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Abstract: The physical mechanisms supporting the existence of topological interface modes in
photonic structures, formed with the concatenation of two finite, N-period, one-dimensional photonic
crystals, are investigated. It is shown that these mechanisms originate from a specific configuration
of bands and bandgaps of topological origin in the band structure of the concatenated structure. Our
analysis reveals that the characteristics of such a configuration depend on the structural parameters,
including the number, N, of unit cells, and determine the properties of the corresponding resonant
transmission peak. It was shown that the width and maximum value of the transmission peaks
decrease with N. These results not only provide new physical insight into the origin and nature of
such modes, but also can be used to control and manipulate the transmission peak properties, such
as peak values, full width at half maximum (FWHM), and Q-factor, which are of special interest in
the fields of optical sensing, filters, etc.

Keywords: finite crystals; electromagnetic wave propagation; topological interface states; photonic
structures

1. Introduction

Since the seminal work of Haldane and Raghu [1], many theoretical and experimental
works have been devoted to the study of topological phenomena in photonic crystals [2],
which are artificial periodic arrays of materials with different refractive indices in one,
two, and three dimensions. This interest is motivated by the fact that photonic crystals
offer the possibility of controlling and manipulating the properties of light, a possibility
closely related to the existence of photonic bandgaps in the dispersion relation of these
structures. Thus, if the frequency of a light beam is in the range of a bandgap, the beam
cannot propagate inside the structure, leading to remarkable features that have applications
in many photonic devices, such as optical isolators, topological lasers, tunable filters,
and resonators [3–6].

Recently, special attention has been paid to the study of topological interface states
that can be formed at the boundary between two one-dimensional (1D) photonic crystals
(PCs) having overlapping bandgaps [7–16]. Although the existence of interface states on
such a boundary was first predicted by Kavokin et al. [7], the connection between these
modes, called optical Tamm states, and topological concepts was shown by Xiao et al. [8].
Now, there are two aspects of fundamental importance in these studies. One of them refers
to the existence of such states and their topological nature. In contrast, the second one is
related to the importance of their properties from a fundamental and practical point of view.
The first aspect is implemented by using the electromagnetic and topological properties
of the constitutive PCs. While the existence is guaranteed when the surface impedance
on both sides of the structure is of an opposite sign [8], the topological properties are
characterized by the Zak phases [15] associated with the band structure in each PC, which
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is directly related to the surface impedance [8]. For PCs with inversion symmetry, which
will be the focus of our attention, the Zak phase is a topological invariant that takes the
quantized values 0 or π if the origin of coordinates is chosen at the inversion center.

Furthermore, the properties of the topological interface states can be obtained by
studying the optical transmission spectrum’s corresponding resonant structure and the
electric field’s distribution around the interface between the two PCs. The former refers
to the transmission through the structure formed by concatenating the constituting PCs
(combined structure). These procedures have not only been used to verify the existence of
the considered states but also for studying the quantitative characteristics of quantities that
are of particular importance in applications such as transmission peak values, full width
at half maximum (FWHM), the Q-factor, etc. [13,16]. Although these studies have given
useful information about the properties of the topological interface modes, the physical
mechanisms supporting their existence and determining their main characteristics have
not been reported. It is the purpose of this work to explore the origin and nature of
these mechanisms.

In contrast to the existent approach, in which the condition for the existence of an
interface state has been established by using the topological properties of the constituting
PCs, here we focus on the role played by the band structure of the concatenated PCs. It is
shown, then, that the physical mechanism supporting the existence of the interface states
originates from a specific configuration of bands and bandgaps of topological origin in the
mentioned band structure. This result provides a novel understanding of the topological
interface states and an efficient procedure for controlling their properties, as shown below.

2. Theory

To carry out the study, we will focus our attention on the propagation of TE modes
in the photonic structure S shown schematically in Figure 1a, which is constructed with
the concatenation of two finite, N-period, photonic crystals [17–19], namely, PC1 and PC2,
where the former and latter materials occupy the left and right parts of the structure,
respectively, i.e., S = PC1 | PC2. In the following, the calculations will be performed by
using the transfer-matrix method, which can be easily implemented numerically.

(b)

t
r

PC2

N2 unit cells 

. . .. . .
UC1 UC1 UC2 UC2

N1 unit cells

PC1

i

(a)

B A B
( b, b) ( b, b)( a, a)

b/2 b/2a
0

d = a + b
Figure 1. (a) Photonic structure formed with the concatenation of two finite, N-period, photonic
crystals PC1 and PC2 composed of N1 and N2 unit cells, respectively. Horizontal arrows indicate the
incident (i), reflected (r), and transmitted (t) coefficients. (b) Each unit cell is composed of layers
A and B with permittivity and permeability (εa, µa) and (εb, µb). The period is given by d = a + b,
where a and b are the widths of layers A and B, respectively.
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To obtain the energy spectrum of the finite combined structure S, we adopt the proce-
dure in which S is taken as the unit cell of a 1D infinite periodic superlattice. As shown in
different calculations [20,21], this procedure appropriately describes the energy spectrum of
any finite structure, especially when its size is large enough. Thus, if M is the corresponding
transfer matrix through this unit cell and ω is the frequency of the electromagnetic field,
the expression determining the band structure is given by

cos β =
1
2

Tr(M) = F(ω), (1)

where β = KD is the Bloch phase, K the Bloch wavevector, D the period or unit cell size,
and the frequency-dependent function F(ω) also depends on the physical and geometrical
parameters of the structure.

The next step is to express the matrix M in terms of the transfer matrices M1 and M2
through PC1 and PC2, respectively, which are given by [17,18]

Mj = W
Nj
j =

sin Njβ j

sin β j
Wj −

sin(Nj − 1)β j

sin β j
I, (2)

with j = 1, 2, where Wj is the transfer matrix through the unit cell of PCj (see Figure 1b),
I the 2× 2 unit matrix, Nj the number of unit cells of PCj, and β j the Bloch phase, which
satisfies the dispersion relation of the infinite crystal associated with PCj:

cos β j=
1
2

Tr(W j) = f j(ω) (3)

Now taking into account that

M = M2M1 = WN2
2 WN1

1 , (4)

and combining this result with Equations (1) and (2), one finds the formula

cos β = K(ω) =
1
2

Tr(WN2
2 WN1

1 ) = K1
1
2

Tr(W2W1)

−K2
1
2

Tr(W2)− K3
1
2

Tr(W1) + K4, (5)

for the dispersion relation of the combined structure S, where

K1 =
sin N2β2 sin N1β1

sin β2 sin β1
,

K2 =
sin N2β2 sin(N1 − 1)β1

sin β2 sin β1
,

K3 =
sin(N2 − 1)β2 sin N1β1

sin β2 sin β1
,

K4 =
sin(N2 − 1)β2 sin(N1 − 1)β1

sin β2 sin β1
(6)

To obtain the explicit expression for Wj with j = 1, 2, we focus on a binary PC whole
unit cell consists of layers A and B with permittivity and permeability (εa, µa) and (εb, µb),
respectively, as shown in Figure 1b, where the origin of the coordinates is chosen at the
inversion center of layer A. The unit cell size or period is given by d = a + b, where a and b
are the widths of layers A and B, respectively. For this generic unit cell, it is straightforward
to show that [22]

W =

(
W11 W12
W21 W22

)
=

(
2ps− 1 2pq

2rs 2ps− 1

)
, (7)
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where
p = cos

1
2

aQa cos
1
2

bQb −
µbQa

µaQb
sin

1
2

aQa sin
1
2

bQb, (8)

q =
µa

Qa
sin

1
2

aQa cos
1
2

bQb +
µb
Qb

cos
1
2

aQa sin
1
2

bQb, (9)

r = −Qb
µb

cos
1
2

aQa sin
1
2

bQb −
Qa

µa
sin

1
2

aQa cos
1
2

bQb, (10)

s = cos
1
2

aQa cos
1
2

bQb −
µaQb
µbQa

sin
1
2

aQa sin
1
2

bQb. (11)

In these equations,

Qi =

√
ω2

c2 n2
i − q2, (12)

where i = a, b, ni =
√

εiµi is the refractive index of layer i, and q is the wave vector
component of the electromagnetic wave. In the following, the analysis will be carried out
for normal propagation, i.e., for q = 0.

Once the transfer matrix M = WN2
2 WN1

1 through the combined structure S is known,
the derivation of the formula determining the complex transmission coefficient t(ω) can
be found as follows. Limiting ourselves to the case where air is on both sides of S and
supposing that a monochromatic wave is incident from the left, as shown in Figure 1a, t(ω)
satisfies the following relation [23]:(

t(ω)
0

)
= T̂

(
1

r(ω)

)
, (13)

where r(ω) is the complex reflection coefficient and

T̂ =

(
T11 T12
T21 T22

)
= S−1

0 WN2
2 WN1

1 S0

= K1S−1
0 (W2W1)S0 − K2S−1

0 W2S0

−K3S−1
0 W1S0 + K4 I (14)

In this equation,

S0 =

(
1 1

iQ0 −iQ0

)
(15)

with Q0 =
√

ω2

c2 n2
0 − q2 being the positive component of the wavevector along the stacking

direction in air (n0 = 1). Using now Equation (13) and the fact that T̂ is a unimodular
matrix, one immediately obtains the following expression for the transmission amplitude:

t(ω) =
1

T22
, (16)

3. Results and Discussion

Let us use the above results to carry out a detailed study of the effects of the combined
structure S on the topological interface states. As we will see later, the Bloch phase β in
Equation (5) given by

β = arccos[K(ω)], (17)

plays a fundamental role in the analysis of these effects. In the following, of course,
we focus on S = PC1 | PC2 structures exhibiting topological interface modes, which,
as mentioned above, are formed in the frequency range where the photonic bandgaps of
the infinite crystals associated with PC1 and PC2 overlap. For one of these structures [8],
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which will be used to illustrate our theoretical considerations, the PC1 parameters are
ε1b = 3.8, ε1a = µ1a = µ1b = 1, a1 = 0.58d, b1 = 0.42d, whereas those of PC2 are ε2b = 4.2,
ε2a = µ2a = µ2b = 1, a2 = 0.62d, and b2 = 0.38d, where d is the period. Without loss of
generality, the numerical calculations will be presented for N1 = N2 = N, where N1 and
N2 are the number of unit cells of PC1 and PC2, respectively.

As shown in Ref. [8], this model structure exhibits a topological interface state localized
in the spectral region 7 in Figure 2, where we have displayed the functions f1(ω) and f2(ω)
in Equation (3), calculated from Equations (7)–(12). Notice that, ignoring some quantitative
details, the curve f1(ω) is essentially the same as that for f2(ω). This means that since the
frequency ranges for which

∣∣ f j(ω)
∣∣ > 1, with j = 1, 2, correspond to spectral regions of

stop bands, the bandgaps of one of the infinite crystals overlap with those of another one,
but only one of the overlapping regions support a localized mode. This can be verified by
calculating the Zak phases associated with the band structure of the infinite version of PC1
and PC2 and noting that in region 7 the topological phase transition occurs, guaranteeing
the existence of the interface mode. One can use two approaches to calculate the Zak phase
θn of each isolated band n. In one of them, θn is expressed as an integral over the Brillouin
zone in the reciprocal space of the Berry connection, whereas in the second one we can use
the symmetry of the band edge states. In the latter, if the two band edge states of band n
have the same symmetry, θn = 0, otherwise θn = π. Using the symmetry approach and
the fact that the zeros of the ω-dependent functions in Equations (8)–(11) determine the
symmetry properties of modes [24], it was found that θ6 = π and θ7 = 0 for the infinite PC1
superlattice, while θ6 = 0 and θ7 = π for another one, where θ6 and θ7 are, respectively,
the Zak phases of the bands located below and above the gap in region 7 in Figure 2. Note
the topological phase transition.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1

0

1

 i = 1
 i = 2

8

7

6

5

4

3

2

1

fi( )

Figure 2. Functions f1(ω) = 1
2 Tr(W1) and f2(ω) = 1

2 Tr(W2) as functions of Ω = ωd/2πc, where
W1 and W2 are the unit cell transfer matrices associated with the infinite version of PC1 and PC2,
respectively. The PC1 parameters are ε1b = 3.8, ε1a = µ1a = µ1b = 1, a1 = 0.58d, b1 = 0.42d, whereas
those of PC2 are ε2b = 4.2, ε2a = µ2a = µ2b = 1, a2 = 0.62d, b2 = 0.38d, where d is the period.
Note that the frequency regions where | fi(ω)| > 1, labeled by the numbers 1, 2, . . . , 8, determine the
corresponding bandgaps.
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Further, since the interface modes are formed in the combined structure S = PC1 | PC2,
it is important to know how the bandgaps of the infinite crystals associated with PC1 and
PC2 are reflected in the corresponding finite ones. To see this, we first use Equation (2) to
obtain the expression

cos KjDj=
1
2

Tr(W
Nj
j ) = Fj(ω) = cos N jβ j, (18)

for the dispersion relation of PCj with j = 1, 2, where Kj and Dj are the Bloch wavevector
and width of photonic crystal PCj, and β j was introduced in Equation (3). It follows
immediately from Equation (18) that the spectral regions where β j is a complex (real)
quantity are quantitatively reproduced by Kj. That is, the spectral regions where the infinite
version of PCj exhibits bandgaps (pass bands) are exactly the same as those for PCj. This
general result is illustrated in Figure 3 for the model structure considered above.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1

0

1

 f1( )
 F1( )

8

7

6

5

4

3

2

1

Figure 3. The same as in Figure 2, but substituting f2(ω) with F1(ω) = 1
2 Tr(WN1

1 ) for N1 = 7.

Furthermore, to compare the spectral distribution of bandgaps in the infinite crystals
with that of the combined structure S = PC1 | PC2, the functions f1(ω) in Equation (3)
and K(ω) in Equation (5) are depicted in Figure 4a as functions of ω. As one can see, both
distributions are essentially the same, except in region 7 where S exhibits the topological
interface state. This suggests a certain correlation between the band structure of S and the
characteristics of these states, which will be investigated next. Of course, the analysis will
be carried out in a certain frequency interval ∆ including the frequency range where the
mode is localized.

We begin by presenting in Figure 4b the results shown in Figure 4a, but for ω varying
within the chosen interval ∆. Note that in such an interval the band structure of S exhibits
two bands B1 and B2 sandwiched between two similar bandgaps labeled α and β. In order
to understand the origin and properties of these bands, we have displayed in Figures 5–8
the dependence with ω (in units of 2πc/d) of bands B1 and B2, the imaginary part of the
Bloch phase β(ω), and the transmission spectrum T(ω), calculated from Equation (16)
for increasing values of the number N of unit cells. As one clearly sees in each one of
these figures, (i) the bands B1 and B2 are separated by a minigap of width θ determining a



Condens. Matter 2023, 8, 63 7 of 11

frequency range where T(ω) reaches its peak value and Im[β(ω)] > 0. While these results
can be understood as being due to topological effects, the inequality is a consequence of the
fact that θ 6= 0. (ii) The bands B1 and B2 are located in a frequency interval δ determined
by the nearest edges of the similar α and β bandgaps and are distributed in such a way
that one is the mirror image of the other. This explains the ω location and properties of
the transmission peak structure T(ω). In fact, when ω increases from left to right, T(ω)
increases with ω within the B1 passband and decreases inside the B2 passband, forming
the symmetric transmission peak structure observed in these figures.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1

0

1

2.46 2.48 2.50 2.52 2.54

-4

-2

0

2

 f1( )
 K( )

7

86

5

4

3

2

 

 

1

(a)

 f1( )  K( )

B2

 7

 

(b)
B1

Figure 4. (a) The same as in Figure 2, but substituting f2(ω) with K(ω) = 1
2 Tr(WN2

2 WN1
1 ) for

N1 = N2 = 7. (b) The same as in (a), but for Ω varying within a smaller frequency interval ∆ including
the bandgap 7. Symbols α and β label the corresponding bandgaps.

It is clear from Figures 5–8 that the interval δ is a decreasing function of the number N
of unit cells, leading to a reduction in the minigap width θ and, therefore, to a decrease in the
transmission peak width. It is important to notice that these modifications are accompanied
by a decrease in the resonant transmission peak, which tends to disappear for sufficiently
large values of the number N of unit cells. Physically, this behavior is a direct consequence
of the fact that, for N >> 1, the α and β bandgaps come together, leading to the formation
of a relatively large bandgap, which modifies the propagation of an electromagnetic wave
through the combined structure substantially. Certainly, if the frequency of the incident
wave is inside such a bandgap, it cannot propagate through the structure and will be
completely reflected. Mathematically, since the resonant transmission peak is formed in
the frequency range where the bandgaps of the infinite crystals associated with PC1 and
PC2 overlap, the Bloch phases β1 and β2 in Equation (6) are complex quantities, which
can be written as i φ and π + i φ at the Brillouin zone center and edge, respectively, where
φ is a real angle. Using these expression for β1 and β2 in Equations (6) and (14)–(16),
it is straightforward to show that the transmission spectrum T(ω) = |t(ω)|2 decreases
exponentially with the number N of unit cells for N|φ| >> 1.
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Figure 5. (a) Bands, (b) frequency-dependent transmission spectrum, and (c) imaginary part of Bloch
phase of the combined structure S, for N1 = N2 = 7 and Ω = ωd/2πc varying within the frequency
interval ∆ including the bandgap 7. Symbols α and β as in Figure 4b.

We have added two insets in panel (b) of Figures 7 and 8, where we present a zoom-in
of the central peak close to Ω = 2.5. The zoom-in has been performed to the point of
determining that there is no longer a way to hide the height of the transmission peak. Note
that as the value of N increases, the width of the central peak near Ω = 2.5 becomes smaller,
and its height decreases, as expected.

It should be added, finally, that while the topological phase transition occurring
between PC1 and PC2 guarantees the existence of the topological interface modes [8],
the configuration of bands and bandgaps discussed above determines the physical mech-
anism supporting them and the properties of the corresponding resonant transmission
peaks, whose characteristics can be controlled by the number N of unit cells. Such a control
can be used to design structures with the desired features.
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Figure 6. The same as in Figure 5, but for N1 = N2 = 10.
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Figure 7. The same as in Figure 5, but for N1 = N2 = 15. The inset in (b) shows a zoom-in of the
transmission peak located at Ω = 2.5026.
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Figure 8. The same as in Figure 5, but for N1 = N2 = 25. The inset in (b) shows a zoom-in of the
transmission peak located at Ω = 2.502570.

4. Conclusions

We have presented a detailed study of the physical mechanisms determining the
existence of topological interface modes in photonic structures. It was shown that these
mechanisms are directly correlated with the formation of bands and bandgaps of topological
origin in these structures, which can be used to explain the main characteristics of the
resonant transmission peaks associated with such modes. It was demonstrated that the
width and maximum value of these transmission peaks decrease when the number N of
unit cells increases. Consequently, such peaks tend to disappear for sufficiently large values
of N.

Finally, it is not difficult to verify that the results obtained in this work are general
enough and may be used to describe and understand the properties of the topological
interface modes in a wide variety of photonic structure.

Author Contributions: M.d.D.-L.: conceptualization, methodology, software, formal analysis, inves-
tigation, supervision, and writing; A.M.-G.: methodology, software, and formal analysis; C.A.D.: for-
mal analysis and writing. All authors have read and agreed to the published version of the manuscript.

Funding: C.A.D. is grateful to the Colombian agencies CODI-Universidad de Antioquia (Estrategia
de Sostenibilidad de la Universidad de Antioquia and projects “Propiedades magneto-ópticas y óptica
no lineal en superredes de Grafeno”, “Estudio de propiedades ópticas en sistemas semiconductores
de dimensiones nanoscópicas”, “Propiedades de transporte, espintrónicas y térmicas en el sistema
molecular ZincPorfirina”, and “Complejos excitónicos y propiedades de transporte en sistemas
nanométricos de semiconductores con simetría axial”), and Facultad de Ciencias Exactas y Naturales-
Universidad de Antioquia (CAD exclusive dedication project 2022–2023).



Condens. Matter 2023, 8, 63 11 of 11

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Haldane, F.D.M.; Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal

symmetry. Phys. Rev. Lett. 2008, 100, 013904. [CrossRef] [PubMed]
2. Sakoda, K. Optical properties of photonic crystals. In Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany,

2001; Volume 80.
3. Khanikaev, A.B.; Alu, A. Nonlinear dynamic reciprocity. Nat. Photonics 2015, 9, 359–361. [CrossRef]
4. Bahari, B.; Ndao, A.; Vallini, F.; Amili, A.E.; Fainman, Y.; Kanté, B. Nonreciprocal lasing in topological cavities in arbitrary

geometries. Science 2017, 358, 636–640. [CrossRef]
5. Zhou, R.; Wang, X.; Zhou, B.; Gao, Y.; Liu, X.; Wu, L.; Li, H.; Chen, X.; Lu, W. Extrinsic photonic band structure calculations of a

doped semiconductor under an external magnetic field. Phys. Lett. A 2008, 372, 5224–5228. [CrossRef]
6. Aly, A.H.; El-Naggar, S.A.; Elsayed, H.A. Tunability of two dimensional n-doped semiconductor photonic crystals based on the

Faraday effect. Opt. Express 2015, 23, 15038–15046. [CrossRef]
7. Kavokin, A.V.; Shelykh, I.A.; Malpuech, G. Lossless interface modes at the boundary between two periodic dielectric structures.

Phys. Rev. B 2005, 72, 233102. [CrossRef]
8. Xiao, M.; Zhang, Z.Q.; Chan, C.T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X

2014, 4, 021017. [CrossRef]
9. Gao, W.S.; Xiao, M.; Chan, C.T.; Tam, W.Y. Determination of Zak phase by reflection phase in 1D photonic crystals. Opt. Lett. 2015,

40, 5259–5262. [CrossRef]
10. Choi, K.H.; Ling, C.W.; Lee, K.F.; Tsang, Y.H.; Fung, K.H. Simultaneous multi-frequency topological edge modes between

one-dimensional photonic crystals. Opt. Lett. 2016, 41, 1644–1647. [CrossRef] [PubMed]
11. Wang, Q.; Xiao, M.; Liu, H.; Zhu, S.; Chan, C.T. Measurement of the Zak phase of photonic bands through the interface states of a

metasurface/photonic crystal. Phys. Rev. B 2016, 93, 041415. [CrossRef]
12. Kalozoumis, P.A.; Theocharis, G.; Achilleos, V.; Félix, S.; Richoux, O.; Simon, F.; Pagneux, V. Finite-size effects on topological

interface states in one-dimensional scattering systems. Phys. Rev. A 2018, 98, 023838. [CrossRef]
13. Elshahat, S.; Abood, I.; Esmail, M.S.M.; Ouyang, Z.; Lu, C. One-dimensional topological photonic crystal mirror heterostructure

for sensing. Nanomaterials 2021, 11, 1940. [CrossRef]
14. Palatnik, A.; Sudzius, M.; Meister, S.; Leo, K. One-dimensional planar topological laser. Nanophotonics 2021, 10, 2459–2465.

[CrossRef]
15. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 1989, 62, 2747–2750. [CrossRef] [PubMed]
16. Lin, Y.-C.; Chou, S.-H.; Hsueh, W.-J. Robust high-Q filter with complete transmission by conjugated topological photonic crystals.

Sci. Rep. 2020, 10, 7040. [CrossRef] [PubMed]
17. Bendickson, J.M.; Dowling, J.P.; Scalora, M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional,

photonic band-gap structures. Phys. Rev. E 1996, 53, 4107–4121. [CrossRef]
18. Sprung, D.W.L.; Wu, H.; Martorell, J. Scattering by a finite periodic potential. Am. J. Phys. 1993, 61, 1118–1124. [CrossRef]
19. Belyaev, V.; Zverev, N.; Abduev, A.; Zotov, A. E-Wave interaction with the one-dimensional photonic crystal with weak conductive

and transparent materials. Coatings 2023, 13, 712. [CrossRef]
20. Vinogradov, A.P.; Merzlikin, A.M. Band theory of light localization in one-dimensional disordered systems. Phys. Rev. E 2004, 70,

026610. [CrossRef]
21. Bruno-Alfonso, A.; de Dios-Leyva, M.; Oliveira, L.E. Shallow-impurity states of semiconductor Fibonacci superlattices. Phys. Rev.

B 1998, 57, 6573–6578. [CrossRef]
22. Cavalcanti, S.B.; de Dios-Leyva, M.; Reyes-Gómez, E.; Oliveira, L.E. Band structure and band-gap control in photonic superlattices.

Phys. Rev. B 2006, 74, 153102. [CrossRef]
23. de Dios-Leyva, M.; Drake-Pérez, J.C. Properties of the dispersion relation in finite one-dimensional photonic crystals. J. Appl.

Phys. 2011, 109, 103526. [CrossRef]
24. de Dios-Leyva, M.; González-Vasquez, O.E. Band structure and associated electromagnetic fields in one-dimensional photonic

crystals with left-handed materials. Phys. Rev. B 2008, 77, 125102. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1103/PhysRevLett.100.013904
http://www.ncbi.nlm.nih.gov/pubmed/18232766
http://dx.doi.org/10.1038/nphoton.2015.86
http://dx.doi.org/10.1126/science.aao4551
http://dx.doi.org/10.1016/j.physleta.2008.06.024
http://dx.doi.org/10.1364/OE.23.015038
http://dx.doi.org/10.1103/PhysRevB.72.233102
http://dx.doi.org/10.1103/PhysRevX.4.021017
http://dx.doi.org/10.1364/OL.40.005259
http://dx.doi.org/10.1364/OL.41.001644
http://www.ncbi.nlm.nih.gov/pubmed/27192308
http://dx.doi.org/10.1103/PhysRevB.93.041415
http://dx.doi.org/10.1103/PhysRevA.98.023838
http://dx.doi.org/10.3390/nano11081940
http://dx.doi.org/10.1515/nanoph-2021-0114
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://www.ncbi.nlm.nih.gov/pubmed/10040078
http://dx.doi.org/10.1038/s41598-020-64076-3
http://www.ncbi.nlm.nih.gov/pubmed/32341460
http://dx.doi.org/10.1103/PhysRevE.53.4107
http://dx.doi.org/10.1119/1.17306
http://dx.doi.org/10.3390/coatings13040712
http://dx.doi.org/10.1103/PhysRevE.70.026610
http://dx.doi.org/10.1103/PhysRevB.57.6573
http://dx.doi.org/10.1103/PhysRevB.74.153102
http://dx.doi.org/10.1063/1.3552601
http://dx.doi.org/10.1103/PhysRevB.77.125102

	Introduction
	Theory 
	Results and Discussion 
	Conclusions 
	References

