
Citation: Alarco, J.A.; Mackinnon,

I.D.R. Superlattices,

Bonding-Antibonding, Fermi Surface

Nesting, and Superconductivity.

Condens. Matter 2023, 8, 72. https://

doi.org/10.3390/condmat8030072

Academic Editor: Yoshikazu

Mizuguchi

Received: 25 June 2023

Revised: 1 August 2023

Accepted: 8 August 2023

Published: 15 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Superlattices, Bonding-Antibonding, Fermi Surface Nesting,
and Superconductivity
Jose A. Alarco 1,2,3,* and Ian D. R. Mackinnon 3,4

1 School of Chemistry and Physics, Faculty of Science, Queensland University of Technology,
Brisbane, QLD 4000, Australia

2 Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
3 Centre for Clean Energy Technologies and Practices, Queensland University of Technology,

Brisbane, QLD 4000, Australia; ian.mackinnon@qut.edu.au
4 School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology,

Brisbane, QLD 4000, Australia
* Correspondence: jose.alarco@qut.edu.au

Abstract: Raman and synchrotron THz absorption spectral measurements on MgB2 provide exper-
imental evidence for electron orbital superlattices. In earlier work, we have detected THz spectra
that show superlattice absorption peaks with low wavenumbers, for which spectral density evolves
and intensifies after cooling below the superconducting transition temperature for MgB2. In this
work, we show how these observations indicate a direct connection to superconducting properties
and mechanisms. Bonding–antibonding orbital character is identified in calculated electronic band
structures and Fermi surfaces consistent with superlattice structures along the c-axis. DFT calcula-
tions show that superlattice folding of reciprocal space generates Brillouin zone boundary reflections,
Umklapp processes, and substantially enhances nesting relationships. Tight binding equations are
compared with expected charge density waves from nesting relationships and adjusted to explicitly
accommodate these linked processes. Systematic analysis of electronic band structures and Fermi
surfaces allows for direct identification of Cooper pairing and the superconducting gap, particularly
when the k-grid resolution of a calculation is suitably calibrated to structural parameters. Thus, we
detail a robust and accurate DFT re-interpretation of BCS superconductivity for MgB2.

Keywords: density functional theory; superlattice; electronic band structure; orbital; bonding;
antibonding; Fermi surface; nesting; charge density wave; superconductivity; mechanisms; MgB2

1. Introduction

Density functional theory (DFT) calculations have contributed, and continue to con-
tribute, substantially to our improved understanding of the properties of materials [1–8],
including those of superconductors [9–11]. For example, using DFT, binary metal hydrides
were predicted to be superconductors at or near room temperature, although requiring very
high pressures (>100 GPa) to form as stable phases [12–23]. Several predicted materials
have been successfully synthesized and shown to undergo a superconducting transition
close to the predicted temperatures [24–28]. Predicted superconducting transition temper-
atures (Tc) are conventionally estimated via calculation of the electron–phonon coupling
(EPC), an important and common practice for DFT calculations on superconductors [29,30].
This practice follows learnings from the Eliashberg or Migdal–Eliashberg theory, often
making use of the simplified McMillan equations for determining Tc [31–33].

An EPC calculation integrates the product of the density of electronic states and
phonon states in all directions to obtain a weighted average value. However, density of
states approaches typically result in a compromise with fine granular detail, particularly
when precise geometric information from detailed dispersion relationships is lacking [34].
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Full phonon dispersions and electronic band structures include increased detail of geo-
metric information; however, while this detail is available, it is seldom extracted in full or
utilised. For compounds with more complex compositions and crystal structures than metal
hydrides, the commonly preferred EPC focus can result in loss of significant geometric, or
crystallographic, information, both in real and reciprocal spaces. We posit that such three-
dimensional information from electronic band structures, phonon dispersions, and Fermi
surfaces may provide key additional insight that complements our understanding of super-
conducting behaviour. The interpretation of these features and their relative importance
for particular compounds are best obtained via appropriately structured DFT calculations.

For example, valuable insights on materials including superconductors have also
been gained from questioning the limitations of DFT [35–41]. DFT procedures normally
make use of linear approximations [3–5], even though linearity may not properly represent
physical realities, particularly for superconductors. Well-constructed discussion papers on
the role of anharmonicity in superconductivity have been published and we refer the reader
to key articles for further details [39–41]. A further misconception with DFT procedures is
that calculated electronic band structures and phonon dispersions cannot provide detailed
information on the superconducting gap. It is this specific question that we address in this
paper for electronic band structures, as a complement to our earlier recognition that the
relative energy of the Kohn anomaly in MgB2 is a good indicator of Tc [42,43].

We have demonstrated, along with others [35–38], that the accuracy of DFT results
depends on calculation setup choices, such as the density of k-grid values, cut off energies
or radii, pseudopotentials, symmetry assumptions, convergence tolerances, and other
resolution-related factors specific to a compound’s structure. Variability of results is to be
expected for discrete DFT calculations given the variety of possible physical assumptions
and setup conditions for calculations, in much the same way as a calculation on integral
numbers is approximated by vertical rectangular areas of different widths. Such variability
may not significantly affect calculated values in the electron Volt (eV) range. However, for
electronic phenomena defined by, for example, the superconducting gap, typically recog-
nised as in the meV range, the degree of variability should be less than the physical value
of interest for the calculation to be suited to useful physical interpretation [35,36,38,44].

From a fundamental standpoint, DFT calculations can be conducted, for instance,
using algorithms that describe either plane waves or linear combinations of atomic orbitals
(LCAO) [45–47]. The plane wave method considers the symmetries of a crystal (as a
whole). This approach is suitable for delocalised Bloch-type wave functions, but ignores
the symmetry environment of constituent atoms, resulting in loss of detail about the
relationship(s) between atomic and crystalline states [48]. Conversely, the LCAO method
utilises atomic orbital character, local point symmetry, and directional orbital overlap
to define electronic structure and phonon behaviour [45–47]. Thus, the LCAO method
explicitly retains the relationship between atomic orbitals and the band structure [47,48]
Ultimately, atomic orbital interactions determine the conditions for bonding in crystals,
for which orbital directions must overlap, orbital energies must match approximately,
and orbitals must have the correct symmetry [49]. This information is more relatable for
the experimental chemist who aims at designing and synthesizing new superconducting
materials with predicted properties [46,47].

We have shown evidence of superlattice symmetries in MgB2 materials by exper-
iment, from peaks in Raman spectra [44] and, more recently, using synchrotron THz
spectroscopy [50]. These THz results display clear increases in spectral density of the low
wavenumber absorption peaks when MgB2 samples are cooled below the superconducting
transition temperature(s) [50]. These results reveal that MgB2 type materials (i.e., including
substituted forms) show lower symmetries than the typically attributed P6/mmm sym-
metry (space group 191) used for many published investigations. Similar observations of
superlattice peaks have been made on a wider range of superconductor materials, including
Nb3Sn, FeSe, and YBa2Cu3O7−x superconductors.



Condens. Matter 2023, 8, 72 3 of 13

In this work, we further discuss the implications of these experimental results, focused
on MgB2, and revisit interpretations of DFT band structure calculations considering su-
perlattice symmetry. As shown below, connections between orbital character and band
structure can also be inferred from bands calculated using plane wave methods. Important
phase relationships can be identified by the variation in band structure(s) between the
reciprocal space centre point, Γ, and positions at the Brillouin zone boundaries. These rela-
tionships provide numerical detail on the superconducting gap value and key mechanistic
information on superconductivity.

2. Results

In our search for the potential origins of superlattices, we revisited the information con-
tained in the DFT calculated electronic band structures reported in earlier publications [44,50].
We have identified additional details on phase relationships embedded in the variation of
electronic band energies distributed between the Γ-point and the Brillouin zone bound-
aries, as described by Stohr and Siegmann [51], Canadell, Doublet and Iung [47], and
Sutton [46]. Shifts in band energies from bonding to antibonding character (and vice versa)
are identified along different reciprocal directions as discussed below.

2.1. Electronic Band Structures: Unit Cells and Superlattices

Figure 1 shows the DFT calculated electronic band structure for MgB2 attributed with
typical P6/mmm symmetry. An approximately cosine band shape is apparent for the
σ-band along the ΓA direction, with an inflection at the mid-point (ΓA/2) [38,52–56]. A
change from bonding to antibonding character is also shown along the ΓA (or kz) direction.
In contrast, the σ-bands along the ΓK and ΓM directions show antibonding character at Γ,
and then show bonding character at K and M, respectively.
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Figure 1. Calculated DFT electronic band structure [50] for MgB2 with P6/mmm symmetry (space
group 191) and k = 0.005 Å−1. The cosine character of the σ-band in the ΓA direction is apparent.
Changes from bonding to antibonding character, and vice versa, along different reciprocal directions
are labelled. Note the “apparent” inconsistent character for σ-orbital(s) at Γ using P6/mmm, they are
both bonding and antibonding. This either means the specific reciprocal direction is important—that
is, Γ–A, K–Γ, and Γ–M—or the 2D representation is inappropriate.

These observations are documented in our previous publication [50] and schematics of
the bonding and antibonding character at the Γ-point of the σ-bands in respective reciprocal
directions are shown in Figures 3 and 4 of reference [50]. The apparent inconsistency in this
2D representation is highlighted in Figure 1 which shows both bonding and antibonding
orbitals at Γ suggesting that either the calculation is inaccurate, or the symmetry condi-
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tion is inappropriate. Given our comments regarding resolution requirements for DFT
calculations [35,36], the latter suggestion is readily evaluated based on our earlier work
with superlattice symmetric sub-sets for AlB2-type structures [44]. We present a schematic
interpretation of orbital character for conventional and superlattice constructs of MgB2 in
Figure 2.
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Figure 2. (a) Attempt at identifying the orbital character at the Γ point along the kz direction,
assuming symmetry elements of the P6/mmm group symmetry. Orbital symmetries inferred from
band structure results cannot be correctly accommodated. (b) Identified bonding character at the
Γ-point of pz (s)-bands. These schematics are discussed in further detail in reference [50].

2.2. Energy Values and Fermi Surfaces

Figure 3 shows an enlarged view close to the Fermi level of the calculated electronic
band structure for MgB2 (i.e., <0.9 eV) along the ΓA or kz direction, assuming P-6c2 sym-
metry. This band is a folded representation of the electronic band structure along the
kz direction shown in Figure 1 for P6/mmm symmetry. Energy values at key symmetry
points are labelled. These energy values are determined by revised tight-binding equations
as described in Section 3.2 and are also displayed on the right of Figure 3. Notice that
the bonding and antibonding bands are not completely symmetric, and that the offset
from the symmetric average position at Γ corresponds to the superconducting gap energy
(∆ = 7.89 meV, 2∆ = 15.77 meV). Further details on the effect of band folding along the
ΓA direction due to lower symmetry conditions are provided in Supplementary Materials
(Figure S2) and as applied to phonon dispersions in reference [50].

We also explore relevant Fermi surface(s) aligned along the c-axis using these same
DFT calculations for different space group symmetries. In the same fashion that a double
superlattice folds the reciprocal directions in a band structure representation, Fermi surfaces
also undergo folding. Figure 4a shows the Fermi surface for MgB2 with a P6/mmm
symmetry. As noted earlier, the reciprocal space projection for MgB2 normal to a*–c*
shows an “hourglass” format of Fermi surfaces, representing the light and heavy effective
masses [42]. With DFT calculations based on a lower P-6c2 symmetry, Fermi surfaces for
the a*–c* projection—at the same scale—show more clearly the folded tubular sections
for the light (Figure 4b) and heavy (Figure 4c) effective masses. Note that similar tubular
shapes, albeit with different dimensions along a*, are evident in Figure 4b,c.



Condens. Matter 2023, 8, 72 5 of 13Condens. Matter 2023, 8, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 3. Enlarged view of Figure 1 along the ΓA direction for the calculated electronic band (in 
blue) of MgB2 containing a double superlattice along the c-axis with P-6c2 symmetry (space group 
190). Energy values in meV at key symmetry points are labelled. Labels to the right are related to 
the revised tight-binding equations, E0 = 582.21 meV, 2t⊥ = 191.18 meV, D = 7.88 meV (see Section 
3.2). 

We also explore relevant Fermi surface(s) aligned along the c-axis using these same 
DFT calculations for different space group symmetries. In the same fashion that a double 
superlattice folds the reciprocal directions in a band structure representation, Fermi 
surfaces also undergo folding. Figure 4a shows the Fermi surface for MgB2 with a 
P6/mmm symmetry. As noted earlier, the reciprocal space projection for MgB2 normal to 
a*–c*shows an “hourglass” format of Fermi surfaces, representing the light and heavy 
effective masses [42]. With DFT calculations based on a lower P-6c2 symmetry, Fermi 
surfaces for the a*–c* projection—at the same scale—show more clearly the folded tubular 
sections for the light (Figure 4b) and heavy (Figure 4c) effective masses. Note that similar 
tubular shapes, albeit with different dimensions along a*, are evident in Figure 4b,c. 

 

(a) 
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3. Discussion

Through systematic calculations on selected superconductors, we have provided clear
evidence that high k-grid resolution is required to reduce, or minimise, the variability
of calculated parameters below, or at meV resolution [35,36]. By the same token, high
k-grid resolution is required to discern details in calculated electronic band structures and
with Kohn anomalies in phonon dispersions that correlate well with the superconducting
gap [42,43,57]. This fine k-grid requirement can place a high computational demand
on resources, well above the average level generally available and often reported in the
published literature [35,36]. For DFT calculations on MgB2 as described below in Methods,
we estimate the resolution of calculated energy parameters to within ±1 meV. Further
details on this estimate are provided in the Supplementary section (Table S1).

The presence of superlattice structures in MgB2 has been determined experimen-
tally using Raman and synchrotron THz spectroscopy [44,50], as well as by neutron
diffraction [58] and synchrotron X-ray measurements [59]. In actual physical superlattices
of scandium-doped MgB2, Kohn anomalies have been proposed as important ingredients
for their superconductivity [60]. They have also been proposed as universal ingredients in
multigap, multiband pairing mechanisms [61]. More recently, based on quantitative first-
principles theory results, Kohn anomalies have been discussed as relevant in a wider range
of high Tc superlattice materials [62]. The following discussion focuses on implications for
the presence of electron orbital superlattice structures in superconductors using MgB2 as
an archetypical example.

3.1. Fermi Surface Nesting: Density Waves

Figure 5 shows a schematic for Fermi surface folding of the light effective mass tubular
section, based on DFT results in Figure 4. Fermi surface nesting, identified as large sections
of a Fermi surface connected by the same vector, is noted in earlier work using P6/mmm
symmetry [42,43]. However, nesting is much more obvious and clearly indicated for MgB2
using DFT calculations based on a 2c superlattice symmetry such as P-6c2. Similarly, the
heavy effective mass tubular section for MgB2 (Figure 4c) shows nesting with slightly
longer vectors (ΓM/2).
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Figure 5. Schematics of the folded inner tube Fermi surface for the double (2×) superlattice, for
which a DFT calculated Fermi surface is shown in Figure 4. Fermi surface nesting is prevalent for
the double superlattice with a vector approximately: (a) ΓM/3 long along the horizontal direction;
(b) ΓM/3 + p/c z along the diagonal direction. The horizontal projection of the diagonal nesting
vector is ΓM/3, as shown in (c).

Nesting also occurs between the same sides of light and heavy effective mass tubular
sections (with horizontal vector ΓM/12), as shown in supplementary Figure S2. The
magnitude of this short horizontal nesting vector is equal to the difference in light and
heavy effective mass Fermi wavevectors. Each tubular section gives rise to three sets of
nesting vectors: one horizontal and two in diagonal directions. The Fermi wavevector at
the inflection point is half the magnitude of the longest horizontal nesting vector. Therefore,
the nesting vectors along the ΓM direction are approximately ΓM/3 and ΓM/2 for the
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light and heavy effective mass tubular sections, respectively (see Supplemental Figure S9
in reference [50] and Figure S1). Diagonal nesting vectors include the same horizontal
component as the horizontal nesting vector and π/c as a perpendicular component.

Most, if not all, nesting vectors connect a bonding to an antibonding section of the
Fermi surface, including for the horizontal short nesting vector (as shown in Figure 5). At
a certain instant of time, we expect that the bonding orbital is populated with electrons,
while the antibonding orbital is empty. If a nesting vector is associated with electrons
transferring or hopping synchronously from bonding to antibonding orbitals, then we also
expect that the orbital population will be periodically shifted or displaced consistently
with the symmetry of the site. In this way, we can recognise that oscillating bonding and
antibonding character with nesting vectors connecting these two orbital elements suggest a
resonating behaviour defined by the structural symmetry of MgB2.

The theory for density waves in solids indicates that electron–hole pairs of states, for
which the nesting condition applies, develop modulations with periodicity determined
by the nesting vector Q = (2kF, π/c) [63]. Such a nesting vector, when the same vector
connects substantial sections of the Fermi surface, is perfect or nearly perfect. This type
of nesting vector contributes a divergence or singularity to the Lindhard response func-
tion. This Lindhard function relates an induced charge to the action of an external time
independent potential.

A charge density wave has a modulation with wavevector q‖ = 2kF in the in-plane
direction. In the perpendicular direction, the wavevector, q⊥ = π/c, signals that planes
separated by c are out of phase. The period of a charge density wave is related to kF by
λo = π/kF. For a small dispersion in the kz direction, proximity to the Fermi energy and
nearly perfect nesting, the following equations apply [63]:

E(k) = E0 − 2tccos(kzc), (1)

kx,y(kz) = kF +

(
2tc

vF

)
· cos(kzc). (2)

These equations, originating in principle from the perspective of Fermi surface nest-
ing, resemble tight-binding equations used to describe the tubular sections of the Fermi
surface around ΓA for MgB2 [38,52–56]. Thus, nesting conditions that normally lead to
charge density waves are ubiquitous within the Fermi surface topology of an MgB2 double
superlattice along the c-axis. We believe this condition may apply more generally to the
Fermi surfaces of many other layered superconductors, if not all layered forms, since these
are all approximately described by identical types of tight-binding equations [52–56].

3.2. Revised Tight-Binding Equations

With accurately determined energy values at symmetry points based on electronic
band structure calculations, we revisit tight-binding equations for the bonding and anti-
bonding branches of the σ-bands in the kz direction. For this analysis, accuracy is important
because small deviations in the order of several meV’s could be sufficient to blur and mask
the clear and systematic identification of gap energy from the electronic band energy.

Tight-binding equations are normally written as [50]:

En
(
kx, ky, kz

)
= E0 − 2t⊥cos (ckz)− h̄2

(
k2

x + k2
y

)
/2mn , 0 ≤ ckz ≤ π (3)

where t⊥ is the transfer coefficient and mn are the heavy and light effective masses.
However, careful inspection of the energy values at key symmetry points indicates

that these energies are not part of the same, single cosine function. The energies in the
antibonding branch of the Fermi surface are slightly offset by a value 2∆ of energy (for a
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given kz) from the energies of the bonding branch of the Fermi surface. Hence, we adjust
Equation (3) as follows:

En
(
kx, ky, kz

)
= E0 −

(
2tn
⊥−∆) cos(ckz)− h̄2

(
k2

x + k2
y

)
/2mn ,

0 ≤ ckz ≤ π
2

(4)

En
(
kx, ky, kz

)
= E0 −

(
2tn
⊥+∆) cos(ckz)− h̄2

(
k2

x + k2
y

)
/2mn ,

π
2 ≤ ckz ≤ π

(5)

where we add the index n for heavy and light effective masses to the transfer coefficient,
because under pressure the curvatures of the surfaces change.

The bonding and antibonding energy bands in the kz direction (as shown in Figure 3)
show a strong similarity to the extended Hückel approach for orbitals and bands of a chain
of (dimerised) hydrogens (see for example, Figure 3.19 of reference [47]). In this approach,
for the same kz, two degenerate Bloch orbital branches interact, as a simple addition or
subtraction, to produce the orbitals of a solid [47]. The revised tight-binding equations
for MgB2 derived above also indicate that a phonon is lost (or gained) in the bonding
branch when an electron transfers or hops into (or from) the antibonding branch (see
Supplementary Equations (S1)–(S3)). These equations also show that the process involves
out-of-phase electrons travelling in two opposite directions (kz and −kz), implying that
wave reflection(s) may occur. An electron can only be scattered if a phonon is emitted
or absorbed and if the total wave vector is not changed, except by a reciprocal lattice
vector [64,65]. On the other hand, the resulting ions cannot follow the electronic motion
and, thus, these ions experience a time-averaged adiabatic electronic potential [66].

In order to include a proper sinusoidal wave traveling in the kz direction at frequency
ω, a factor incorporating time, t, is required in Supplementary Equations (S1)–(S3). In
our previous publications and recognised by others [67,68], we show that the electronic
band structure is a frozen picture of the equilibrium position. However, when vibrations
are included the dynamic electronic band structure displays degeneracy breaking and
oscillatory swings of the σ-bands across the Fermi energy. For MgB2, this is particularly
apparent for E2g or acoustic modes [67–69]. These swings are accompanied by dynamic
electron density (wave) distributions that screen the σ-bonding regions with increased ion
core repulsions from approaching boron atoms.

Screening is achieved by depleting electrons from the σ-bonding regions with reduced
ion core repulsions from more distant boron atoms. Such electron density waves essentially
behave as dynamic, periodic dimerisations (or n-merisations) [47]. As already mentioned,
the bonding–antibonding character of the MgB2 sp2 orbitals lends susceptibility to resonant
behaviour. This resonant behaviour—moderated by the superlattice symmetry—remains
in operation for instances when the sign(s) of sp2 orbitals invert (i.e., if bonding and
antibonding orbital lobes change sign). Thus, a resonance between equivalent bonding
configurations is induced below the superconducting transition temperature in a similar
fashion to the resonance of benzene bonds [49,70].

3.3. Identification of Cooper Pairing

Figure 6 shows additional potential geometric relationships for electrons moving along
electronic bands or nested Fermi surfaces.
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Referring to Figure 6, we consider that the Fermi vectors connected by diagonal nesting
vectors, q∆, undergo scattering. Then, Equations (4)–(6), describe the scattering processes.

kF
1 + q∆ = kF

1′ , (6)

kF
2 − q∆ = kF

2′ , (7)

kF
1 + kF

2 = kF
1′ + kF

2′ (8)

q∆ = ΓA + ΓM/3 (9)

These equations are of a form that can be identified as Cooper pairing [64,65,71].
Indeed, energy is also conserved since EF

′ = EF ± ∆ = EF ± 2}ω (see Figure 3 and
Supplementary Information). From geometric relationships, we can also determine
the following:

5ΓM
12

ΓM
3

=
π
c + ∆kz

π
c

(10)

5
4
= 1 +

c∆kz

π
(11)

∆kz =
π

4c
(12)

Therefore, a quadruple (4×) periodicity detected in THz and neutron scattering
experiments [58] reflects prima facie, in an uncomplicated manner, geometric relation-
ships that favour enhanced nesting and coherency.

4. Methods

DFT calculations were undertaken using the CASTEP module of Materials Studio 2018
and more recent upgrades of this software. Both the linear response within the local density
approximation (LDA) and generalized gradient approximations (GGA) with a dense k-grid
mesh (k < 0.005 Å−1) are used as indicators of the spread of results for specific conditions,
as detailed in our earlier investigations [42,43,57,67]. Calculations are undertaken with
an ultra-fine cut-off (typically 990 eV). Convergence criteria for most calculations are as
follows: energy at 5 × 10−6 eV per atom; maximum force at 0.01 eV; maximum stress at
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0.02 GPa; and maximum atom displacement at 5 × 10−4 Å. Optimal calculation conditions
using CASTEP for the AlB2-type structure are given in earlier works [35,36,42].

5. Conclusions

We show that electronic bands perpendicular to the layers of superconductors with a
layered structure can be better approximated by revised tight-binding equations. Applying
folding of the reciprocal space unit cell, motivated by prior experimental measurements
that show evidence of superlattices, reveals a very extensive amount of previously un-
reported nesting of the superlattice folded Fermi surface. The phenomenology arising
from nesting, such as the generation of charge, or spin, density waves, are expected and
provide further detail on the cosine dependence of tight-binding bands in superconductors.
Nearly parallel Fermi surfaces, associated with inverted parabolic bands (representing light
and heavy effective mass(es) [35,36,38]) are key to the unique Fermi surface topology of
superconductors. Such topology has already been shown to give rise to Kohn anomalies
that correlate exceptionally well to the transition temperature for various compositions of
superconductors and with pressure [42,43,57,72,73].

The point ΓA/2 of the original P6/mmm cell (which is equivalent to the reciprocal
point A of the double supercell along the c-axis for MgB2) locates a singularity where the
character of the bands changes from bonding to antibonding. Electrons approaching this
nodal point must have either of these characters while, at the nodal point, the electron
character is undefined or singular. The DFT methodology incrementally shifts electrons
around the electronic band structure to minimise the energy of a compound given a specific
structural symmetry. However, movement of electrons while the structure is approaching a
converged configuration involves emission or absorption of phonons. This is consistent
with electron movement involving a scattering process, and as mentioned, an electron can
only be scattered if a phonon is emitted or absorbed [64,65]. With high-resolution DFT
calculations using an appropriate k-grid, fine granular detail of electronic band structures
can be discerned for superconductors. Our preliminary inspection of electronic band
structures for other layered superconductors suggests that similar symmetry-derived
corrections to tight-binding equations may enable direct determination of superconducting
band gap(s).

Revised tight-binding equations based on high-resolution band structure calculations
reveals additional terms are essential in order to accommodate the superconducting gap and
to appropriately balance band energies at key symmetry points. For AlB2-type structures,
bonding–antibonding relationships and the cosine function of tight-binding equations sug-
gest the presence of out-of-phase parallel planes. Waves propagating in opposite directions,
with opposite phase to the primary cosine term, are also consistent with this analysis and
include emission or absorption of phonons. Furthermore, Cooper pairing linked to the
folded Fermi surfaces and involving the nesting vector can be readily identified, providing
unprecedented insight on mechanisms for superconductivity. Due to computational limits
related to DFT methodology, we are unable to demonstrate the time dependence of these
phenomena as appropriately recognised by the time-dependent Schrödinger equation. We
encourage practitioners of time-dependent DFT (TD-DFT) to revisit these results for a
potential, more inclusive, and self-consistent time-dependent approach.

Evidence of superlattices in vibrational spectra from a wide variety of superconductors
and preliminary extensions of our calculations on MgB2 at higher pressures, to FeSe
with pressure, and to other compounds suggest that the methodology presented here has
general applicability to other superconductors. Establishing strong connections between
electronic band structures and Fermi surfaces to atomic orbital characteristics may be a
practical complementary tool for the experimental chemist to use to design and synthesize
new superconductors.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/condmat8030072/s1, Table S1. Summary of k-grid dependence for band
energies at key symmetry points for MgB2 with P6/mmm or P-6c2 symmetry. Standard deviations
for P-6c2 calculations for k < 0.013 A−1 are less than 1 meV; Figure S1. Fermi surfaces for MgB2
with attributed P6/mmm symmetry. Approximate geometrical relationships for the radii of the
light (inner) and heavy (outer) effective mass tubular sections are labelled (see also Figure S9 of
reference [50] in the article).
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