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Received: 1 July 2023

Revised: 22 August 2023

Accepted: 18 September 2023

Published: 19 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Gauge Theories of Josephson Junction Arrays: Why Disorder Is
Irrelevant for the Electric Response of Disordered
Superconducting Films
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Abstract: We review the topological gauge theory of Josephson junction arrays and thin film su-
perconductors, stressing the role of the usually forgotten quantum phase slips, and we derive their
quantum phase structure. A quantum phase transition from a superconducting to the dual, superin-
sulating phase with infinite resistance (even at finite temperatures) is either direct or goes through an
intermediate bosonic topological insulator phase, which is typically also called Bose metal. We show
how, contrary to a widely held opinion, disorder is not relevant for the electric response in these
quantum phases because excitations in the spectrum are either symmetry-protected or neutral due to
confinement. The quantum phase transitions are driven only by the electric interaction growing ever
stronger. First, this prevents Bose condensation, upon which out-of-condensate charges and vortices
form a topological quantum state owing to mutual statistics interactions. Then, at even stronger
couplings, an electric flux tube dual to Abrikosov vortices induces a linearly confining potential
between charges, giving rise to superinsulation.

Keywords: Josephson junction arrays; thin film superconductors; superinsulation; confinement;
Bose metals; bosonic topological insulators

1. Josephson Junction Arrays as a Model for Planar Superconductors

Superconductivity (for a review, see [1]) is predicated on the formation of a ground
state in which magnetic interactions are much stronger than electric ones. When the thick-
ness of a superconducting film is decreased, however, electric interactions become stronger
and stronger, until the superconducting ground state is destroyed in favour of different
phases [2–4]. These phase transitions, which can also be driven by an applied magnetic
field at fixed (small) thickness, are accompanied by the dissociation of the material into
an emergent granular structure of islands of charge condensate [5]. In this configuration,
superconductivity is due to Josephson tunnelling between islands when global phase
coherence is established. The other phases form when global phase coherence is lost.

These granular superconductors near their quantum phase transition can be modelled
by Josephson junction arrays (JJAs) [6], fabricated regular quadratic lattices of supercon-
ducting islands deposited on a substrate and coupled by Josephson junctions (for a review,
see [7]). The phase transitions are typically driven by tuning the Josephson coupling EJ
with respect to a mostly fixed charging energy EC of the islands. In some of the most recent
implementations, e.g., the Al islands are deposited on a semiconductor InAs substrate
and the Josephson coupling is driven by a voltage gate [8]. Typical island dimensions are
O (1 µm), while their typical distances are O(100 nm).

It is often believed that the quantum transition destroying superconductivity is due
to the disorder embodied by the irregular granularity [9]. Here, we show that it is not so;
this quantum transition is caused by electric interactions becoming ever stronger, and this
increase in the electric coupling has nothing to do with disorder, as can be witnessed in the
fact that it also occurs in perfectly regular JJAs.
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In discussions of disorder, one starts from a disorder-free Hamiltonian, which defines
the spectrum of excitations. Then, one lets some parameters of this Hamiltonian become
random variables, be it the potential energy of electrons, as in the original formulation [10],
the Ising couplings, when discussing spin glasses (for a review, see [11]) or other couplings
in general. For planar superconductors, the appropriate disorder-free Hamiltonian to start
with is that of Josephson junction arrays, which, in their classical limit, are embodiments
of the XY model, which is the paradigm of 2D superconductivity (for a review, see [12]).
The disorder to be added consists then in allowing random sizes (and shapes) of the local
condensate islands and random distances between them (the graph connectivity is typically
held fixed in these discussions to maintain the existence of the superconducting phase).
This disorder models the typical structure of irregular islands of condensate characterizing
superconducting films [5], and is reflected in the couplings EJ and EC becoming random
variables centred around their typical JJA values.

Starting from the correct disorder-free Hamiltonian ensures that one deals with the
correct spectrum of excitations. It is these excitations that are affected by the disorder
embodied in the random couplings. For example, in the 1D disordered Schwinger model,
one should start from the bosonized version of the Hamiltonian, since linear confinement
implies that the spectrum consists only of neutral mesons [13]. In the present case, the
correct disorder-free system precisely consists of JJAs. As we now show, the phases
obtained in this system when superconductivity is destroyed are either topological, and
hence disorder becomes “transparent”, or do not have charged excitations in the spectrum,
and disorder can thus influence possibly thermal properties but not electric transport. This
has the consequence that they are genuine new phases of matter.

In a nutshell, what happens is as follows. On a 2D JJA, quantum phase slips are
equivalent to vortex tunnelling on the dual array. When vortices can tunnel, charges and
vortices can both be out of condensate simultaneously. But as soon as this happens, charges
and vortices are frozen into a topological ground state by their mutual statistics interactions:
this is the origin of the Bose metal. Moreover, when vortex tunnelling events proliferate,
electric fields are squeezed into electric flux tubes between charges and holes. This causes a
linearly confining potential and the infinite resistance of the superinsulating phase.

However, there is one important difference between superconducting films and JJAs.
Films are made of one single material, it is only the condensate that dissociates into
superconducting islands; JJAs typically have physical islands of a different material than
the exposed substrate between them. As we will show, this implies that to see all phases
in JJAs, one most probably needs two driving parameters, with one setting the charge
tunnelling strength EJ between the islands and one governing the vortex tunnelling strength
EC on the “dual array” between them.

2. Josephson Junction Arrays: The Standard Treatment

Josephson junction arrays (for a review, see [7]) are quadratic arrays of spacing ` of
superconducting islands with nearest neighbours Josephson couplings of strength EJ . Each
island has a capacitance C0 to the ground and a mutual capacitance C to its neighbours.
The Hamiltonian for such a system is

H = ∑
x

C0

2
V2

x + ∑
<xy>

(
C
2
(
Vy −Vx

)2
+ EJ

(
1− cos

(
ϕy − ϕx

)))
, (1)

where boldface characters denote the sites of the array, < xy > indicates nearest neighbours,
Vx is the electric potential of the island at x, and ϕx the phase of its order parameter.
Introducing the forward and backwards lattice derivatives (which are exchanged under
summation by parts):

∆i f (x) = f (x + î)− f (x) ,

∆̂i f (x) = f (x)− f (x− î) , (2)



Condens. Matter 2023, 8, 85 3 of 11

where î denotes a unit vector in direction i, and the corresponding lattice Laplacian
∇2 = ∆̂i∆i, we can rewrite the Hamiltonian as

H = ∑
x

1
2

Vx

(
C0 − C∇2

)
Vx + ∑

x,i
EJ(1− cos (∆i ϕx)) , (3)

where we have chosen natural units so that c = 1, h̄ = 1, ε0 = 1 and we have set the lattice
spacing ` = 1 for ease of presentation.

The phases ϕx are quantum-mechanically conjugated to the charges (Cooper pairs)
2eqx , qx ∈ Z on the islands, where e is the electron charge. The Hamiltonian (3) can
be expressed in terms of charges and phases by noting that the electric potentials Vx are
determined by the charges 2eqx via a discrete version of Poisson’s equation:(

C0 − C∇2
)

Vx = 2eqx . (4)

Using this in (3) we obtain

H = ∑
x

4E′C qx
1

C0/C−∇2 qx + ∑
x,i

EJ(1− cos (∆i ϕx)) , (5)

where E′C ≡ e2/2C. The integer charges qx interact via a two-dimensional Yukawa potential
of mass

√
C0/C. We have denoted the coupling of this potential as E′C to signify that,

contrary to what is normally assumed, it is not the full charging energy EC of the islands,
as we will now show.

The partition function of the JJA admits a phase-space path-integral representation [6]

Z = ∑
{qx}

∫ +π

−π
Dϕ exp(−S) ,

S =
∫ β

0
dt ∑

x
i qx ϕ̇x + 4E′C qx

1
C0/C−∇2 qx + ∑

x,i
EJ(1− cos (∆i ϕx)) , (6)

where β = 1/T is the inverse temperature. In (6), (Euclidean) time has to be considered also
as discrete, as generally appropriate when degrees of freedom can change only in integer
steps. We introduce thus a discrete time step `0, which is the typical time scale associated
with tunnelling events. We thus substitute the time integrals and space sums over a lattice
with nodes x by a sum over space-time lattice nodes x, with x0 = t denoting the discrete
time direction. Also, in what follows we shall consider the purely quantum theory at zero
temperature by letting β→ ∞; incorporating a finite temperature is easily performed by
restricting the time sums to a finite domain. Denoting the (forward) finite-time differences
by ∆0, we obtain

Z = ∑
{j0}

∫ +π

−π
Dϕ exp(−S) ,

S = ∑
x

i j0∆0 ϕ + 4`0E′C j0
1

C0/C−∇2 j0 + ∑
x,i

`0EJ(1− cos (∆i ϕ)) , (7)

where we now denote the integer charge degrees of freedom by j0 for reasons to become
clear in a moment. Going over to the Villain representation, the partition function can be
formulated as

Z = ∑
{ai},{j0}

∫
D ji

∫ +π

−π
Dϕ exp(−S) ,

S = ∑
x,i

i j0∆0 ϕ + iji(∆i ϕ + 2πai) + 4`0E′C j0
1

C0/C−∇2 j0 +
1

2`0EJ
j2i , (8)
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where ai ∈ Z are integers and ji represents the total charge current in direction î.

3. Adding Quantum Phase Slips

In 1D Josephson junction chains, quantum phase slips [14] are crucial in the regime
of low temperatures and, accordingly, they are routinely taken into account (for a review,
see [15]). For some unknown reason, however, the corresponding tunnelling events are
mostly neglected for 2D JJAs, which leads to the wrong results. Let us first note that ai
in (8) constitutes a lattice gauge field. If we make a transformation ai → ai + ∆iλ, with an
integer λ, we can absorb λ into ϕ with a shift by a multiple of 2π of its integration domain.
We can then shift the definition of the integers ai to re-establish the original integration
domain and the original action, showing that the gauge transformation does indeed leave
the partition function invariant. As a consequence, only the transverse, pseudo-scalar
components of ai constitute gauge-invariant quantities; these are the vortices in the model.
Note two very important, and also often overlooked, facts: these are core-less vortices,
characterized only by their gauge structure, i.e., the circulation of the phases around an
array plaquette. As such they can tunnel without dissipation from one site of the dual array
to a neighbouring one. Moreover, contrary to Cooper pairs, they are not Noether charges
but purely topological ones. Since they have no core, they can not only tunnel from one
site of the dual array to another, but they can also appear/disappear on one site in tun-
nelling events that change the topological quantum number, called instantons (for a review,
see [16]).

In 1D Josephson junction chains, quantum phase slips are local quantum tunnelling
events in which the phase of the condensate at one particular island undergoes a 2π flip
over the typical time scale `0. In 2D JJAs, instead, quantum phase slips are half-lines of
simultaneous such flips of alternating chirality, ending in one particular island, as shown
in Figure 1. These configurations are nothing other than half-lines in which the gauge field
ai alternatingly increases or decreases by one unit. Since there are nowhere vortices but
on the two plaquettes based on the endpoint, the only gauge-invariant quantity in this
configuration is the quantum phase slip at the endpoint, corresponding to the displacement
of a vortex from one plaquette based there to the adjacent one, as shown in Figure 1.
Thus, again, we have gauge-invariant instantons. These must be taken into account at
low temperatures.

Figure 1. A half-line of simultaneous and alternating 2π phase flips. The only gauge-invariant degree
of freedom is the quantum phase slip at the endpoint, corresponding to the displacement of a vortex
from one plaquette based on this endpoint to the adjacent one.
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Quantum phase slips in JJAs amount thus to vortex tunnelling on the dual array
(centres of the plaquettes), the dual phenomenon to Cooper pair tunnelling on the array.
This tunnelling cannot be neglected when studying the quantum phase structure of the arrays.
We must thus add to the action a vortex kinetic term dual to the corresponding tunnelling
current for Cooper pairs [17,18]. Of course, this has an important consequence: a vortex
moving in one direction creates a 2D logarithmic Coulomb potential between the islands in
the perpendicular direction.

Before showing how this can be incorporated into the action we have to pause a
moment to introduce the gauge-invariant lattice version of the curl operator εµαν∂α, where
the Greek letters denote the three possible directions on the Euclidean 3D lattice, with sites
denoted by {x} [17]. We first introduce forward and backward finite differences also in the
(Euclidean) time direction,

∆0 f (x) =
f (x + `0µ̂)− f (x)

`0
,

∆̂0 f (x) =
f (x)− f (x− `0µ̂)

`0
. (9)

Then, we introduce forward and backwards shift operators

Sµ f (x) = f (x + dµ̂) ,

Ŝµ f (x) = f (x− dµ̂) , (10)

where µ̂ denotes a unit vector in direction µ and d = 1 in the spatial directions, d = `0 in
the Euclidean time direction. Summation by parts on the lattice interchanges both the two
finite differences (with a minus sign) and the two shift operators. Gauge transformations
are defined by using the forward finite differences. In terms of these operators, one can
then define two lattice curl operators

Kµν = Sµεµαν∆α , K̂µν = εµαν∆̂αŜν , (11)

where no summation is implied over the equal indices µ and ν. Summation by parts on the
lattice interchanges also these two operators (without any minus sign). Gauge invariance is
then guaranteed by the relations

Kµν∆ν = ∆̂µKµν = 0 , K̂µν∆ν = ∆̂µK̂µν = 0 . (12)

Note that the product of the two curl operators gives the lattice Maxwell operator

KµαK̂αν = K̂µαKαν = −δµν∆ + ∆µ∆̂ν , (13)

where ∆ = ∆̂µ∆µ is the 3D Laplace operator.
Using this notation, the vortex number density is φ0 = K0iai. Since the vortex three-

current is conserved, we can write it completely in terms of a gauge field aµ after introducing
a Lagrange multiplier a0: φµ = Kµνaν. The partition function, including quantum phase
slips, is then

Z = ∑
{aµ},{j0}

∫
Da0D ji

∫ +π

−π
Dϕ exp(−S) ,

S = ∑
x

i j0(∆0 ϕ + 2πa0) + iji(∆i ϕ + 2πai) +
1

2`0EJ
ji2 +

π2

4`0EC
φ2

i . (14)
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The Gauss law associated with the Lagrange multiplier a0 leads, in the Coulomb gauge, to
the 2D Coulomb interaction term

SCoulomb = ∑
x

. . . + 4`0EC j0
1
−∇2 j0 + . . . , (15)

for charges. This shows that, on sufficiently large samples, the charging energy of the
islands is dominated by the 2D logarithmic Coulomb interaction associated with vortex
tunnelling (quantum phase slips) and not by the screened interaction due to the finite
capacitances. This can lead only to finite-size corrections to the dominant EC in (14).

At this point, we note that the charge current jµ is conserved and, hence, it can be
represented as the dual field strength associated with a second emergent gauge field bµ as
j0 = K0ibi, ji = Ki0b0 + Kijbj, where b0 is a real variable, while bi are integers. We then use
Poisson’s formula,

∑
nµ

f
(
nµ

)
= ∑

kµ

∫
dnµ f

(
nµ

)
ei2πnµkµ , (16)

turning a sum over integers {nµ} into an integral over real variables, to make all compo-
nents of the gauge fields aµ and bµ real, at the price of introducing integer link variables Qi
and Mi,

Z = ∑
{Qi}

∑
{Mi}

∫
DaµDbµ

∫ +π

−π
Dϕ exp(−S) ,

S = ∑
x

i2π aµKµνbν +
1

2`0EJ
ji2 +

π2

4`0EC
φ2

i + i2πaiQi + i2πbi Mi

+bi
(
K̂i0∆0 ϕ + K̂ij∆j ϕ

)
+ b0K̂0i∆i ϕ . (17)

Finally, we note that the quantities K̂µν∆ν ϕ are the circulations of the array phases
around the plaquettes orthogonal to the direction µ in 3D Euclidean space-time, and are
thus quantized as 2π integers. We can thus absorb the quantities

(
K̂i0∆0 ϕ + K̂ij∆j ϕ

)
in a

redefinition of the integers Mi, and define K̂0i∆i ϕ = 2πM0. The original integral over the
phases ϕ can then be traded for a sum over the vortex numbers M0,

Z = ∑
{Qi}

∑
{Mµ}

∫
DaµDbµ exp(−S) ,

S = ∑
x

i2π aµKµνbν +
1

2`0EJ
ji2 +

π2

4`0EC
φ2

i + i2πaiQi + i2πbµ Mµ .

(18)

This is the gauge theory of JJAs [17,18]. The quantities Qi and Mi represent the
Josephson currents of Cooper pairs and the dual vortex tunnelling currents, respectively,
while M0 is the vortex number. Charges and vortices interact via two emergent gauge
fields aµ and bµ. The first, infrared-dominant term in the gauge action is the lattice version
of the topological Chern–Simons term [19]. The remaining two terms are quadratic in
the emergent electric fields, which are orthogonal to the total charge and vortex currents.
These are the Josephson tunnelling currents plus local fluctuation terms deriving from time-
dependent vortex currents for charges, and vice versa for vortices. The action is thus a non-
relativistic version of the Maxwell–Chern–Simons gauge action corresponding to infinite
magnetic permeability, in which emergent magnetic fields are suppressed. Gauge fields
are topologically massive [19], the topological gap coinciding with the Josephson plasma

frequency of the array, ωP =
√

8EJ EC. The dimensionless parameter g =
√

π2EJ/2EC,
measuring the relative strength of magnetic and electric interactions, drives the quantum
phase structure. Note that the quantity EC here is different from the previously introduced
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E′C: the former is the long-range logarithmic potential induced by vortex tunnelling, the
latter is the sub-dominant short-range component arising from the island capacitances.

The quantum phase structure is determined by the condensation, or lack thereof,
of integer electric (Qi) or magnetic (Mµ) strings on a 3D Euclidean lattice [17]. Both
their energy and their entropy are proportional to their length and the condensations are
governed by energy/entropy balance conditions. The resulting quantum phase structure is
shown in Figure 2.

Figure 2. The quantum phase structure of JJAs.

In addition to the dimensionless conductance parameter g, there is another relevant
parameter η [17], which is a function of the ratio ωP`0 of the two characteristic frequen-
cies in the problem, the plasma frequency and the tunnelling frequency 1/`0. When
η < 1, there is a direct “first-order” (coexistence of two phases) quantum transition be-
tween superconducting and superinsulating phases as g is decreased below the resistance
quantum at RQ = 6.45 kΩ at g = 1, i.e., electric interactions become stronger. When
η > 1, an intermediate Bose metal state [17] (for a review, see [20,21]) appears in the
interval 1/η < g < η; as we now review [22], this phase is actually a bosonic topological
insulator [23,24]. Exactly this quantum phase structure has been recently derived experi-
mentally in an irregular In/InO composite array, although the driving magnetic field was
too low to detect superinsulation [25].

When magnetic interactions dominate (EJ � EC), electric strings Qi condense. This
means that Josephson currents of charges percolate through the sample, establishing
global superconductivity. This superconductivity, with dissipationless vortices whose
confinement/deconfinement drives the thermal phase transition to a resistive state is a
type-III superconductivity, not described by the usual Ginzburg–Landau theory [26], and
is not confined to 2D but exists also in 3D [27]. It has also been proposed to described
the physics of high-Tc cuprates [28]. We shall not discuss this phase further here, but we
shall rather focus on what happens when superconductivity is destroyed by strong electric
interactions.

For η > 1, there is an intermediate domain in which neither electric nor magnetic
strings condense: no superconducting currents, and vortices are gapped excitations. In this
intermediate domain, the infrared-dominant action for the the JJA reduces to the topological
Chern-Simons term

STI = ∑
x

i2π aµKµνbν . (19)

This is the action of a bosonic topological insulator [23,24]. In this phase, both charges
and vortices are frozen in the bulk. The ground state wave function of this state has been
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derived in [29]; it consists of an integer-filling composite quantum incompressible fluid of
charges and vortices at g = 1 with excess charges and vortices for g 6= 1 forming a Wigner
crystal, with charges being in excess of vortices for g > 1 and vice versa.

While the bulk is completely frozen at zero temperature, there remain edge currents,
where edges may be internal to the sample, forming a percolation structure [30]. On these
edges, we also have the usual 1D quantum phase slips [14,15], corresponding to vortices
moving across the edges. These cause the observed metallic saturation of the resistance,
which is the origin of the name “Bose metal” for this phase, first predicted in [17]. Of course,
since there is an overabundance of charges for g > 1, the resistance is lower here than in
the region g < 1 where we have an overabundance of vortices. Correspondingly, when the
temperature is raised, the resistance increases in the regime g > 1, which is the origin of the
alternative name “failed superconductor”, while it decreases in the opposite regime g > 1,
giving rise to the alternative name “failed insulator”. Failed superconductors and failed
insulators, however, are two faces of the same medal, the intermediate bosonic topological
insulator [22].

The bosonic topological insulator is the physical embodiment of a field-theoretic
anomaly involving Chern–Simons gauge fields [31]. In topologically massive gauge the-
ories, the limit m → ∞ does not commute with quantization because of the phase space
reduction this limit entails [31]. In physical applications, the topological gauge theory in
(19) must always be considered as the m→ ∞ limit of the full theory (18) with dynamical
terms; otherwise, wave functionals would not be normalizable. This implies, in particular,
that phase and charge are not a canonically conjugate pair, as would follow from the pure
Chern–Simons term (19). Therefore, charges and vortices can be both out of condensate,
even when their gap is finite and they can be excited in the bulk. Of course, at T = 0, they
are immediately frozen into a topological ground state by the mutual statistics interactions,
giving rise to the topological insulator/Bose metal phase via edge transport [22].

When electric interactions dominate (EC � EJ), there is a condensation of vortices
while Josephson currents are suppressed. To establish the nature of this phase, let us couple
the total electric current jµ to the real electromagnetic gauge field Aµ,

S→ S + i ∑
x

Aµ jµ = S + i ∑
x

AµKµνbν , (20)

and integrate over the emergent gauge fields aµ and bµ to obtain the electromagnetic
effective action. In the limit `0ωP � 1, this is given by

Seff
(

Aµ, Mi
)
=

g
4π`0ωP

∑
x
(Fi − 2πMi)

2 , (21)

where Fi are the spatial components of the dual electromagnetic vector strength Fµ = K̂µν Aν,
and where the integers Mi have to be summed over in the partition function. This is a deep
non-relativistic version of Polyakov’s compact QED action [32,33], in which only electric
fields survive. Its form shows that the action is periodic under shifts Fi → Fi + 2πNi,
with integer Ni, and that the gauge fields are thus indeed compact, i.e., angular variables
defined on the interval [−π,+π]. The integers Mi can be decomposed into transverse
and longitudinal components, of which neither alone has to be an integer, only the sum is
so constrained. The transverse components can be absorbed into a redefinition of Fi; the
longitudinal components can be represented as

ML
i =

∆i
∇2 m , (22)

where m ∈ Z are magnetic monopole instantons [32,33]. These represent tunnelling
events in which vortices appear/disappear on a single plaquette, thereby interpolating
between different topological sectors. The proliferation of such instantons at small g has a
momentous consequence.
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One is used to the fact that electromagnetic fields mediate Coulomb forces between
static charges, a 1/|x| potential in 3D, or a log|x| potential in 2D. The monopole plasma
in the compact version of QED, however, drastically changes this and generates a linearly
confining potential σ|x| between charges of opposite sign, where

σ =
h̄ωP
`

√
16

πg`0ωP
e−

πg
2`0ωP

G , (23)

is the string tension, G = O(1), and we have reinstated physical units. This is the phe-
nomenon of confinement, known from strong interactions (for a review, see [34]), with
electric fields playing the role of chromo-electric fields and Cooper pairs playing the role of
quarks. An electric flux tube (string) dual to Abrikosov vortices holds together charges in
neutral pion excitations. There is no charged excitation in the spectrum for arrays larger
than the pion size, and this is the origin of the infinite electric resistance in this phase, dual
to the infinite conductivity in the superconducting phase. This state of matter is known
as a superinsulator, and was first predicted in [17] (for a review, see [35]). Superinsula-
tors [17,36–39], with their divergent electrical resistance, have been experimentally detected
in InO [40], TiN [36], NbTiN [41], and NbSi [42]. A recent measurement of the dynamic
response of superinsulators confirmed that the potential holding together ± charges is
indeed linear [43].

4. Why Disorder and Dissipation Are Not Relevant for the Quantum Phases of
Granular Films

We are now in the position to explain why disorder is irrelevant for the quantum
phases of granular superconductors. As mentioned in the introduction, JJAs are the closest
ordered Hamiltonian system on which to add positional and size disorder of the granules.
This disorder then affects the behaviour of the excitations in the spectrum of JJAs. In the
topological insulator phase, disorder can indeed help to pin the excess bulk charges and
vortices around the integer-filling ground state when g deviates from its central value
g = 1. But even this is not necessary; these excitations form a Wigner crystal [29], exactly
as can happen in the fractional quantum Hall effect [44]. And, indeed, the topological
insulator state is clearly detected in perfectly ordered JJAs [8]. Finally, the edge currents are
symmetry-protected and thus transparent to Anderson localization.

In the superinsulating phase, there are no U(1) charged excitations in the spectrum;
they are confined (for large enough samples). As such, disorder may influence the neutral
excitations responsible for the thermal properties, but not the electric transport properties.
The infinite resistance (even at finite temperatures) is due exclusively to strong electric
interactions first preventing Bose condensation and then becoming linearly confining
by an instanton plasma. This is analogous to the situation in the disordered Schwinger
model (1D QED), where confinement is kinematic. First, one has to identify the correct
spectrum of neutral mesons and only then can one even speak of disorder [13]. Of course,
disorder can influence itself the strength of the Coulomb interaction, but this leads only to
a renormalization of EC, i.e., of g [45].

Finally, dissipation by single-electron tunnelling is often mentioned as a relevant
phenomenon for granular superconductors. However, in the bosonic topological insulator
phase, the only possible dissipation is due to quantum phase slips, since edge states are
symmetry protected. In the superinsulating phase, there are no single electrons in the
spectrum; they are confined too. The only region where single-electron dissipation may
become relevant is at higher temperatures, near the thermal transition, where the string
tension becomes very small, in perfect analogy to the dual superconductors.

5. Why the Full Phase Structure Is Not Yet Seen in JJAs

The g ≥ 1 (R ≤ RQ) segment of the bosonic topological insulator phase (failed
superconductor) has been recently experimentally detected in Al/InAs JJAs, confirming
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that disorder is irrelevant for this phase [8]. As mentioned in the introduction, this has
been achieved by a voltage gate, which depletes the available charges for tunnelling, which
amounts essentially to varying EJ at fixed EC. Apparently, it is not possible to reach low
enough values of g by this procedure alone, without destroying superconductivity of the
Al islands themselves. In our opinion, one should consider a more regular arrangement of
superconducting islands and exposed semiconductor substrate, forming something like
a checkerboard with, say, the white squares being the superconducting islands and the
black squares the “dual” islands of exposed substrate, and introduce a second, separate
procedure to govern the dual, vortex tunnelling coupling EC. We predict that once this can
be achieved, the described phase structure will be exposed also for completely ordered JJAs.
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