of 200 × 200 nm2 exhibiting several
terraces; Vb = +0.4 V, Isp = 600 pA. (b) Zoom into one terrace within the ab plane, area 60 × 60 nm2,
Vb = +0.8 V, Isp = 600 pA, total height range 770 pm. Numerous individual defects are visible. Green
and blue rectangles mark areas within which spectroscopy was conducted, see Fig. 9. (c) Height scan
along the blue line marked in (a). The heights of the step edges of about 0.41 nm correspond to the
lattice constant c = 0.398 nm.
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present. The distance between protrusions of ∼0.7 nm fits well to the lattice constant a = 168

0.705 nm. Also in this case, a Tm termination is unlikely given the overall square arrange- 169

ment of the protrusions. We note that the topographies of Figs. 7 and 8 were obtained 170
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Figure 7. Topography (left) on TmB4 of type A; area of 5 × 5 nm2, Vb = +0.15 V, Isp = 600 pA. Right:
Height scans along the lines of corresponding color marked in the topography. The average distance
between protrusions is ∼0.5 nm.

Figure 6. (a) Topography overview of cleaved TmB4 over an area of 200× 200 nm2 exhibiting several
terraces; Vb = +0.4 V, Isp = 600 pA. (b) Zoom into one terrace within the ab plane, area 60× 60 nm2,
Vb = +0.8 V, Isp = 600 pA, total height range 770 pm. Numerous individual defects are visible. Green
and blue rectangles mark areas within which spectroscopy was conducted, see Figure 9. (c) Height
scan along the blue line marked in (a). The heights of the step edges of about 0.41 nm correspond to
the lattice constant c = 0.398 nm.
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Figure 6. (a) Topography overview of cleaved TmB4 over an area of 200 × 200 nm2 exhibiting several
terraces; Vb = +0.4 V, Isp = 600 pA. (b) Zoom into one terrace within the ab plane, area 60 × 60 nm2,
Vb = +0.8 V, Isp = 600 pA, total height range 770 pm. Numerous individual defects are visible. Green
and blue rectangles mark areas within which spectroscopy was conducted, see Fig. 9. (c) Height scan
along the blue line marked in (a). The heights of the step edges of about 0.41 nm correspond to the
lattice constant c = 0.398 nm.
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Figure 7. Topography (left) on TmB4 of type A; area of 5× 5 nm2, Vb = +0.15 V, Isp = 600 pA. Right:
Height scans along the lines of corresponding color marked in the topography. The average distance
between protrusions is ∼0.5 nm.

A topography of termination type B is shown in Figure 8. Here, the individual protru-
sions can more easily be recognized, but there also is a larger number of defects present.
The distance between protrusions of ∼0.7 nm fits well to the lattice constant a = 0.705 nm.
In this case, a Tm termination is unlikely given the overall square arrangement of the
protrusions. We note that the topographies of Figures 7 and 8 were obtained within dif-
ferent surface areas of the same sample, i.e., the underlying crystallographic alignment is
identical. With the line scans shown in Figure 7 likely taken along the [110] crystallographic
direction, the line scans of Figure 8 should correspond to the [100] direction. However, from
a merely crystallographic viewpoint, a distance between protrusions of a along the main
crystallographic direction is not expected. Here, one possibility that cannot be ruled out is a
surface reconstruction. Similarly, superstructures may form at the surface as, e.g., observed
on Fe2O3 [60]. Another intriguing possibility is an interplay between the electronic and
magnetic degrees of freedom. At our measurement temperature of 4.6 K, TmB4 orders
antiferromagnetically with the Tm moments pointing along the [001] direction [33,61] and
resulting in a magnetic square unit cell of length a (see, e.g., [33]). One may speculate that
this magnetic order has some influence on the topography of Figure 8, either by locally
modifying the density of states or, if by chance our W tip had picked up a Tm atom from
the surface and turned into a magnetic tip, by directly visualizing the magnetic order (see
e.g., [25,62]). These possibilities have to be scrutinized by future investigations.
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Figure 8. Atomically resolved surface topography type B (left) of TmB4; area of 10 × 10 nm2,
Vb = +0.4 V, Isp = 600 pA. Right: Height scans along the lines of corresponding color marked in the
topography. The average distance between protrusions is ∼0.7 nm.
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Figure 8. Atomically resolved surface topography type B (left) of TmB4; area of 10 × 10 nm2,
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topography. The average distance between protrusions is ∼0.7 nm.

3.2.2. Spectroscopy

Tunneling spectroscopy averaged over the areas marked in Figure 6b is presented
in Figure 9. In line with TmB4 being a metal [33,59], there is a large DOS found at EF.
We note that the two dI/dV-curves are qualitatively very similar and rather featureless.
The latter is consistent with the small crystal field energy scales suggested in [59] which
cannot be resolved by our STS. Moreover, a featureless DOS near EF has also been predicted
in [63] (albeit without magnetic ordering). In contrast, strong peaks in the (spin resolved)
DOS close to EF were reported in [64] based on band structure calculations including
strong electronic correlation effects, but not confirmed by our STS data. Here, we should
note that the aforementioned calculations are bulk calculations, i.e., they did not take
into consideration any surface termination (as, e.g., in the case of slab calculations). As
a consequence, the calculated (bulk) DOS and the surface DOS can differ considerably.
Clearly, further efforts are required to provide insight into the electronic band structure
of TmB4.

7-1,	+0.8V,	0.6nA

PRB	99,045119	(2019)

Figure 9. Spectroscopy on TmB4 within the two areas (denoted as S1 and S2) marked by the same
color in Figure 6b. Set point: Vb = +0.8 V, Isp = 0.6 nA.

4. Discussion

Both materials, ZrTe2 and TmB4, were successfully prepared for STM/S investigations
by in situ cleaving. In the case of ZrTe2, excellent atomically resolved surfaces could be
obtained effortlessly, as expected for this 2D compound. The observed defects point to
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a small number of intercalated Zr (from Figure 2 approximately one intercalated Zr per
56 unit cells) and a tiny amount of Te vacancies (about one vacancy per 500 unit cells)
testifying the excellent quality of the material. Nonetheless, these defects may give rise to
some amount of doping in this material [65]; in particular, intercalated Zr may act as an
electron donor. Such doping effects may contribute to the fact that the calculated electronic
band structure of ZrTe2 can only qualitatively be compared to the measured dI/dV-spectra.
In addition, we wish to emphasize again that STS is extremely surface sensitive while the
calculations of Refs. [47,48] were conducted for the bulk of the material.

Atomically flat surfaces of TmB4 could only rarely be located, similar to the case of
the hexaborides [25]. Two different types of surfaces could be found, both of which are
unlikely to correspond to Tm terminations. Our dI/dV-data clearly reflect the metallic
nature of TmB4. Beyond this, however, a comparison between the DOS inferred from our
STS and the results of band structure calculations is difficult.

Clearly, for both materials further insight from theory as well as from future experi-
ments (including also ARPES) is highly needed. Here, we emphasize that, specifically if
non-trivial topology is to be utilized in future applications, the materials properties of the
surface play an important role.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/condmat8010009/s1, Figure S1: EDX of ZrTe2; Table S1: Chemical
composition of ZrTe2 obtained by EDX; Figure S2: photograph and Laue pattern of TmB4 single
crystal; Figure S3: XRD of TmB4. References [37,66] are cited in the Supplementary Materials.
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