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Abstract: Recently, we proposed a novel range detector concept named ASTRA. ASTRA is optimized
to accurately measure (better than 1%) the residual energy of protons with kinetic energies in the range
from tens to a few hundred MeVs at a very high rate of O(100 MHz). These combined performances
are aimed at achieving fast and high-quality proton Computerized Tomography (pCT), which is
crucial to correctly assessing treatment planning in proton beam therapy. Despite being a range
telescope, ASTRA is also a calorimeter, opening the door to enhanced tracking possibilities based on
deep learning. Here, we review the ASTRA concept, and we study an alternative tracking method
that exploits calorimetry. In particular, we study the potential of ASTRA to deal with pile-up protons
by means of a novel tracking method based on semantic segmentation, a deep learning network
architecture that performs classification at the pixel level.

Keywords: proton CT; image reconstruction; proton tracking; deep learning

1. Introduction

Radiation therapy consists of the targeted destruction of malignant tissue by means of
controlled beams of particles or photons, the latter being the most widespread solution [1].
However, photon energy deposition decays exponentially with distance, so to treat a patient
with photons, a non-negligible dose of radiation is delivered to healthy tissue. The stopping
power of a proton, on the other hand, increases with distance and is maximized at the
stopping point, known as the Bragg peak [2]. Consequently, proton beam therapy (PBT) is
an attractive treatment alternative; see Ref. [3] for a review.

To reliably plan PBT treatment, it is important to create a tomographic image of the
body in terms of its relative stopping power (RSP), which is indicative of how much the
protons will slow down as they travel through the patient. The most widespread solution
is to generate these images using X-rays (X-ray CT). However, photon imaging to address
proton treatment introduces uncertainties that limit the potential of PBT [4]. To overcome
this barrier, research has been conducted for decades with the goal of achieving high-
quality proton computed tomography (pCT). Various designs have been proposed over the
years, see Refs. [5–10], to pave the way forward. Recently, A Super Thin RAnge (ASTRA)
telescope has been proposed as a next-generation detector for pCT, its main advantages
being its speed (aims at 100 MHz) and its fine segmentation (3 × 3 mm2 bars) meant to
accurately reconstruct the proton energies by range and to efficiently deal with pile-up.

Here, we review the most prominent features of ASTRA as presented in Ref. [11] and
extend the capabilities presented there by proposing a new tracking method based on
semantic segmentation.
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1.1. Detector Concept

The concept of the detector is illustrated in Figure 1. It consists of an upstream tracker
made up of four pixel sensors, two before and two after the phantom to be imaged, and
ASTRA located downstream.

The main role of the front tracker is to very precisely identify the path of the protons
within the phantom being imaged. A possible solution could be to use large area depleted
monolithic active pixel sensors (DMAPS) [12] covering a surface of 10 × 10 cm2, similar to
those in Ref. [13], with 2500 × 2500 silicon pixels of 40 × 40 µm2.

ASTRA is made up of layers of plastic scintillators positioned perpendicular to the
proton beam. Each layer consists of bars of 3 × 3 × 96 mm3, and bars in consecutive layers
are rotated by 90◦. To achieve a very fast response, ASTRA bars could be made up of EJ-200
plastic with 0.9 ns scintillation rise time and 2.1 ns decay time (for 1 MeV electrons [14])
and an attenuation length of 380 cm [14]. To match ASTRAs fast plastic scintillation, fast
photosensors capable of providing a full waveform in a few nanoseconds would be used,
e.g., MicroFJ SiPM [15]. Finally, custom electronics would be implemented, taking as a
reference the performance of the CITIROC ASIC that provides a dead-time free readout at
a sampling frequency of 0.4 GHz [16].

Figure 1. (Left): Sketch of the simulated pCT system, including a front tracker made up of four
DMAPS and a proton energy tagger named ASTRA. (Right): Detailed view of two exploded layers
of ASTRA showing the relative orientation of bars in consecutive layers and the placement of multi
photon pixel counters (MPPCs).

1.2. Tracking and Energy Reconstruction

To assess the potential performances of ASTRA, we designed and tested custom
reconstruction algorithms in Ref. [11]. The most relevant conclusions and characteristics of
these studies are summarized below. ASTRA’s fine segmentation allows multiple protons
to be identified when they cannot be separated by time alone. This is crucial to reduce the
inefficiencies caused by pile-up, which, for a beam tuned to provide a single proton per
time frame, are approximately (assuming Poisson statistics in the distribution of protons
per time frame: (1− P{µ = 1, x = 0} − P{µ = 1, x = 1})/(1− P{µ = 1, x = 0}) ≈ 0.4)
40% of all events. When working with data, the number of proton trajectories in a single
time frame is expected to be known reliably from the number of isolated clusters recorded
in the first front-tracker plane.

Regarding the proton energy reconstruction, in Ref. [11], a range-based method was
considered, which mapped the reconstructed range for the tracked protons measured in
ASTRA to a reconstructed value for the kinetic energy. This method proved to be successful
as it resulted in energy resolutions of up to 0.7% for the energies of interest. However, in
Ref. [11], it was discussed that such a method worked only for protons without inelastic
interactions (∼70% at E ≈ 180 MeV), which in most cases significantly shortened the
range with respect to the expectation for a given initial kinetic energy, forcing to consider
alternatives, including calorimetric information for a better result.
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As we anticipated in Ref. [11], the proposed tracking and energy reconstruction
methods were primarily aimed at demonstrating the potential of ASTRA by showing a
lower bound of the detector’s capabilities; however, we planned from the beginning to test
alternative solutions, which are now under development.

2. Towards an Enhanced Proton Tracking

Improving the performances presented in Ref. [11] requires exploiting all the informa-
tion provided by ASTRA. In particular, the addition of high-quality calorimetric information
is expected to improve the tracking capabilities of the detector.

For a set of proton trajectories recorded in ASTRA over the same time frame, a major
problem is identifying which bar hits are associated with each trajectory. This step is crucial:
wrong tracking outputs directly translate into energy smearing, both degrading the image
quality and increasing inefficiencies. However, correctly labeling the hits for pile-up events
is a big challenge as the narrow beam width of σ = 1 cm [17] makes overlaps at the hit
level very common.

To overcome this issue, an algorithm that exploits the proton ionization continuity
over consecutive hits can be used in order to classify individual hits and break tracking am-
biguities. This has the additional benefit of allowing to perform stand-alone reconstruction
for ASTRA, which otherwise needs additional inputs from the DMAPS tracker.

The rise of deep learning in recent years opens up a whole set of new possibilities for
designing novel reconstruction methods. Semantic segmentation [18], which emerged in
the field of computer vision, is a branch of deep learning that enables image classification
at the pixel level. Therefore, a tracking solution could be to build images with event
displays from ASTRA using one pixel per ASTRA bar and classifying the pixels into
different categories, such as track-1, track-2 and overlap, for events with two proton
tracks. This has two obvious advantages. First, semantic segmentation algorithms are
capable of learning non-trivial transformations and combining local and long-distance
information to classify recurring image patterns with very high performance [19]. Second,
deep-learning-based tracking algorithms do not require defining custom decision rules
or manually modifying parameters, as the algorithm optimization is handled directly by
training on labeled examples that can be obtained straightforwardly once a simulation
framework is available.

To enhance the proton tracking in ASTRA, a U-shaped convolutional neural network,
so-called UNet [20], is being considered. UNets are a well-spread, robust, high-performance
deep-learning architecture used to realize semantic segmentation. The algorithm takes
images generated with the GEANT4-based Monte Carlo (MC) simulation described in
Ref. [11] as the input. The simulation uses uniformly distributed protons in the energy range
of 80 to 180 MeV, secondary particles are included, and all events are considered without
rejecting any event based on true MC information. Each image consists of 64 × 60 pixels
that correspond to the positions of the bars and signals measured in each of the 60 ASTRA
layers, with 32 bars per layer. To combine both planes, the images are merged in a vertical
stack of 32 × 2 bars. The algorithm is trained using labels (track-1, track-2 and overlap)
obtained from the true information of the simulation and, so far, we worked exclusively
with events with two simultaneous protons. The predicted labels are used to identify the
tracks, which are split into track-1 and track-2 images, including all hits classified as
overlap on both. Illustrative examples are presented in Figure 2.
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Figure 2. Examples of two events, one per row, including the input event display, the true labels and
the reconstructed tracks based on the UNet output. Bar IDs 0–31 (32–63) correspond to the top (side)
view of the ASTRA detector.

To evaluate the performance of the algorithm, the true and reconstructed Euclidean
range from the first to the last track hit was computed from the predicted pixel labels and
compared to the range calculated with perfect pixel classification. This intermediate step
allows us to directly assess the potential of the algorithm not at the pixel but at the track
level, which is the most relevant for our purposes. The preliminary results obtained from
individually analyzing all reconstructed tracks are presented in Figure 3. As can be seen,
near-perfect regression performance is achieved in the range, with about 98% of the events
with an error equal to or better than 3 mm, the width of one ASTRA bar. For 75% of tracks,
the range is perfectly reconstructed.

Figure 3. (Left): Distribution of the difference between the reconstructed range using the true pixel
information compared to that calculated using predictions from the UNet-based tracking algorithm.
(Right): Fraction of tracks with an error smaller than an acceptance cut for the distribution on the left.

To translate the range into a reconstructed energy, we follow the method we previously
presented in Ref. [11], i.e., using Monte Carlo true information, we parameterize what
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typical energy is associated with each true range and use it to map a reconstructed range
into a reconstructed energy. For a collection of protons with the same initial true energy,
we study the associated reconstructed energy, and we fit the central peak with a Gaussian
distribution. All proton trajectories within 2σ are selected as good for imaging. Under this
criterion, the new algorithm significantly outperforms the metrics reported in Ref. [11].
In particular, it significantly increases the fraction of protons good for imaging in events
with two piled-up protons. For instance, for protons with an energy similar to 150 MeV, it
increases this fraction from about 55% (reported in Ref. [11]) to 68%, much closer to the 80%
of protons good for imaging in events without pile-up (reported in Ref. [11]). The remaining
20% is known to be poorly reconstructed due to inelastic interactions. To overcome this
limitation, tests are underway to reconstruct the energy not by range but directly from the
input event display images using convolutional neural networks (CNN). By exploiting the
correlated information of the proton energy deposits and their trajectories, a significant
increase in performance is expected. Going in this direction, we already presented the first
tests using a Boost Decision Tree (BDT) that combined range and calorimetry in Ref. [11]
and achieved an important enhancement in the energy resolution from 0.7% to 0.5% for
events without inelastic interactions.

3. Conclusions

The design of the ASTRA range telescope has been reviewed, and alternatives to its
mainstream reconstruction strategy have been presented. A UNet-based tracking algorithm
has been tested as an alternative to enhance the reconstruction of events with piled-up
protons. The preliminary results are very promising, significantly outperforming those
in Ref. [11]. Additional deep learning methods to reconstruct protons energy are being
evaluated with the primary goal of improving reconstruction metrics associated with
protons undergoing inelastic interactions.
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