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Abstract: This paper presents the investigation of convolutional neural network (CNN) prediction
successfully recognizing the temperature of the nonequilibrium phase transitions in two-dimensional
(2D) Ising spins on a square lattice. The model uses image snapshots of ferromagnetic 2D spin
configurations as an input shape to provide the average output predictions. By considering supervised
machine learning techniques, we perform Metropolis Monte Carlo (MC) simulations to generate the
configurations. In the equilibrium Ising model, the Metropolis algorithm respects detailed balance
condition (DBC), while its nonequilibrium version violates DBC. Violating the DBC of the algorithm
is characterized by a parameter −8 < ε < 8. We find the exact result of the transition temperature
Tc(ε) in terms of ε. If we set ε = 0, the usual single spin-flip algorithm can be restored, and the
equilibrium configurations generated with such a set up are used to train our model. For ε 6= 0, the
system attains the nonequilibrium steady states (NESS), and the modified algorithm generates NESS
configurations (test dataset). The trained model is successfully tested on the test dataset. Our result
shows that CNN can determine Tc(ε 6= 0) for various ε values, consistent with the exact result.

Keywords: nonequilibrium; phase transition; Ising; critical temperature; machine learning

1. Introduction

The world around us manifests itself in various forms: living and non-living matter.
On the other hand, there are many phases of matter, and one can consider transitions
between these phases. In physics, phase transitions (PTs) refer to changes in the collective
behavior of a system as it undergoes a transition from one phase to another. The concept of
universality classes is commonly found in various fields of physics, from condensed matter
physics to complex systems. Universality classes are used to categorize different physical
phenomena based on their similarities in behavior near PTs or near critical points. Currently,
the standard theory and general framework for the critical phenomenon near continuous
PTs is well understood in equilibrium systems [1–3]. The modeling and simulation of the
physical phenomena of interest can succeed either from analytical or numerical methods [4].
However, the study of PTs between nonequilibrium statistical states has consistently been
among the main subjects of ongoing research and exploration [5–12]. Nonequilibrium
PTs are transitions that occur in systems that are not at the thermodynamic equilibrium.
Before delving into our circumstantial system model, some examples of different types of
nonequilibrium PTs are briefly provided as follows.

Directed percolation transition: Directed percolation is a type of PT that occurs in systems
with a preferred direction of propagation. It is commonly used to model phenomena, such
as spreading of epidemics, forest fires, or chemical reactions. The PT is characterized by the
sudden emergence of a spanning cluster that spreads through the system.
Active matter transitions: Active matter refers to systems composed of self-propelled
particles that can extract energy from the environment to exhibit collective behaviors.
Examples include dense suspensions of swimming bacteria or assemblies of self-propelled
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robots. Active matter can undergo PTs, such as the transition between a disordered and a
collectively ordered state, often accompanied by dynamic pattern formations.
Self-organized criticality: Self-organized criticality is a concept that describes how com-
plex systems naturally evolve to a critical state. In these systems, small local perturbations
can trigger cascades of events, leading to large-scale avalanches or fluctuations. Examples
include sand pile models, earthquakes, or forest fires. These transitions are characterized
by power law distributions of event sizes and long-range correlations.
Berezinskii–Kosterlitz–Thouless transition: This transition occurs in 2D systems, such
as thin films or superconducting materials, where the conventional long-range order is
disrupted due to the presence of topological defects called vortices.

These are just a few examples of nonequilibrium PTs. Each type has its own characteristic
features and mathematical formulations. Understanding these transitions is essential for
studying a wide range of complex systems across multiple disciplines. Nonequilibrium
situations are far less completely understood, although classes have of course been studied
over the decades. This is an important area of research since much of its functional nature
resides out of equilibrium-including quantum annealing uses for some current quantum
computers for which the Ising model is directly relevant. A deeper understanding of relaxation
(in dissipative systems) or thermal equilibration, more generally, is extremely desirable.

Identifying the critical points of various phases within the parameter space is a fun-
damental undertaking in the fields of statistical mechanics and condensed matter physics.
Machine learning (ML) is the field of study concerned with algorithms that are designed
to improve their performance by obtaining experience from data [13]. Relatively recently,
the utilization of these techniques was successfully employed in various domains, such
as investigating the phases of the Ising model [14–17], PT in the Bose–Hubbard [18,19],
disordered quantum systems [20,21], and material properties [22]. In this paper, we intro-
duce the application of ML to nonequilibrium PT, which can be accomplished based on the
well-established features of modern theories of PT in equilibrium systems. In equilibrium
systems, PT is generically described by singularities in the free energy and its derivatives.
Such singularity causes a discontinuous property of thermodynamic quantities near the
transition point. Phenomenologically, the PT is defined regarding an order parameter, which
has a nonzero value in the ordered phase while it vanishes in the disordered phase [23–25].
Within the scope of this paper, the paradigmatic example that we will be working on is a
two-dimensional (2D) Ising spin system on a square lattice. It is interesting to note that
the 2D Ising spin on a square lattice is simple such that it can be exactly solved [23]. Even
though it is exactly solvable, it is still a topic of ongoing research that is frequently used in
the context of ML [14–17,26–33]. In this investigation, first we try to perform the graphical
solution (7) of the nonequilibrium transition temperature; see Appendix A.1. Then, we look
at the possibility of a nonequilibrium phase transition occurring within the Ising model
that breaks the principle of detailed balance through machine learning. To be more explicit,
we aim to find the nonequilibrium phases and the transition temperatures by applying
convolutional neural networks (CNNs) based on the general framework of supervised
learning discussed in [34]. This framework was reviewed before in Statistical Mechanics of
Deep Learning, which also briefly explains the connection between deep learning and the
modern subject of statistical physics.

According to the findings presented in Ref. [29], the application of ML to the issue of
phases of matter has, for the most part, been effective. Motivated by this work, we aim
to extend this ML application to the case of the nonequilibrium phase transition. For its
compatibility to our present study, the Ising model which was addressed in [35] becomes
the primary focus of our attention. We employ the Monte Carlo (MC) approach [36–39] to
generate a properly distributed dataset of Ising spin configurations on the L× L square
lattice (where L is its linear size), together with their associated labels, while considering
supervised learning techniques. Accordingly, by the context of equilibrium and nonequilib-
rium systems, we are referring to two different spin update rules: (i) the rule that holds
the DBC and (ii) the rule that breaks the DBC, respectively. The former is used to generate
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the train dataset, while the latter is used to generate the test dataset, which can be seen from
some representative configurations illustrated in Appendix A.2 (Figure A3).

We build a CNN using open-source software [40]; see Appendix A.2 and an example
shown in Figure A4 for more details. We train our model on the training dataset, and it is
effectively validated to classify the simulation results of the equilibrium 2D Ising model
into the ferromagnetic (FM) or “ordered state” and the paramagnetic (PM) or “disordered
state” phases. The classification of these results was also successfully validated; see, for
example, [29,30]. The main goal of this work is to evaluate the generalization reach of the
CNN by testing it with configurations (test dataset) from a system that is not in equilibrium.
Intriguingly, in addition to accurately categorizing the configurations, we demonstrate that
the CNN can exhibit the critical temperature of the nonequilibrium PT. Our finding is very
close to the exact solution (7), and also consistent with the MC results provided in Ref. [35].

The remaining sections are organized as follows: In Section 2, we present the model
considered in this research, followed by a concise description of the Metropolis MC method
for generating image samples of Ising configurations. Some of the results of this study
are then illustrated in Section 3. Finally, we provide a summary of the main results and
discussion as presented in Section 4.

2. Description of the Model and Metropolis Monte Carlo Method

We consider the 2D Ising model on a square lattice of linear size L sites. The system
size (N = L× L) is equal to the total number of spins (N), which means that each of the
sites contains one spin that points either up or down (±1). If we assume zero magnetic
fields, the nearest-neighbor interaction energy of the (ferromagnetic) Ising model is given as

E = −J ∑
〈i,j〉

σiσj, (1)

where σi = ±1 denotes the value of the spin at site i = {1, · · · ,N}, the indices 〈i, j〉
represent the nearest-neighbor pairs [36,37], and a ferromagnetic energy scale J > 0 refers
to the strength of the exchange interaction. At the critical (or transition) temperature,
the system exhibits a second-order phase transition. The transition temperature of the
nearest-neighbor equilibrium Ising model, for an infinite square lattice, was derived [23] to
be 2/ ln(1 +

√
2); see Equation (6). In this case, the system is assumed to be a magnetized

state when its temperature is lower than 2/ ln(1 +
√

2), which is known as the ordered
state (FM phase). On the other hand, the system is said to be in the disordered state (PM
phase) if its temperature is higher than 2/ ln(1 +

√
2). The magnetization per spin is what

determines the value of the order parameter

m =
1
N

∣∣∣∣∣ N

∑
i

σi

∣∣∣∣∣. (2)

This quantity (2) distinguishes the two phases that are realized by the system. It is zero
(nonzero) in the disordered (ordered) phase.

2.1. The Modified Metropolis Algorithm

Let us consider a system that is in contact with a heat bath and produces stochastic
spin flips, following Ref. [41]. In the context of the equilibrium Ising model, it can be
observed that the system attains thermal equilibrium over a significant time and thus the
steady-state distribution can be accurately described by the Boltzmann distribution. This is
a valuable approach for establishing transition rates and calculating the probabilities of
spin flipping. The Metropolis algorithm [38] is the transition rate that is commonly used
and can be stated as

W = MIN
[
1, e−∆E/kBT

]
, (3)
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where W represents the rate of change from state b(before flip) to another state a(after
flip), ∆E = Ea − Eb is the change in energy that occurs as a result of this transition, and
kB denotes the known Boltzmann’s constant. In this context, the unit of temperature T
is linked to the units of J/kB. (For the remainder of this description, we will assume
kB = 1, and thus, T = T/J becomes dimensionless.) The defined algorithm (3) meets the
requirements of DBC. The aforementioned statement denotes that there exists a microscopic
reversibility of every elementary process, which is counterbalanced by its corresponding
reverse process [42]. That is, Wb→apbeq = Wa→bpaeq, where pbeq ∝ exp[−Eb/T]. Therefore,
the ratio w = Wb→a/Wa→b gives w = exp[−∆E/T].

The topic of nonequilibrium phase transitions is examined with emphasis on funda-
mental characteristics, such as the role of DBC violation in generating effective (long-range)
interactions [34]. The equilibration process is not solely dependent on the presence of DBC,
as it serves as a sufficient but not a necessary condition. The objective of this study is to
deliberately violate the DBC to induce a state of fluctuation in the system. As noted in
reference [35], there exists a scenario in which the system undergoes an order–disorder
phase transition that is different from the typical transitions of the equilibrium case. If ε 6= 0
denotes the parameter violating the DBC, it is possible to substitute ∆E in Equation (3) with

∆Eeff = ∆E + ε, (4)

and the ratio becomes w = e−(∆E+ε)/T . It can be inferred that when ε is positive, ∆Eeff
is greater than ∆E, whereas when ε is negative, ∆Eeff is less than ∆E. The former does
not facilitate the process of spin flipping, whereas the latter significantly promotes the
likelihood of spin flipping. In contrast to spins subjected to the conventional Metropolis
algorithm (3), spins subjected to the modified flipping rates effectively undergo distinct
(transition) temperatures. When ε < 0 ( ε > 0), it is reasonable to assume that the spins are
coupled to a reservoir at a higher (lower) effective temperature (Teff). It should be noted
that Teff is not uniform across all spins in the system; see Appendix A.1. Thus, “the system
is out-of-equilibrium, and a transition is a nonequilibrium phase transition. The property of
this transition would be a characteristic of the nonequilibrium steady state (NESS) exhibited
by the system” [35]. It can be inferred that, unlike an equilibrium system, the distribution
of microstates in the NESS cannot be characterized by the Boltzmann distribution. The
transition rate for flipping a spin σbi → σai can be determined using this definition (4),

W(±σi → ∓σi) =

{
e−(ε±∆E)/T , if ε± ∆E > 0;
1, otherwise.

(5)

Here ∆E = 2Jσi ∑j σij ≡ {−8,−4, 0, 8, 4}[J]where σij refers to j = {left, right, top, bottom}
nearest neighbors of the ith site, and the symbol ‘≡’ refers to an alternative approach
for Ising on a square lattice that involves ∆E, which can assume discrete values from
{−8,−4, 0, 4, 8} using the units of J. The algorithm given in Equation (5) still respects
the DBC when |ε| ≥ 8 [43]. However, Equation (5) violates the DBC for −8 < ε < 8
(with ε 6= 0) since it is impractical to obtain a unique Teff value for which the transition
probabilities for all feasible ∆E values obey the DBC. According to the established notation,
the nonequilibrium phase transitions may occur within the system, and the transition
temperature Tc must fulfill the relation

Tc =

{
0 < Tc < T0

c if − 8 < ε < 0;
T0

c < Tc < 2T0
c if 0 < ε < 8,

(6)
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where T0
c is the transition temperature of the equilibrium (ε = 0) case. We are essentially

interested in some ε values of −8 < ε < 8 as shown in Figure 1. Referring to a systematic
graphical solution presented in (Appendix A.1), the exact result follows that

Texact
c (ε) ≡ Tc =


(0.5 + ε/16)T0

c , for −8 < ε < −4;
(1 + 3ε/16)T0

c , » −4 ≤ ε ≤ 4;
(1.5 + ε/16)T0

c , » 4 < ε < 8,
(7)

where T0
c ≡ Tc(ε = 0) = 2/ ln(1 +

√
2).

Figure 1 shows the transition temperature Tc versus parameter ε as plotted using this
Equation (7). More specifically, consider two ε values (ε = ±2); conveniently, we get that
Texact

c (ε = ±2) ≈ 3.1201(≈ 1.4182). Remarkably, we see that our numerical result (see
Figure 3 and Table 1) is very close to this result.

Figure 1. Transition temperature Tc as a function of parameter ε. A plot of Equation (7). The
horizontal dashed line represents Tc(ε = 0) = T0

c , where T0
c = 2/ ln(1 +

√
2). The dotted horizontal

lines are Tc(ε = −8) = 0× T0
c (lower) and Tc(ε = +8) = 2× T0

c (upper).

2.2. Generating 2D Images of Ising Spin Configurations

Making use of the modified Metropolis rule (5), we achieve Monte Carlo (MC) sim-
ulations of the Ising model; see the flow chart shown in Appendix A.2 (Figure A2). The
simulations are performed on a square lattice (Lx = Ly) of system size N = L2, inducing
the periodic boundary condition in both (x and y) directions. For each system, we start
the simulations from an initial, high temperature (with random spin initial configurations)
and perform standard MC sweeps (MCS) for generating the required samples of L× L
Ising spin configurations as data for the supervised ML approach [36–39]. Examples of
configurations are shown in Figure A3. For all datasets used in Section 3, the simulation
is performed with three ε = {0, 2,−2} values. First, we set ε = 0 and generate the config-
urations for the training dataset. This comprises about 80% of the total data (where 10%
is again reserved for validation). Next, we set ε = 2 to generate the test dataset, which
incorporates the remaining 20% of the total data, and the procedure is the same for ε = −2.
We restart and repeat this procedure for all system sizes. Furthermore, one can save the
trained sequential model using TenserFlow’s Keras API, and later it can be loaded to
test the configurations from different discrete ε values. Efficiently, this can be used to
study the qualitative dependence of Tc on the parameter ε; see an example presented in
Appendix A.3 (Figure A5).
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3. Results

In the current section (Section 3), we briefly present the main numerical results ob-
tained using a neural network model (CNN). Similar to the previous works (literature), we
train the model on equilibrium Ising spin configuration. After training on an adequately
large sample size at temperatures T > T0

c and T < T0
c , the CNN can correctly classify

configurations in a valid dataset as illustrated in Figure 2a for configurations with the
given linear size, L = {10, 20, 40, 60}. Systematically, finite-size scaling (FSS) is capable of
narrowing in on the thermodynamic result of T0

c in a manner comparable to that of mag-
netization [29], Figure 2b displays that a data collapse yields a critical exponents estimate
of ν ≈ 1.00± 0.01 and β ≈ 0.125± 0.002, while a size scaling of the crossing temperature
yields an estimate of T0

c ' 2.2687 (see Appendix A.4).

Figure 2. Machine learning (ML) the equilibrium (ε = 0) ferromagnetic Ising spin on square-lattice
(linear sizes L = 10, 20, 40 and 60). (a) The prediction P versus temperature T where the vertical
dashed line denotes the estimated value of T0

c ' 2.2687± 0.0015 of the model. (b) A plot showing
data collapse of PLβ/ν versus (T− T0

c )L1/ν. The insets represent FM corves and PM corves as shown.

More interestingly, “the generalization competency of the neural networks lies in
their ability to provide correct predictions further than the datasets with which they were
trained”. Accordingly, the trained CNN is provided with a test dataset of configurations
from a 2D Ising model in which data generation was incorporated by changing the update
rules where the violation of the DBC is accountable. This is intended to answer the question
“Does CNN that trained on equilibrium phase transition in Ising model with detailed balance able
to recognise the nonequilibrium phase transition?”. Thus, next, we present the results of this
scenario by using our CNN, which is already trained and validated on configurations for
the square-lattice ferromagnetic Ising model, and provide it with a test dataset generated
by modified Metropolis MC simulations for the same sizes as L in Figure 2. In Figure 3,
we illustrate the average of prediction P versus temperature T for configurations from
two different test datasets (ε = ±2) of each with four linear sizes (see keys). The dashed
lines denote the estimated values of the transition temperatures (a) Tc ' 1.377, and (c)
Tc ' 3.107. Clearly we see that TML

c (ε = ±2) is close to Texact
c (ε = ±2) obtained in

Equation (7). On the right panel, ‘b’ and ‘d’ represent the corresponding data collapse
PLβ/ν versus (T − Tc)L1/ν allowing us to successfully compute the critical exponents,
ν ≈ 1.02± 0.02 and β ≈ 0.126± 0.003. Our results are consistent with the MC result
reported in [35].
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Figure 3. ML the nonequilibrium (ε 6= 0) ferromagnetic Ising spin on square-lattice (L = 10, 20, 40
and 60), where ε = −2 (a) and ε = +2 (c). The left panel (a,c) display P versus T while the right panel
(b,d) represent the corresponding data collapse PLβ/ν versus (T− Tc)L1/ν. The estimated values are
indicated by dashed lines: Tc ' 1.3769± 0.0087 (a), and Tc ' 3.1071± 0.0175 (c).

4. Summary and Conclusions

In this study, a supervised machine learning (ML) surrogate approach is applied
based on convolutional neural networks (CNNs) to predict the nonequilibrium transition
temperature from paramagnetic (PM) to ferromagnetic (FM) state, in 2D Ising model on a
square lattice. This work relies on the previous study [35] in which a modified Metropolis
algorithm, and a modified Glauber algorithm were proposed to prospect the nature of
nonequilibrium phase transition (PT) in the same 2D Ising model, including the order of
the PT, as well as its universality class. More specifically, nonequilibrium PT, where the
detailed balance condition (DBC) is not fulfilled and the system reaches a nonequilibrium
steady state (NESS) which is not described by Boltzmann statistics, were addressed by
the modified Metropolis algorithms. For this study, with this in mind, we intended to
implement supervised ML. In literature, different architectures of neural networks were
implemented to predict the equilibrium transition temperature from PM phase to FM phase,
for example, by training on a square lattice and testing the trained model on triangular
lattice. There, it was provided that CNN succeeded in accurately predicting the transition
temperature as well as recovering the correct finite-size scaling (FSS) law for the transition
temperature. Therefore, the main goal of the present study is to extend this method to
nonequilibrium PT in the specific case where the DBC is not fulfilled.

Accordingly, we trained a CNN on a sample of representative Ising spin configurations
at various temperatures generated by Monte Carlo (MC) simulations equipped with the
usual Metropolis algorithm, in the case of equilibrium PT, where the spin’s update rule
is compliant with the DBC. Then, the trained CNN is tested on a set of nonequilibrium
configurations generated by MC simulations equipped with the modified Metropolis
algorithm. That is, the modified update rule violates the DBC. In the model, violating DBC
is designated by a parameter ε that is fixed to take values in the range−8 < ε < 8). We have
derived the exact solution of the nonequilibrium transition temperature Tc(ε), Equation (7).
This solution suggests that only the parameter ε affects the transition temperature. For ε = 0,
the equilibrium transition T0

c can be retrieved. For ε 6= 0, the system reaches the NESS; this
state cannot be characterized using the Boltzmann distribution, and the numerical results



Condens. Matter 2023, 8, 83 8 of 17

are consistent with the exact solution. For instance, for ε = {−2, 2}, the averaged output
layer prediction is (i) Tc(ε = −2) ≈ 1.3769, and (ii) Tc(ε = +2) ≈ 3.1071. These results
of Tc(ε) are close to the values of Tc ≈ 1.4182(Tc ≈ 3.1201), obtained with Equation (7).
The discrepancy is mainly related to the role of ∆E = 0 in the modified update rule when
we generate the configurations, while it is reasonably neglected in our calculation; see
Equation (A4) and Appendix A.3.

In Table 1, we provided a summary of the values of Tc(ε) that were obtained using
the modified Metropolis method using MC simulations (literature) and the supervised
ML method (our study). As summarized in this table, we see that MC and ML results are
almost in agreement with each other.

Table 1. A summary of the values of transition temperature Tc(ε) for ε = ±2 computed via supervised
ML compared with exact result as well as the MC result reported in [35]. In our study, the equilibrium
transition Tc(ε = 0) is used for validation. The error estimates are given in parentheses.

Parameter Tc(ε) Exact Machine Learning Monte Carlo
ε (This Work) Equation (7) TML

c (This Work) TMC
c Ref. [35]

0 2/ ln(1 +
√

2) ≈ 2.2692 2.2687(15) −

−2 5/4 ln(1 +
√

2) ≈ 1.4182 1.3769(87) 1.3604(3)

+2 11/4 ln(1 +
√

2) ≈ 3.1201 3.1071(175) 3.1267(4)

In conclusion, it is found that the prediction of the CNN trained on equilibrium con-
figurations, where it is tested on nonequilibrium configurations, provides similar transition
temperature and FSS to the modified Metropolis algorithm, thereby demonstrating the
capacity of this class of surrogate models to extend to configurations far from the config-
urations used in the training stage. Investigating how these methods can be extended
to different spin models and other types of nonequilibrium PT is one of the fascinating
questions that might be asked in this area. For example, one can investigate whether or not
this numerical method can be extended to the nonequilibrium PT in an active spherical
model. The spherical model is another model that can be exactly solved. In practice, it
is used to characterize a wide variety of critical phenomena, including the ferromagnetic
transition and the Bose–Einstein condensation, for example. In this particular piece of work,
we focused solely on the model’s static characteristics. It has come to the attention of the
authors that the parameter ε has been included here to only play the role of violating the
DBC. In a remarkable turn of works, the subsequent focus of our research will be on the
mathematical formalization as well as its complete physical description. Therefore, inves-
tigating the dynamical features of the models that violate DBC signifies a more intriguing
potential course of the future direction.
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Appendix A

Appendix A.1. Graphical Solution of Tc(ε) Equation (7)

Make use of the transition rate for flipping a spin (σi → −σi), Equation (5), and the
basic definition of the energy change, ∆E = {−8,−4, 0, 4, 8}. It is important to consider the
following two main cases:

(i) First, one can simply verify that the modified algorithm (5) still satisfies the DBC when
|ε| ≥ 8. This can be described as follows:

(a) Assume for ε ≥ 8, which implies that ε± ∆E ≥ 0. Subsequently, the transition
rates are W(σi → −σi) = e−(∆E+ε)/T , and W(−σi → σi) = e−(−∆E+ε)/T , where
the ratio becomes w(ε ≥ 8) = e−2∆E/T . Therefore, this satisfies the DBC, though
at an effective temperature Teff = T/2. As a result, the equilibrium transition
temperature equals Tc(ε ≥ 8) = 2T0

c , where T0
c = Tc(ε = 0) refers to the transition

temperature of this model [23].
(b) If we consider ε ≤ −8, it follows that ε± ∆E ≤ 0 meaning that W(σi → −σi) ≡

W(−σi → σi) = 1, with the ratio w(ε ≤ −8) = 1. Thus, the DBC is satisfied in this
case within the limit that Teff → ∞, indicating that there is no phase transition [43].

(ii) Now, the second case (|ε| < 8) breaks the DBC since it is impossible to obtain a unique
Teff in which the transition probabilities of the given ∆E can respect the DBC. We can
explain this as shown below:

(a) Let us consider 0 < ε < 8. It follows that

W(σi → −σi) = e−(∆E+ε)/T , and W(−σi → σi) = MIN
[
1, e−(−∆E+ε)/T

]
︸ ︷︷ ︸

for ∆E>0

, (A1)

and

W(σi → −σi) = MIN
[
1, e−(∆E+ε)/T

]
, and W(−σi → σi) = e−(−∆E+ε)/T︸ ︷︷ ︸

for ∆E<0

. (A2)

Here, in both (A1) and (A2), the ratio of the transition probabilities is subject to
the value of ∆E, implying that it is impossible to find a unique value of Teff. If a
phase transition occurs, then the value of Tc must satisfy T0

c < Tc < 2T0
c .

(b) If we follow the same arguments for −8 < ε < 0, it can be inferred that Tc is
expected to be in the interval 0 < Tc < T0

c .

Recall the definition of the energy change within the equilibrium Ising model where
∆E = {−8,−4, 0, 4, 8}. It can be noted from Ref. [35] that Tc = 0 for ε ≤ ∆Emin = −8.
It increases from 0 with increasing ε from −8 to ∆Emax = 8, and becomes 2T0

c for ε ≥ ∆Emax.
Explicitly, as required for the purpose of this work, we are essentially interested in some
ε values that lie in −8 < ε < 8; see Figure A1. For these ε values, Tc(ε, ∆E) can be
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discussed as follows. With positive ∆E = {4, 8}, from Equation (A1), assume the case
W(−σi → σi) = 1 and hence the ratio becomes exp[−(∆E + ε)/T]. Comparing this to
that of the equilibrium case (ε = 0) at temperature T0, one can obtain T∆E = T0(∆E + ε).
Similarly, for negative ∆E = {−4,−8}, from (A2), we find T∆E = T0(∆E− ε). As a result

T∆E =

{
T0(∆E + ε), for ∆E > 0;
T0(∆E− ε), for ∆E < 0.

(A3)

This Equation (A3) allows us to relate a temperature T(ε 6= 0) to T(ε = 0). Since this
relation provides different values for different ∆E, it is impossible to uniquely map the
probability distribution in the NESS to the equilibrium distribution at a given T0. To obtain
a unique result of Tc, we need to find the average over its different values obtained by
using the possible values of |∆E| = {4, 8}. At the transition point, Equation (A3) implies
that Tc∆E = T0

c (∆E± ε). We can write in its simple form as

Tc(ε, ∆E) =
(
|∆E|+ ε

|∆E|

)
T0

c , (A4)

where ∆E 6= 0 and T0
c = 2/ ln(1 +

√
2). The possible values of Tc in Equation (A4) for

∆E = {−8,−4, 4, 8} are shown in Figure A1.

Figure A1. Critical temperature Tc as a function of parameter ε. A plot of Equation (A4) with varying
∆E (see keys). The dashed line at the middle is equal to average of Tc for two ∆E values and it is the
same as the plot of Equation (7).

In order to obtain a unique value of Tc, we need to calculate the average over the
different values of Tc that can be found from different choices of ∆E (As a matter of fact,
only ∆E = {4, 8} can be used). Accordingly, we can use Equation (A4) to obtain the exact
solution that Texact

c (ε) = (1 + 3ε/16)T0
c (for −4 ≤ ε ≤ 4), or

Texact
c (ε) =

8 + ε

8 ln(1 +
√

2)
, for −8 ≤ ε < −4; (A5a)

Texact
c (ε) =

16 + 3ε

8 ln(1 +
√

2)
, for −4 ≤ ε ≤ 4; (A5b)

Texact
c (ε) =

24 + ε

8 ln(1 +
√

2)
, for 4 < ε ≤ 8. (A5c)

Implicitly, it can be inferred from Figure A1 that Equation (A5b) is efficient to discuss
the nonequilibrium phase transition.

Appendix A.2. Methods

Monte Carlo Simulations of the Ising Model: The generation of data is performed
using the modified Metropolis MC method and single spin dynamics. A schematic represen-
tation of the modified Metropolis MC simulation (∆Eeff = ∆E + ε) is shown in Figure A2.
Here, first initialize a random configuration of L× L spins, then randomly choose a spin
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site to flip. Next compute ∆Eeff (4), where ∆E is readily given, from the definition: if
∆Eeff < 0, accept the flip, and otherwise, accept the flip with probability w = e−∆Eeff/T .
This is numerically implemented by generating a random number r = [0, 1); if r < w, accept
the flip and reject otherwise. We perform a sweep over the entire lattice of N = L× L
spins 10 times, such that there is a total number of 10N possible spin flips to improve the
generation of steady-state data. Note that we recover the original Metropolis when ε = 0.
The simulations are performed on a square lattice of N = L× L. For each system, we start
the simulation from a high temperature (Thot) and stop it at a low temperature (Tcold).
For the main results (Section 3), we use Thot = 4.5 and Tcold = 0.5 (note that these values
of Tcold and Thot may not be relevant to Figure A5). A set of Tbin = 200 evenly spaced T
steps is found from this range and there are 800 independent simulations.

Figure A2. A schematic representation of the modified Metropolis MC simulation (∆Eeff = ∆E + ε).

Hence, our dataset consists of 160,000 samples for each system (regardless of the
parameter ε), while are split 80% for training and validation and 20% for the test (prediction).
For each T in Tbin, we store the spin configuration and its label (temperature) once the
equilibrium/nonequilibrium steady state is reached. Here, Equation (7) is used and 50%
data with T < Tc(ε) is labeled as 0 (FM), and 50% data with T > Tc(ε) is labeled as 1 (PM).
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Figure A3 demonstrates a system size of 30× 30 representative Ising spin configura-
tions at various values of temperature. Panel a depicts about 12 samples of the equilibrium
representatives from the training dataset. Panels b and c are regarded as the nonequi-
librium representatives, where each shows about nine samples taken from test datasets.
The snapshots of spin configurations used for training indicate the physical mechanism
involved in the nonequilibrium transition. The set of spin distribution patterns that are
used for ML training purposes is a useful visual guide to how the evolution proceeds.
These are, naturally, totally determined by spin flips.

(a) ε = 0︸ ︷︷ ︸ (b) ε = −2 (c) ε = +2︸ ︷︷ ︸
Equilibrium Representative Nonequilibrium Representative

(Train Dataset) (Test Datasets)

Figure A3. Representative spin configurations (30 × 30) from the training (panel a), and test
(panels b,c) datasets. The low temperature (T < Tc(ε)) configurations tend to be predominately
aligned in either the “down” (red) or “up” (blue) directions.

Convolutional Neural Networks: We build a simple convolutional neural network
(CNN), implemented with the TensorFlow [40] keras sequential model, to perform super-
vised machine learning (ML) on the Ising spin configurations sampled by the (effective)
Metropolis MC simulation. Convolutional networks are well adapted to classify images,
which, in our case, are the local spin configurations for each temperature value. The input
layer consists of a square lattice (L× L) with normalized Ising spin configurations. The in-
put shape specified on the input layer represents the shape of our input data (i.e., snapshot
images). The CNN extracts the relevant features from the input image through a successive
application of preprocessing filters, and then these feature maps serve as input for a final
dense network. For training, we use roughly 128,000 configurations (where 10% of which is
used for validation). We trained the network in a range of temperatures (Tcold, Thot). The
values of T are only used in the test stage to analyze the performance of the classification
and to predict Tc.

The first part of the model consists of two convolutional layers. Each of these layers
has 64 output filters of kernel size 3× 3 and unit stride. Then, the data are flattened to a one-
dimensional vector and passed to a Dense layer with rectified linear unit (ReLU) activation
function. Note that adding the Dense layer is an effective way of learning non-linear
combinations of the features, as it is fully connected with the output of the previous layer.
The optimization method is Adam, and the loss function is the categorical cross-entropy.
The learning rate lr is 10−2 < lr < 10−5, and the batch size is in the range of 128 to
256. We use an appropriate number of epochs (e.g., epoch = 4) and apply a Dropout
regularization in the Dense layer to avoid overfitting. As we can see from Figure A4a,
the last Dense layer has two nodes, Dense = 2 (binary classification), which means one
for each class, namely FM and PM states. We use the Softmax activation function on
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the last Dense layer so that the output for each sample is a probability distribution over
the outputs of each class. The validation accuracy in training is higher than 0.99, and
the validation loss is less than 2%. As an example, Figure A4b shows the prediction (by
prediction, we mean the average output values of the final Dense layer) for configurations
of different temperatures T, where ε = 0 is used here. The red (•) and the green (�) curves
represent the average prediction of the FM and PM phases, respectively. Here, the sum
of the two predictions should be PFM + PPM = 1, satisfying the probability theory. The
temperature at which the two curves intersect indicates the temperature at which CNN
switches between classifying configurations as ‘FM’ versus ‘PM’ phases. The crossing
point is also known as the point of maximal confusion (POM). The horizontal dashed line
represents an estimate of prediction P = 0.5, while the vertical dashed line indicates the
model’s crossing temperature T∗ (note that these notations are also the same for detailed
results presented in Section 3). Remarkably, the value of T∗ agrees with the exact result,
T∗ ≈ T0

c . The example of qualitative dependence of the critical temperature Tc on ε is
presented in Appendix A.3.

(a) (b)

Figure A4. Schematic diagram of the machine learning example: (a) fully connected or Dense layer
and (b) output layer (prediction) as a function of temperature [29].

Appendix A.3. Qualitative Dependence of Tc on the Parameter ε

Figure A5 (right panel) shows the plots of prediction versus T for L = 30 and for given
values of ε to show the dependence of the critical temperature Tc on ε. The positions at
which the curves are crossing each other give the estimates of Tc(ε). Notice the shifting of
Tc to higher values with increasing ε. The left panel of this figure discusses the qualitative
dependence of Tc on parameter ε, as the numerical result TML

c is compared with that of
the result calculated in Equation (7); see keys, where the inset plot is zoomed in on the
discrepancy region. The inset indicates that the modified algorithm is limited for ε < 0,
and it is more clear with decreasing ε < −2. For ε = 0, the model has an equilibrium
phase transition at Tc(ε = 0) ≈ 2.2692; see also Figure A1. It is clear that Tc approaches
zero for large negative values of ε, and it is ' 2Tc(ε = 0) for ε = 8, in agreement with
Equations (6) and (7).
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Figure A5. Prediction versus temperature performed using L = 30 for various ε values (left).
Qualitative dependence of Tc on ε as we compare the numerical result TML

c with that of Equation (7);
see keys, where the inset plot is zoomed on the discrepancy region (right).

Appendix A.4. Finite Size Scaling of the Transition Temperature

Figure A6 demonstrates the FSS analysis of the crossing temperature T∗(L) as a
function of 1/L for L = {10, 20, 30, 40, 60}.

(a) T0
c = 2

ln(1+
√

2)
(b) Tc(ε = −2) = 5

4 ln(1+
√

2)
(c) Tc(ε = +2) = 11

4 ln(1+
√

2)

TML
c ' 2.2687± 0.0015 TML

c ' 1.3769± 0.0087 TML
c ' 3.1071± 0.0175

Figure A6. The crossing temperature T∗(L) as a function of 1/L, where 1/L = 0 corresponds to
thermodynamic limit (L→ ∞). The horizontal red line (see keys) refers to the numerical TML

c (Table 1),
and the magenta line represents Texact

c (Equation (A5b)) as shown in each panels−(a–c).

The horizontal red line (see keys) refers to the numerical TML
c (Table 1), and the ma-

genta line represents the critical temperature in the thermodynamic limit that is calculated
using Equation (A5b), Tc(ε = ±2) = (16 + 3ε)/8 ln(1 +

√
2), where the known result of

Tc(ε = 0) is shown for reference. The size of the error bars is equal to one standard devi-
ation of statistical uncertainty. The numerical results are as follows: (a) T0

c ' 2.2687(15),
(b) Tc ' 1.3769(87) and (c) Tc ' 3.1071(175) are almost in agreement with our solution
(A5b). For ε = −2, the discrepancy is mainly related to the impact of ∆E = 0 in the
update rule. For ε < 0, it is noticed that the function of ∆E = 0 in rule (5) contradicts our
argument in Equation (A4). Consequently, the limitation of the modified algorithm for
ε < 0 (Appendix A.3) affects the accuracy of the model prediction. The critical exponents
ν and β are estimated as discussed in the main part (Section 3; see Figure 3). Further-
more, the estimation of the critical exponent γ can be performed using the FSS theory
χ ∝ (T/Tc − 1)−γ, where χ represents the latent susceptibility [16]. If z̃ denotes average
absolute latent variable (z̃ = 〈|z|〉), one can calculate χ as

χ =
N
(〈

z̃2〉− 〈z̃〉2)
T

, (A6)

recalling N = L × L and defining z̃ = 1
M ∑M

k=1 |zk|, where M is the total number of
configurations and k = {1, · · · , M}.
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Figure A7 demonstrates the latent variable z as a function of T for the given configu-
rations. As a result, one can estimate γ using the result of Equation (A6) where z̃ can be
obtained from the data presented in Figure A7 by plotting χL−γ/ν versus (T − T0

c )L1/ν.
Therefore, it is straightforward to apply this method to the nonequilibrium case (ε 6= 0).
Figure A8 shows the latent variable z as a function of T (a) ε = −2 and (b) ε = +2.

Figure A7. Scatter plots of the latent variable z versus T for four systems of each linear size L shown
at the upper right. This is the case of equilibrium (ε = 0) model. The blue dashed line within each
system denotes T0

c = 2/ ln(1 +
√

2). A gradient color at the right panel illustrates the temperature T,
and it reflects the nature of the phase diagram as we move from low T (T < T0

c ) to high T (T > T0
c ).

(a) ε = −2

(b) ε = +2

Figure A8. Scatter plots of the latent variable z versus T for the given linear size, ε = −2 (upper
panel) and ε = +2 (lower panel). Here, the blue dashed lines denote (a) Tc(ε) = (5/4)/ ln(1 +

√
2)

and (b) Tc(ε) = (11/4)/ ln(1 +
√

2). The gradient color shown for each panel demonstrates the
nature of the phase diagram from the low T (T < Tc) to the high T (T > Tc).
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