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1. Calculated lattice parameters. 

 

Figure S1. Volume calculation for cubic Pt/Pd alloy structures, where α = β = γ = 90°. 

 

Figure S2. Volume calculation for non-cubic Pt/Pd alloy structure where α= β = γ≠ 90°.  

This structure presented above is rhombohedral-centred hexagonal with space group R 3M. Its volume is 88.80 Å3, 
and the lattice parameters are a = b = 2.771 and c = 13.354., α =β=90, and γ = 120. The PtPd structure was found to 
be stable, as indicated in Figure 1 of the manuscript. 

  



2. Calculated Pair Distribution Function for Pt/Pd alloys  

Molecular dynamics was performed using a kinetic energy cut-off fixed at 500 eV for the plane-wave 
basis set expansion of the Kohn–Sham (KS) valence states with an electronic convergence set at 10-5 eV. 
The Methfessel−Paxton approach was used with a smearing width of 0.2 eV. The 1x1x1 Brillouin zones 
were sampled using Γ-centred Monkhorst-Pack grid. The micro-canonical ensemble (nVE) with 
changing temperature was selected. The simulation time was set to 100 fs with a timestep of 1.0 and a 
trajectory file frequency of 2. The thermal motions of the ions, presented in Figure S3, are characterised 
by the temperature evolution of the pair distribution function (PDF). The selected temperature range 
was 100-2100 K, which includes the melting temperature for Pt (2041 K) and Pd (1828 K). 
 
Crystalline structures exhibit less diffuse pair correlation functions because the atoms vibrate around 
high symmetry points. In contrast, liquids have more diffuse pair correlation functions as the average 
positions of atoms are spread out over a wider range of distances. As the temperature decreases, the 
pair correlation function becomes more structured, reflecting the ordering of the atoms in a crystalline 
lattice, as shown in Figure S3. The calculated pair corelation function in the study showed that a high 
degree of dynamical stability is observed for the pristine Pt and Pd as well as the Pt/Pd alloy structures 
over a wide range of temperature.  
 

 

Figure S3. Temperature behaviour of the pair distribution function for the Pt-Pd bond distances, obtained from 
molecular dynamics (MD) simulations conducted over the range of 100K to 2100K. The plots represent the pristine 
structures of a) Pt, b) Pd, as well as the alloy structures for c) PtPd3, d) PtPd, e) Pt3Pd and f) Pt7Pd. 

  



3. Mathematical equations and a comprehensive description of elastic properties. 

This section includes a detailed explanation on the computation of the elastic constants (Cij), bulk 
modulus (B), shear modulus (G), Young modulus (E), and Poisson (v) ratio.  

Elastic constants (Cij) 

The elastic constant of a crystal structure is determined by deforming the unit cell as shown in (Eq. 1). 
This deformation is accomplished by using an engineering strain matrix e to change the Bravais lattice 
vectors R = (a, b, c) of the undisturbed unit cell R' = (a', b', c').  
 

𝑅′ = 𝑅 ⎝⎜
⎛1 + 𝑒 𝑒 𝑒𝑒 1 + 𝑒 𝑒𝑒 𝑒 1 + 𝑒 ⎠⎟

⎞
                                           (Eq. 1) 

 
As a result of the deformation, the total energy of the energy changes, as shown in (eq. 2), where 𝐸  is 
the total energy of the unstrained lattice, 𝑉  is the volume of the undistorted cell, and 𝐶  are the 
elements of the elastic constant matrix with a notion that follows standard convention. The strain or 
stress is represented as a vector with six independent components, respectively, 1 ≤ i, j ≤ 6, in the 
sequence (xx, yy, zz, yz, xz, and xy).  
 𝑈 =  =  ∑ ∑ 𝐶                                         (Eq. 2) 

 
The tensor of elasticity has 36 elements and the elastic constants, but maximally, 21 of these are 
independent (𝐶 , 𝐶 , 𝐶 , 𝑒𝑡𝑐). The symmetry of the unit cell can reduce the number of independent 
elastic constants for the various symmetry systems, such as the cubic system, in which there are only 
three independent constants, 𝐶 , 𝐶  𝑎𝑛𝑑 𝐶 .   

The elements of the stiffness matrix are then determined by the strain fields in (eq.1), which are 
applied to determine properties such as the bulk modulus, and the shear modulus, which represent 
the extreme limits of the elastic moduli. 

Bulk modulus (B) and Shear modulus (G) 

The bulk modulus (Eq. 3) provides a description of the elastic properties of a material since the material 
returns to its original volume once the pressure is released. As such, the bulk modulus is determined 
by the change in the pressure or force applied per unit area (ΔP), the change in the volume of the 
material due to compression (ΔV), and by the initial volume of the material (v).     𝐵 =  ∆∆ /                                                                        (Eq. 3) 

Using the applied strain field (exx = eyy = ezz = e) allows for the computation of the bulk modulus, which 
responds to uniform compression, using the relationship (Eq. 4). 𝑈 =                                                                          (Eq. 4) 

The shear modulus is a response to shear stress or pressure in the xy direction (𝜏 )  and shear strain 
(𝛾 ), as shown in (Eq. 5).   𝐺 =                                                                             (Eq. 5) 



Similarly, to the bulk modulus, the shear modulus is calculated from the applied strain field, where 
the relationship is shown in (Eq. 6). 𝑈 =  3𝐶                                                                  (Eq. 6) 

Overall, the stiffness matrix (𝐶 ) is calculated using either of the relations shown in (Eq. 7 and Eq. 8). 

B =  (𝐶 + 2𝐶 )                                                         (Eq. 7) 𝐶′ =  (𝐶 − 𝐶 )                                                           (Eq. 8) 

Young’s modulus (E) and Poison’s ratio (v) are determined by the bulk modulus and the shear 
modulus. 

Young modulus (E) and Poisson (v) ratio. 

The behaviour of the material towards bending/twisting deformation (stiffness) and the absolute ratio 
of the lateral strain (stretching and compression) in response to longitudinal strain are described using 
Young’s modulus (Eq. 9) and Poisson’s ratio (Eq.10).  

In (Eq.  9) Young’s modulus is determined by the uniaxial stress or uniaxial forces per unit surface (𝜎) 
and the strain, or the proportional deformation (𝜖).    

E =                                                                           (Eq. 9) 

In (Eq. 10), Poisson’s ratio is determined by the transverse strain (𝑑𝜖 ) and the axial strain (𝑑𝜖 ).    𝑣 = −                                                                         (Eq. 10) 

Implementing computational methods, Young’s modulus (E) and Poison’s ratio (v) are determined by 
the previously calculated bulk modulus and shear modulus using (Eq. 11) and (Eq. 12). 

 

E =                                                                       (Eq. 11) 

 

 v =                                                                       (Eq. 12) 
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4. Mathematical equations and a comprehensive description of temperature properties. 

Implementing the temperature to the elastic constants requires implementation of Grüneisen’s theory 
[1], which is accomplished by evaluating the phonon spectra and the derivatives of the individual 
phonon frequencies.  

Debye temperature (θD) and constant volume specific heat (Cv) 

The Debye temperature is obtained from the number of atoms in the unit cell (q), the volume of the unit 
cell (V0), the Planck and Boltzmann constants (ℏ and 𝑘𝐵), and the sound velocity (vm). Similarly, the 
sound velocity is determined by the mean values for the transverse (vt) and longitudinal (vl) sound 
velocities, which are given in terms of elastic moduli and the mean density (𝜌) in equations (Eq. 15) and 
(Eq. 16).     
 

θD =  ℏ   𝑣                                                        (Eq. 13) 

vm  =  +                                                         (Eq. 14) 

vt  =                                                                           (Eq. 15) 

vl  =                                                                        (Eq. 16) 

The contribution of the lattice to the specific heat capacity, Cv , as a function of temperature, T, can 
then be calculated using (Eq. 17).  𝐶  (T) = 9𝑞𝑘  𝑥 (  )  𝑑𝑥                                              (Eq. 17) 
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5. VASP input files  

This section includes the VASP input files required for each of the calculations. First, the atomic 
coordinates of the already optimised bulks are given, followed by the input files required for geometric 
optimisation, electronic properties, elastic constants, and phonopy band structures files.  

5.1. Geometric Optimisation Input files 

Table S1. Atomic coordinates of the Pt/Pd alloy structures, as implemented in VASP. 

Alloy structure VASP atomic coordinate files (CONTCAR) 

PtPd3 

   1.000      
     3.890    0.000    0.000 
     0.000    3.890    0.000 
     0.000    0.000    3.890 
   Pt   Pd 
     1     3 
Direct 
  0.000  0.000  0.000 
  0.500  0.500  0.000 
  0.500  0.000  0.500 
  0.000  0.500  0.500 

PtPd 

   1.000  
     4.730    0.000    0.000 
     3.918    2.650    0.000 
     3.918    1.200    2.362 
   Pt   Pd 
     1     1 
Direct 
  0.500  0.500  0.500 
  0.000  0.000  0.000 

PtPd L10 

   1.0000 
     3.899    0.000    0.000 
     0.000    3.901    0.000 
     0.000    0.000    3.901 
   Pt   Pd 
     2     2 
Direct 
  0.500  0.0000  0.5000 
  0.500  0.5000  0.0000  
  0.000  0.0000  0.0000 
  0.000  0.5000  0.5000 
 

Pt3Pd 

   1.000  
     3.920    0.000   0.000 
     0.000    3.920   0.000 
     0.000    0.000   3.920 
   Pt   Pd 
     3     1 
Direct 
  0.500  0.500  0.000 
  0.500  0.000  0.500 
  0.000  0.500  0.500 
  0.000  0.000  0.000 

 
 
 

 



Pt7Pd 

   1.000     
     5.549    0.000    0.000 
     2.774    4.806    0.000 
     2.775    1.602    4.532 
   Pt   Pd 
     7     1 
Direct 
  0.000  0.000  0.000 
  0.500  0.000  0.000 
  0.000  0.500  0.000 
  0.500  0.500  0.000 
  0.000  0.000  0.500 
  0.500  0.000  0.500 
  0.000  0.500  0.500 
  0.500  0.500  0.500 

Table S2. INCAR file for geometric optimisation of bulks. 

Global Parameters 
ISTART =  1            (Read existing wavefunction; if there) 
ISPIN  =  2            (Non-Spin polarised DFT) 
# ICHARG =  11         (Non-self-consistent: GGA/LDA band structures) 
LREAL  = .FALSE.       (Projection operators: automatic) 
ENCUT  =  500        (Cut-off energy for plane wave basis set, in eV) 
PREC   =  Normal       (Precision level) 
LWAVE  = .FALSE.        (Write WAVECAR or not) 
LCHARG = .TRUE.        (Write CHGCAR or not) 
ADDGRID= .TRUE.        (Increase grid; helps GGA convergence) 
# LVTOT  = .TRUE.      (Write total electrostatic potential into LOCPOT or not) 
# LVHAR  = .TRUE.      (Write ionic + Hartree electrostatic potential into LOCPOT or not) 
# NELECT =             (No. of electrons: charged cells; be careful) 
# LPLANE = .TRUE.      (Real space distribution; supercells) 
# NPAR   = 4           (Max is no. nodes; don't set for hybrids) 
  NCORE  = 4            #NUMBER OF CORES PER ORBITAL 
# Nwrite = 2           (Medium-level output) 
# KPAR   = 2           (Divides k-grid into separate groups) 
# NGX    = 500         (FFT grid mesh density for nice charge/potential plots) 
# NGY    = 500         (FFT grid mesh density for nice charge/potential plots) 
# NGZ    = 500         (FFT grid mesh density for nice charge/potential plots) 
  
Electronic Relaxation 
ISMEAR =  1            (Gaussian smearing; metals:1) 
SIGMA  =  0.2          (Smearing value in eV; metals:0.2) 
NELM   =  90           (Max electronic SCF steps) 
NELMIN =  6            (Min electronic SCF steps) 
EDIFF  =  1E-06        (SCF energy convergence; in eV) 
GGA    =  PE           (PBEsol exchange correlation) 
  
Ionic Relaxation 
NSW    =  200          (Max ionic steps) 
IBRION =  2            (Algorithm: 0-MD; 1-Quasi-New; 2-CG) 
ISIF   =  2            (Stress/relaxation: 2-Ions, 3-Shape/Ions/V, 4-Shape/Ions) 
EDIFFG = -2E-02        (Ionic convergence; eV/AA) 
# ISYM =  2            (Symmetry: 0=none; 2=GGA; 3=hybrids) 
 
Dispersion interaction 
IVDW   =  12           (Van der waals corrections - DFT-D3 method) 



5.2. Input files for determination of electronic properties  

Table S3. INCAR file for density of States and work function calculations. 

general: 
  ENCUT  = 500 
  SYSTEM = Pd3Pt 
  ISPIN  = 2 
  ISMEAR = 1 
  SIGMA  = 0.2 
  ALGO   = Fast 
  EDIFF  = 1E-6 
  LAECHG = .TRUE. 
   
LDOS: 
  LORBIT  = 11 
  LORBMOM = .TRUE. 
  LMAXMIN = 4 
 
workfunction: 
  IDIPOL = 3 
  LDIPOL = .TRUE. 
  LVHAR  = .TRUE. 
 #LVTOT  = .TRUE. 
 
  IVDW   = 12 

 

  



5.3. Input files for determination elastic constants 

Table S4. INCAR file for determining elastic constants. 

ISTART =  0            (Read existing wavefunction; if there) 
ISPIN  =  2            (Non-Spin polarised DFT) 
LREAL  = .FALSE.       (Projection operators: automatic) 
ENCUT  =  500          (Cut-off energy for plane wave basis set, in eV) 
PREC   =  High         (Precision level) 
LWAVE  = .FALSE.       (Write WAVECAR or not) 
LCHARG = .FALSE.       (Write CHGCAR or not) 
ADDGRID= .TRUE.        (Increase grid; helps GGA convergence) 
NCORE  = 4            #NUMBER OF CORES PER ORBITAL 
 
Electronic Relaxation 
ISMEAR =  1            (Gaussian smearing; metals:1) 
SIGMA  =  0.05         (Smearing value in eV; metals:0.2) 
NELM   =  40           (Max electronic SCF steps) 
NELMIN =  4            (Min electronic SCF steps) 
EDIFF  =  1E-08        (SCF energy convergence; in eV) 
GGA    =  PE           (PBEsol exchange-correlation) 
 
Ionic Relaxation 
NSW    =  100          (Max ionic steps) 
NELMIN =  6            (Min electronic SCF steps) 
IBRION =  2            (Algorithm: 0-MD; 1-Quasi-New; 2-CG) 
ISIF   =  2            (Stress/relaxation: 2-Ions, 3-Shape/Ions/V, 4-Shape/Ions) 
EDIFFG = -1E-02        (Ionic convergence; eV/AA) 
 
Dispersion interaction 
IVDW   =  12           (Van der waals corrections - DFT-D3 method) 

 

Table S5. Input file (VPKIT.in) for determining elastic constants. 

2                    ! 1 for pre-processing; 2 for post-processing 
3D                   ! 2D for two-dimensional, 3D for bulk 
7                    ! number of strain case 
 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 ! Strain range 

 

  



5.4. Input files for determination of phonon properties.  

Table S6. CONTCAR file for Phonopy displacement 001 (PtPd3).  

generated by phonopy                     
   1.00000      
     7.8764    0.0000    0.0000 
     0.0000    7.8764    0.0000 
     0.0000    0.0000    7.8764 
   Pt   Pd 
     8    24 
Direct 
  0.0013  0.0000  0.0000 
  0.5000  0.0000  0.0000 
  0.0000  0.5000  0.0000 
  0.5000  0.5000  0.0000 
  0.0000  0.0000  0.5000 
  0.5000  0.0000  0.5000 
  0.0000  0.5000  0.5000 
  0.5000  0.5000  0.5000 
  0.2500  0.2500  0.0000 
  0.7500  0.2500  0.0000 
  0.2500  0.7500  0.0000 
  0.7500  0.7500  0.0000 
  0.2500  0.2500  0.5000 
  0.7500  0.2500  0.5000 
  0.2500  0.7500  0.5000 
  0.7500  0.7500  0.5000 
  0.2500  0.0000  0.2500 
  0.7500  0.0000  0.2500 
  0.2500  0.5000  0.2500 
  0.7500  0.5000  0.2500 
  0.2500  0.0000  0.7500 
  0.7500  0.0000  0.7500 
  0.2500  0.5000  0.7500 
  0.7500  0.5000  0.7500 
  0.0000  0.2500  0.2500 
  0.5000  0.2500  0.2500 
  0.0000  0.7500  0.2500 
  0.5000  0.7500  0.2500 
  0.0000  0.2500  0.7500 
  0.5000  0.2500  0.7500 
  0.0000  0.7500  0.7500 
  0.5000  0.7500  0.7500 

 

 

 

 

 

 

 



Table S7. CONTCAR file for Phonopy displacement 002 (PtPd3).  

generated by phonopy                     
   1.000    
     7.8764    0.0000    0.0000 
     0.0000    7.8764    0.0000 
     0.0000    0.0000    7.8764 
   Pt   Pd 
     8    24 
Direct 
  0.0000  0.0000  0.0000 
  0.5000  0.0000  0.0000 
  0.0000  0.5000  0.0000 
  0.5000  0.5000  0.0000 
  0.0000  0.0000  0.5000 
  0.5000  0.0000  0.5000 
  0.0000  0.5000  0.5000 
  0.5000  0.5000  0.5000 
  0.2509  0.2500  0.0001 
  0.7500  0.2000  0.0000 
  0.2500  0.7500  0.0000 
  0.7500  0.7500  0.0000 
  0.2500  0.2500  0.5000 
  0.7500  0.2500  0.5000 
  0.2500  0.7500  0.5000 
  0.7500  0.7500  0.5000 
  0.2500  0.0000  0.2500 
  0.7500  0.0000  0.2500 
  0.2500  0.5000  0.2500 
  0.7500  0.5000  0.2500 
  0.2500  0.0000  0.7500 
  0.7500  0.0000  0.7500 
  0.2500  0.5000  0.7500 
  0.7500  0.5000  0.7500 
  0.0000  0.2500  0.2500 
  0.5000  0.2500  0.2500 
  0.0000  0.7500  0.2500 
  0.5000  0.7500  0.2500 
  0.0000  0.2500  0.7500 
  0.5000  0.2500  0.7500 
  0.0000  0.7500  0.7500 
  0.5000  0.7500  0.7500 

 

 

 

 

 

 

 

 



Table S8. INCAR file for Phonopy calculation of sets of forces.  

Global Parameters 
PREC   =  Accurate 
IBRION = -1 
ENCUT  = 500 
EDIFF  = 1.0e-08 
ISMEAR = 0 
SIGMA  = 0.2 
IALGO  = 38 
LREAL  = .FALSE. 
LWAVE  = .FALSE. 
LCHARG = .FALSE. 

Table S9. mesh.conf file for Phonopy optimisation. 

ATOM_NAME = Pt Pd3 
DIM = 1 1 1 
MP = 11 11 11 

Table S10. pdos.conf file for Phonopy optimisation. 

ATOM_NAME = Pt Pd3 
DIM = 1 1 1 
MP = 8 8 8 
PDOS = 1, 2     

Table S11. Band.conf file for Phonopy. 

ATOM_NAME = Pt Pd 
NPOINTS = 501 
DIM =  1 1 1 
PRIMITIVE_AXIS = AUTO 
BAND = 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.500000 0.500000 0.000000 0.000000 0.000000 
0.000000 0.500000 0.500000 0.500000 0.000000 0.500000 0.000000 0.500000 0.500000 0.500000 0.500000 0.500000 
0.000000 
BAND_LABELS = $\Gamma$ X M $\Gamma$ Z R A Z X R M A 

 
  



5.5. Molecular Dynamics – verification of dynamic stability  

Table S12. INCAR file for MD simulations with changing temperature. 

# where i = 100, 200, 300 , 400 , 500 
SYSTEM = Pd 
 
PREC = Accurate 
ENCUT = 500.000 
IBRION = 0 
NSW = 100 
ISIF = 2 
NELMIN = 2 
EDIFF = 1.0e-05 
EDIFFG = -0.02 
VOSKOWN = 1 
ISYM = 0 
SMASS = -1 
POTIM = 1.0 
NBLOCK = 2 
TEBEG = i 
TEEND = i 
NWRITE = -1 
NELM = 60 
ALGO = Normal (blocked Davidson) 
ISPIN = 1 
INIWAV = 1 
ISTART = 0 
ICHARG = 2 
LWAVE = .FALSE. 
LCHARG = .FALSE. 
ADDGRID = .FALSE. 
ISMEAR = 1 
SIGMA = 0.2 
LREAL = .FALSE. 
LSCALAPACK = .FALSE. 
RWIGS = 1.28 
 
# Default options for parallel 
NPAR = 6 
 

Table S13. KPOINT file for MD simulations. 

Automatic mesh 
0 
Gamma 
4  4  4 
0.  0.  0. 

 


