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Abstract: The temperature dependence of the two superconducting gaps in pressurised H3S at
155 GPa with a critical temperature of 203 K has been determined using a data analysis of the
experimental curve of the upper critical magnetic field as a function of temperature in the framework
of the two-band s-wave Eliashberg theory. Two different phonon-mediated intra-band Cooper
pairing channels in a regime of moderate strong couplings have the key role of the pair-exchange
interaction between the two gaps, giving the two non-diagonal terms of the coupling tensor, which
are missing in the single-band s-wave Eliashberg theory. The results provide a prediction of the
different temperature dependence of the small and large gaps as a function of temperature, which
provides evidence of multigap superconductivity in H3S.
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1. Introduction

The conventional superconducting state of low-critical-temperature superconductors
was described in 1957 by BCS theory in the dirty limit where multiple bands are reduced
to an effective single band, with a single large isotropic Fermi surface and a large Fermi
energy where Cooper pairs are formed by the exchange of a low-energy phonon. In this
classical approximation, the critical temperature is controlled by the phonon energy and
the electron–phonon interaction. The material-dependent critical temperature is calculated
by using the isotropic Eliashberg theory [1,2] with a single electron–phonon spectral func-
tion α2F(Ω) for the average interaction over the Fermi surface. This function in different
materials was determined previously from the inversion of tunnelling data, while now it is
calculated using density functional theory (DFT). The single-band approximation was also
found to break down for the element niobium [3] in 1970, but it was considered at that time
a mere curiosity. In the framework of the single-band approximation, the Fermi energy
is far from the band edges and therefore, the critical temperature does not show strong
anomalous variations as a function of the lattice compressive strain induced by pressure.
On the contrary, in the clean limit the multiband metals with different Fermi surfaces
give multigap superconductivity where the non-diagonal terms in the coupling tensor are
determined by an additional fundamental interaction beyond Cooper pairing in quantum
matter: the pair exchange between different gaps. While the hot topic for the majority of the
scientific community searching for the mechanism of superconductivity in high-Tc cuprate
superconductors was focusing the search for unconventional pairing mechanisms using a
single-band approximation, few authors focused on controlling the pair-exchange interac-
tion in the multigap scenario. The Bianconi Perali Valletta (BPV) theory predicted that, by
tuning the perovskite lattice strain or charge density, there is an asymmetric dome for the
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amplification of the critical temperature with a threshold at the Lifshitz transition for the
appearance of a new Fermi surface and a maximum at the Lifshitz transition for opening a
neck in the appearing Fermi surface. This is driven by the Fano–Feshbach resonance due
to configuration interactions between large and small gaps in the BEC-BCS regime and in
the BCS regime controlled by the non-diagonal terms of the coupling tensor of multigap
superconductivity [4]. Subsequently, in 2001, superconductivity at 40 K in magnesium
diboride (MgB2) was discovered [5], which was described by the two-band Eliashberg
theory [6,7] and the BPV theory [8,9]. The very large family of iron-based superconductors
discovered in 2008 [10] provided key evidence for a plurality of scenarios of multiband
superconductivity, with the number of bands ranging from three to five and the chemical
potential tuned near a Fano–Feshbach resonance or shape resonance between supercon-
ducting gaps [11]. In the last two decades, the extensive search for the pairing mechanism
in cuprates remained focused on strong correlation and d-wave symmetry of the order
parameter [12]. The history of high pressure as a tool to find novel high-temperature
superconductors begins with studies [13,14] focusing on pressurised metallic hydrogen
and pre-compressed hydrides until the prediction of Duan [15] and the experimental
discovery [16] in 2015. In 2015, after the discovery, the need for multigap superconductivity
theory to describe the 203 K superconductivity in sulfur hydride was noticed [17]. For
8 years, superconductivity in high-pressure hydrides [18] has been thoroughly investi-
gated in the single-band approximation [19,20]. The experimental hints that multiband
superconductivity could be relevant were, first, the anomalous pressure-dependent isotope
effect [21] and, later, the experimental evidence of the linear trend of the upper critical field
(Bc2) as a function of temperature [22]. In this article, we analyse the experimental data
available on Bc2 as a function of temperature using the multiband Eliashberg theory using
the simplest possible model still able to grasp the relevant physics of this system. Since we
do not know exactly all the input parameters that the two-band Eliashberg theory needs, we
will examine some possible scenarios that will be verified with future experiments. While
we were writing this work, Eremets’ group showed tunnelling effect measurements [23]
on H3S at a pressure of 155 GPa with a critical temperature of 203 K, which clearly show
two superconducting gaps: a small one at 10 meV and a large one at 25 meV at 77 K. Our
work was motivated by these new experimental data [23], which clearly demonstrate that
this system is multiband. Our very simple model showed that the experimental data can
be easily explained in Eliashberg’s two-band s-wave theory and that the electron–phonon
coupling is on the order of '1, i.e., half of what it had previously been valued [22].

2. The Model

We will try to explain the experimental data using the simplest possible model that,
despite the approximations, still manages to grasp the fundamental physical aspects.
Obviously, by giving up some approximations but losing simplicity, it will be possible
to further improve the agreement with the experimental data. The electronic structure
of the compound H3S can be approximately described by some large Fermi surfaces and
a small appearing Fermi surface [17]. The relevant bands, following the nomenclature
present in the literature, have been named [21] with the numbers 8, 9, 10, 11. Band 10 is
narrow (about 400 meV) and is associated with the large gap (50 meV), while the other
three bands are broad and are associated with the small gap (20 meV). In our model, the
density of states of the band indicated with index 2 will correspond to band 10 and thus,
its density of states at the Fermi level (N2(0) = 0.58 (cell·eV)−1), while the band indicated
with index 1 will correspond to bands 8, 9 and 11 with a density of states at the Fermi level
(N1(0) = 0.41 (cell·eV)−1), which corresponds to the sum of the contributions of these three
bands. To calculate the gaps and the critical temperature within the two-band Eliashberg
equations [24], one has to solve four coupled equations for the gaps ∆i(iωn) and the
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renormalization functions Zi(iωn), where i is a band index (that ranges between 1 and 2)
and ωn are the Matsubara frequencies. The imaginary-axis equations [6,24–27] read:

ωnZi(iωn) = ωn + πT ∑
m,j

Λij(iωn, iωm)NZ
j (iωm) +

+∑
j

[
ΓN

ij + ΓM
ij
]
NZ

j (iωn) (1)

Zi(iωn)∆i(iωn) = πT ∑
m,j

[
Λij(iωn, iωm)− µ∗ij(ωc)

]
·

·Θ(ωc − |ωm|)N∆
j (iωm) + ∑

j
[ΓN

ij − ΓM
ij ]N

∆
j (iωn) (2)

In these equations we have defined

Λij(iωn, iωm) = 2
∫ +∞

0
dΩΩα2

ijF(Ω)/[(ωn −ωm)
2 + Ω2]

and N∆
j (iωm) = ∆j(iωm)/

√
ω2

m + ∆2
j (iωm) and NZ

j (iωm) = ωm/
√

ω2
m + ∆2

j (iωm). The

parameters ΓN
ij and ΓM

ij are the scattering rates from non-magnetic and magnetic impurities,
while Θ is the Heaviside function and ωc is a cutoff energy. The quantities µ∗ij(ωc) are the
elements of the 2× 2 Coulomb pseudopotential matrix. The electron–phonon coupling

constants are defined as λij = 2
∫ +∞

0 dΩ
α2

ij F(Ω)

Ω . In the more general situation, the solution
of Equations (1) and (2) requires a large number of input parameters (four functions and
twelve constants). We have to introduce in the equations four electron–phonon spectral
functions α2

ijF(Ω), four elements of the Coulomb pseudopotential matrix µ∗ij(ωc), four

nonmagnetic ΓN
ij and four paramagnetic ΓM

ij = 0 impurity-scattering rates. However, some
of these parameters can be extracted from experiments and some can be fixed with suitable
approximations. In particular, we put ΓN

ij = 0 because, when the order parameter is in
an s-wave, the intraband component of the impurity scattering rate has no influence on
superconductive properties (Anderson theorem), while the interband contribution usually
has a negligible effect [28]. This parameter (ΓN

ij ) is relevant only for strongly disordered
non-s-wave superconductors, but this is not the case. The same can be performed for the
scattering rate from magnetic impurities that are absent, so we set ΓM

ij = 0. We assume that
the shape of the electron–phonon functions is the same and we rescale them by changing
the parameter λij, i.e., we write α2

ijF(Ω) = λijα
2F(Ω). The function α2F(Ω), normalized

to have electron–phonon coupling constant and equal to one, is taken from reference [29]
and was calculated for a pressure value very close to the experimental one. The values of

interband coupling are not independent because λij =
Nj(0)
Ni(0)

λji as the interband Coulomb

pseudopotential µ∗ij =
Nj(0)
Ni(0)

µ∗ji. Ni(0) is the density of states at the Fermi level for band
i. We know the values of N1(0) and N2(0), so, in this way, we have six free parameters:
three λij and three µ∗ij. For reducing the number of free parameters, we suppose that the
Coulomb pseudopotential µ∗ij is zero. This choice was made solely to reduce the number
of free parameters and in any case does not substantially change the physical picture of
the system. In this way, we will determine the minimal values of the electron–phonon
coupling constant, because if the Coulomb pseudopotential is different from zero the
coupling constants will be slightly greater. The Coulomb pseudopotential usually is a
relevant parameter just for the fullerenes [30]. At the end we have three free parameters:
λ11, λ21 and λ22. The strategy is to reproduce exactly (if it is possible) the experimental
values of the small gap at T = 77 K (∆2ex = 10 meV) [23] and the experimental critical
temperature Tcex = 203 K. In this way, we fix the three free parameters and after, we can
calculate other physical observables and compare them with experiments. Finally, we use for
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obtaining the numerical solution of the Eliashberg equations a cut-off energy ωc = 1090 meV
and a maximum quasiparticle energy ωmax = 1100 meV. We will examine three cases that
roughly exhaust all possible cases: the first case with loosely coupled bands, the second
case with intermediately coupled bands and the third case with strongly coupled bands.
Of course, in all cases examined the calculated critical temperature exactly reproduces the
experimental one.

3. Results

In the case of loosely coupled bands, the electron–boson coupling-constant matrix
λij becomes:

λij =

(
λ11 = 0.7250 λ12 = 0.0071
λ21 = 0.0050 λ22 = 1.4931

)
(3)

to produce a λtot = ((λ11 + λ12)N1(0) + (λ21 + λ22)N2(0))./(N1(0) + N2(0)) = 1.1808,
which represents the average of electron–phonon coupling. In Figure 1, the self energy
functions ∆(ω) and Z(ω) obtained by solving the Eliashberg equations in the real axis
formulation at T = 10 K are shown, while in the upper and lower insets are shown, respec-
tively, the electron–phonon spectral function α2F(Ω) and the superconductive density of
states, always at T = 10 K. The value of the small gap at T = 10 K is equal to 14.8 meV and
becomes equal to 10 meV at T = 77 K, which is exactly the measured value. The big gap at
T = 10 K is equal to 39.6 meV and becomes equal to 38.7 meV at T = 77 K, as is shown in
Figure 2, a value greater than the experimental value [23] of 25 meV. In the case where the
bands have an intermediate coupling, the electron–boson coupling-constant matrix λij is:

λij =

(
λ11 = 0.5000 λ12 = 0.0651
λ21 = 0.0460 λ22 = 1.5327

)
(4)

to produce λtot = 1.1589. Also in this case, the value of the small gap at T = 77 K is
exactly reproduced, while at T = 10 K, the values of the two gaps are 12.8 meV and
42.8 meV, respectively.

In the case where the bands are strongly coupled, the electron–boson coupling-constant
matrix λij is:

λij =

(
λ11 = 0.0050 λ12 = 0.1910
λ21 = 0.1350 λ22 = 1.5849

)
(5)

to produce λtot = 1.0888. As in the last case, the value of the small gap at T = 77 K is exactly
reproduced, while at T = 10 K the values of the two gaps are 10.3 meV and 43.1 meV,
respectively. In this case, there is very little difference between the small gap values at
10 K and 77 K because the bands are strongly coupled and the temperature behavior is
completely different, as it is possible to see in Figure 2. We can observe that in all cases we
are in a regime of moderate strong coupling (λtot = 1.1808, λtot = 1.1589 and λtot = 1.0888)
less than lead (λtot = 1.5500). Of course, this model is very simple and, for example, to
improve the agreement with the experimental data (large gap), one should consider that
the density of states around the Fermi level is not constant but would make the model more
complicated [31] and add nothing really essential to the physical explanation of the system.
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Figure 1. Real and imaginary parts of the self energy functions ∆(ω) and Z(ω) obtained by solving
the Eliashberg equations at T = 10 K in the real axis formulation in the three cases examined
(weak band coupling, dashed dotted lines; intermediate band coupling, solid lines; and strong band
coupling, dashed lines) are shown as functions of energy ω in the upper (∆i(ω)) and lower (Zi(ω))
panels. In the inset of the upper panel, the electron-phonon spectral function α2F(Ω) is shown, while
in the inset of lower panel, the superconductive densities of states at T = 10 K are shown (weak case,
red dashed dotted line; intermediate case, dark blue solid line; and strong case dashed black line).
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Figure 2. Calculated temperature dependence of the two gaps is shown (weak case, red dashed
dotted line; intermediate case, dark blue solid line; and strong case, dashed black line).

At this point, to decide which of the three cases examined is more plausible, we need
to examine other experimental data such as the temperature dependence of the upper
critical magnetic field. The multiband Eliashberg model developed above can also be used
to explain the experimental temperature dependence of the upper critical magnetic field.
The experimental data [22] show that Bc2(T) displays a linear dependence on temperature
over an extended range, as found in a strong coupling one-band superconductor or in a
multiband superconductor. Now we check if our model is able to explain the experimental
data. We will calculate the temperature behavior of the upper critical magnetic field in the
three cases examined and we will see if these experimental data will allow us to decide
which of the three cases best describes this system. For the sake of completeness, we give
here the linearized gap equations in the presence of a magnetic field with non-magnetic
impurity scattering [32,33]. In the following, vFj is the Fermi velocity of band j and Bc2 is
the upper critical magnetic field:

ωnZi(iωn) = ωn + πT ∑
m,j

[Λij(iωn − iωm) + δn,m
ΓN

ij

πT
]sign(ωm)

Zi(iωn)∆i(iωn) = πT ∑
m,j
{[Λij(iωn − iωm)− µ∗ij(ωc)] ·

·Θ(ωc − |ωm|) + δn,m
ΓN

ij

πT
}χj(iωm)Zj(iωm)∆j(iωm)

χj(iωm) = (2/
√

β j)
∫ +∞

0
dq exp(−q2) ·

· tan−1[
q
√

β j

|ωmZj(iωm)|+ iµBBc2sign(ωm)
]
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with β j = πBc2v2
Fj/(2Φ0). We know that the ratio of the Fermi velocities of the two

bands [21] is approximately equal to 0.13, so we assume that vF2 = vF1 × 0.13. In this
way, using the previously used electron–phonon coupling constants, we will fix the Fermi
velocity relative to band 2 in order to obtain the best fit of the experimental data. We
find in the first case (weak coupling between the two bands) vF2 = 8.455 × 105 m/s and
consequently, vF1 = 6.504 × 106 m/s. The value of the upper critical magnetic field at a
very low temperature is Bc2(T = 1 K) = 98.3 T. We proceed in the same way in the
second case, where the bands have an intermediate coupling between them. Now, we
find vF2 = 8.511 × 105 m/s and vF1 = 6.547 × 106 m/s with Bc2(T = 1 K) = 106.2 T. For
the last case, where the bands are strongly coupled, we find vF2 = 8.595 × 105 m/s and
vF1 = 6.612 × 106 m/s with Bc2(T = 1 K) = 99.7 T. Figure 3 shows the theoretical curves
relative to the three cases compared with the experimental data [22]. It is clearly seen that
in all cases the experimental measurements can be reproduced well. In order to decide
which of the three cases best describes the physics of the system, it would be necessary
to make tunnelling measurements to determine the trend of the two gaps as a function
of the temperature, which, as we can see in Figure 2, is profoundly different in the three
cases. Most likely, it is also possible to reproduce the upper critical field as a function of
temperature with the one-band Eliashberg theory, but with double the electron–phonon
coupling value [22]. We have not produced this calculation solely because the experimental
data of tunneling presented by Emerets [23] clearly show two distinct values of the gaps.

Figure 3. Experimental temperature dependence of the upper critical field in H3S (open circles) from
reference [22] and the theoretical curves (weak case, red dashed dotted line; intermediate case, dark
blue solid line; and strong case, dashed black line) obtained by solving the Eliashberg equations for
the upper magnetic field with the input parameters of the three cases.

4. Conclusions

We have been able to shed light on the quantum mechanism giving the high critical
temperature of pressurised H3S driven by unconventional anisotropic electron–phonon
interactions in different portions of multiple Fermi surfaces and pair-exchange interac-
tions, like the Majorana exchange force in nuclear heterogeneous matter made of multiple
components [34–36] and the coexistence of weak and strong electron–phonon interactions.



Condens. Matter 2023, 8, 69 8 of 9

The critical temperature, the small gap value and the behavior of the upper critical field
as a function of temperature are well-reproduced in the framework of two-band s-wave
Eliashberg theory with Cooper pairing in a regime of moderate strong coupling and a small
essential pair-exchange interaction missing in the standard single-band model. We predict
a different temperature dependence of the large and small gaps in the intermediate two-gap
regime proposed for pressurized sulfur hydride. To establish which of the three discussed
regimes is the correct one, it will be necessary to obtain further experimental data on the
temperature dependence of the two gaps by using tunnelling measurements.
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