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Abstract: Inorganic scintillators activated by charge transfer luminescence Yb3+ are considered
promising ultrafast material to break the ps timing barrier for future high energy physics applications.
Inorganic scintillators in ceramic form are potentially more cost-effective than crystals because of
their lower fabrication temperature and no need for aftergrowth mechanical processing. This paper
reports an investigation on Lu2O3:Yb and Lu2xY2(1−x)O3:Yb scintillating ceramic samples fabricated
by Radiation Monitoring Devices Inc. All samples show X-ray excited luminescence peaked at 370 nm.
Ultrafast decay time of 1.1 ns was observed by using a microchannel plate-photomultiplier tube-based
test bench at Caltech. Considering its intrinsic high density (9.4 g/cm3), Lu2O3:Yb ceramics are
promising for future time of fight application for high energy physics experiments.

Keywords: scintillators; ceramics; time of flight; ultrafast calorimetry; charge transfer luminescence;
fast timing

1. Introduction

Inorganic scintillators are widely used in high energy physics (HEP) experiments to
construct total absorption electromagnetic calorimeters, providing the best possible energy
resolution and position resolution, as well as good electron and photon identification and
reconstruction efficiency. The 2019 Department of Energy (DOE) basic research needs (BRN)
report [1] points out that ultrafast, radiation hard and cost-effective scintillators are one of
the priority research directions for HEP calorimetry. Ultrafast inorganic scintillators are
required by future HEP experiments at both the energy and intensity frontiers to mitigate
high event rate and pileup. The Compact Muon Solenoid (CMS) experiment is building
a barrel timing layer (BTL) consisting of cerium doped lutetium yttrium oxyorthosilicate
(Lu2(1−x)Y2xSiO5:Ce or LYSO) crystals readout by Silicon Photomultipliers (SiPM) for the
high luminosity large hadron collider (HL-LHC) [2]. Its timing resolution reaches 30 ps.
One of the limiting factors for the timing resolution is the 40 ns decay time of LYSO:Ce
crystals, which would also cause pile-up in future high-rate experiments. Ultrafast heavy
inorganic scintillators with a few nano-second decay time are important to break the pico-
second (ps) timing barrier for time of flight (TOF) and ultrafast calorimetry applications for
future HEP experiments. An example of ultrafast inorganic scintillator is BaF2:Y crystal,
which is proposed for the Mu2e-II experiment at Fermilab [2], and also for GHz hard X-ray
imaging for future Free-Electron Laser facilities [3–5]. We use two figures of merit for such
applications: (1) the light yield in the first ns, and (2) the ratio between the light yield in the
first ns and its total light yield (U/T).

Charge transfer (CT) luminescence was observed in Yb3+ (4f13) activated scintilla-
tors [6]. It features two emission bands (CT state −> 2F5/2) and (CT state −> 2F7/2) with an
energy difference of about 10,000 cm−1, and a strong thermal quenching. Depending on
the temperature and the composition, ultrafast and fast decay time from sub-nanosecond
to tens of nanosecond was observed in Yb3+ doped scintillators. Among them, Lu2O3:Yb
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shows a high-density (9.42 g/cm3) and large dE/dx (11.6 MeV/cm), so it is attractive for
the HEP community. Its high melting point (2490 ◦C), however, makes the growth of a
single crystal expensive. Ceramics are more cost-effective than single crystals because of
the following reasons. (1) Ceramic fabrication does not require melting raw material, so
can be conducted with a simpler process at a sintering temperature lower than the melting
point for single crystals. (2) Ceramic fabrication allows complex shape with minimum
after-growth mechanical processing. It thus has a higher raw material usage and low cost.
(3) Activator distribution in ceramics is more homogeneous than in crystals by avoiding
segregation.

Cost-effective transparent ceramics have been pursued by industry for decades [7].
Previous studies demonstrate that Lu2O3:Yb ceramic plates with optical quality approach-
ing theoretical transmittance can be obtained [8–12]. By fine-tuning the Yb3+ doping level,
light yield of 500 ph/MeV and decay time of ~1 ns were reported [10,13]. Its light yield in
the first ns, however, is still low compared to other candidate ultrafast scintillators. On the
other hand, radiation hardness of the scintillators must be investigated for applications in a
severe radiation environment, such as the HL-LHC or FCC-hh. Systematic investigation
was carried out to understand radiation damage in various inorganic scintillators against γ-
rays [14], neutrons [15,16], and protons [16–19]. The radiation hardness of these rare-earth
sesquioxide scintillators needs also be checked.

In this investigation, Lu2O3:Yb and Lu2xY2(1−x)O3:Yb ((Lu,Y)2O3:Yb) ceramics were
fabricated by Radiation Monitoring Devices, Inc, Watertown, MA (RMD). Their optical and
scintillation performance were measured at Caltech HEP Crystal Lab. Ultrafast decay time
was measured by using a microchannel plate-photomultiplier tube (MCP-PMT)-based test
bench. Radiation hardness against γ-rays was also investigated.

2. Materials and Methods

Figure 1 shows seven Lu2O3:Yb and Lu2xY2(1−x)O3:Yb ((Lu,Y)2O3:Yb) ceramic samples
used in this investigation. Table 1 lists their detailed information.
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Figure 1. A photo showing seven Lu2O3:Yb and (Lu,Y)2O3:Yb ceramic samples fabricated by RMD.

Table 1. Dimension and composition of the Lu2O3:Yb and (Lu,Y)2O3:Yb ceramic samples used in
this investigation.

ID Dimension (mm3) Composition

RMD-2 Φ9 × 1.5 Lu2O3
RMD-3 Φ9 × 1 Lu2O3
RMD-5 Φ9 × 1.5 (Lu,Y)2O3
RMD-6 Φ9 × 1.5 (Lu,Y)2O3
RMD-7 Φ9 × 2 (Lu,Y)2O3
RMD-8 Φ9 × 1 Lu2O3
RMD-9 Φ9 × 2 (Lu,Y)2O3

Their X-ray excited luminescence spectrum (XEL) was measured by using a HITACHI
F-4500 spectrophotometer and an Amptek Eclipse-III X-ray tube. Their transmittance
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was measured by using a Hitachi U3210 spectrophotometer with 0.2% precision. Their
light output (LO) was measured by a Hamamatsu R2059 PMT with a grease coupling for
0.511-MeV γ-rays from a 22Na source with a coincidence trigger. The corresponding
systematic uncertainty of the light output data is 1%. The sample RMD-2 was irradiated by
γ-rays from a Cs-137 source at Caltech in two steps to reach a total ionization dose (TID) of
10.1 Mrad. This sample was kept at room temperature and wrapped with Al foil to avoid
optical bleaching in the entire process. Both transmittance and light output of the sample
were measured before and after irradiation at the Caltech HEP crystal lab.

Figure 2 shows the test-benches used to measure the temporal response for (a) BaF2
samples to 511 keV γ-rays from a 22Na source with a coincidence trigger, and (b) Lu2O3:Yb
ceramic samples to a 241Am source. A Photek MCP-PMT240 with a rise time and FWHM
of 0.18 and 0.82 ns, respectively, was used to measure the scintillation signal. A 2.5 GHz
Agilent MSO 9254A was used to collect and process the signal.
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Figure 2. A schematic showing MCP-based test benches for temporal response measurement for
(a) BaF2 samples to 511 keV γ-rays from a 22Na source with a coincidence trigger, and (b) Lu2O3:Yb
ceramic samples to a 241Am source.

Rise time and decay time of the measured scintillation pulse was obtained by fitting
the temporal response of the pulse shape with the following equation [20]:

V (t) = A
(

e−
t

τd − e−
t

τr

)
+ B, (1)

where V is the measured pulse amplitude, B represents background noise, and τr and τd
are respectively the rise time and decay time. The full width at half maximum (FWHM) of
the pulse was calculated by the fitting.

The data presented in this paper are not corrected by the Instrument Response
Function.

3. Results and Discussions

Figure 3 shows X-ray excited luminescence spectra measured for the Lu2O3:Yb ceramic
sample 2 (top) and 3 (middle), and the (Lu,Y)2O3:Yb ceramic sample 6 (bottom). All three
samples show consistent XEL peaked at ~370 nm. A slight difference was observed for
sample 6, which can be attributed to the Y admixture.
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Figure 3. XEL spectra measured for the Lu2O3:Yb ceramic sample 2 (top) and 3 (middle), and the
(Lu,Y)2O3:Yb ceramic sample 6 (bottom).

Figure 4 shows transmittance spectra measured for the Lu2O3:Yb ceramic samples 2
(top) and 3 (middle), and the (Lu,Y)2O3:Yb ceramic sample 6 (bottom). The XEL spectra
(blue dash lines) are also shown in the figure, as well as the theoretical limit of transmittance
(black dots) and the numerical values of the emission weighted longitudinal transmittance
(EWLT). The theoretical limit of transmittance is calculated by using the refractive index
assuming multiple bounces and no internal absorption. The EWLT value represents the
numerical value of transmittance over emission spectrum. The (Lu,Y)2O3:Yb sample 6
shows poor transmittance. This is due to the scattering centers in the sample.
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Figure 4. Transmittance spectra (black lines) measured for the Lu2O3:Yb ceramic samples 2 (top) and
3 (middle), and the (Lu,Y)2O3:Yb ceramic sample 6 (bottom).
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Figure 5 shows LO as a function of integrated time measured for the Lu2O3:Yb ceramic
samples 2 (top) and 3 (middle), and the (Lu,Y)2O3:Yb sample 9 (bottom). Taking out the
emission-weighted quantum efficiency (EWQE) of 20%, these Lu2O3:Yb samples shows
light yield of up to 280 ph/MeV with negligible slow component. By using the LO data
and the decay time from Figure 6 below the corresponding light yield in the first ns and the
U/T ratio are 170 photons/MeV and 61% respectively for the Lu2O3:Yb ceramic sample 3,
which is very promising. On the other hand, doping with yttrium is found to increase the
light output, but also introduce slow light with decay time of ~100 and ~2500 ns.
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Figure 6. Temporal response measured by a Photek MCP-PMT240 for (a) BaF2 samples and (b) the
Lu2O3:Yb ceramic sample 3.

Figure 6 shows the temporal response measured by a Photek MCP-PMT240 for (a) a
BaF2:Y crystal (top) and a BaF2 crystal (bottom) and (b) one Lu2O3:Yb ceramic sample with
an ultrafast decay time of 0.6 and 1.1 ns, respectively. The corresponding rise time and
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FWHM are 0.2 and 0.9 ns for BaF2 crystals, and 0.3 and 1.5 ns for Lu2O3:Yb. These values
can be compared to the MCP-PMT240 response of 0.18 and 0.82 ns, respectively.

Figure 7 shows (a) transmittance and (b) light output as a function of the integral
time measured before and after γ-ray irradiation with a total dose of 5.1 Mrad (red) and
10.1 Mrad (blue) for the Lu2O3:Yb ceramic sample 2. Radiation damage appears approach-
ing saturation after 5.1 Mrad. Light output and transmittance loss can be attributed to
the radiation induced absorption in the Lu2O3:Yb sample. Damage recovery and dose
rate dependence will be studied for thicker Lu2O3:Yb ceramics with better optical qual-
ity to reduce the uncertainty in the radiation induced absorption data to facilitate direct
comparison with other well-investigated crystal scintillators [14].

Table 2 compares the scintillation performance for various fast and ultrafast inorganic
scintillators [4]. Among them, Lu2O3:Yb ceramics show the highest density and dE/dx,
and the shortest radiation and nuclear interaction length. Its ultrafast decay time of 1.1 ns
and the high U/T ratio of 61% make it promising for future TOF and ultrafast calorimetry
applications. Additional work is needed to improve its light yield in the first ns while
keeping the slow component under control.
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Table 2. Scintillation performance of various fast and ultrafast inorganic scintillators.

BaF2 BaF2:Y ZnO:Ga Lu2O3:Yb YAP:Yb YAG:Yb β-Ga2O3 PWO LYSO:Ce LuAG:Ce YAP:Ce GAGG:Ce LuYAP:Ce YSO:Ce

Density (g/cm3) 4.89 4.89 5.67 9.42 5.35 4.56 5.94 8.28 7.4 6.76 5.35 6.5 7.2 6 4.44
Melting points (◦C) 1280 1280 1975 2490 1870 1940 1725 1123 2050 2060 1870 1850 1930 2070

X0 (cm) 2.03 2.03 2.51 0.81 2.59 3.53 2.51 0.89 1.14 1.45 2.59 1.63 1.37 3.10
RM (cm) 3.1 3.1 2.28 1.72 2.45 2.76 2.20 2.00 2.07 2.15 2.45 2.20 2.01 2.93
λI (cm) 30.7 30.7 22.2 18.1 23.1 25.2 20.9 20.7 20.9 20.6 23.1 21.5 19.5 27.8

Zeff 51.0 51.0 27.7 67.3 32.8 29.3 27.8 73.6 63.7 58.7 32.8 50.6 57.1 32.8
dE/dX (MeV/cm) 6.52 6.52 8.34 11.6 7.91 7.01 8.82 10.1 9.55 9.22 7.91 8.96 9.82 6.57

λpeak
1 (nm)

300
220

300
220 380 370 350 350 380 425

420 420 520 370 540 385 420

Refractive Index 2 1.50 1.50 2.1 2.0 1.96 1.87 1.97 2.20 1.82 1.84 1.96 1.92 1.94 1.78
Normalized Light

Yield 1,3
42
4.8

1.7
4.8 6.6 4 0.95 0.19 4 0.36 4 6.5

0.5
1.6
0.4 100 35 5

48 5
9
32 190 16

15 80

Total Light yield
(ph/MeV) 13,000 2000 2000 4 280 57 4 110 4 2100 130 30,000 25,000 5 12,000 58,000 10,000 24,000

Decay time 1 (ns)
600
0.5

600
0.5 <1 1.1 4 1.5 4 148

6
30
10 40 820

50
191
25

570
130

1485
36 75

LY in 1st ns
(photons/MeV) 1200 1200 610 4 170 28 4 24 4 43 5.3 740 240 391 400 125 318

LY in 1st ns
/Total LY (%) 9.2 60 31 61 49 22 2.0 4.3 2.5 1.0 3.3 0.7 1.3 1.3

40 keV Att. Leng.
(1/e, mm) 0.106 0.106 0.407 0.127 0.314 0.439 0.394 0.111 0.185 0.251 0.314 0.319 0.214 0.334

1 top/bottom row: slow/fast component. 2 at the emission peak. 3 normalized to LYSO:Ce. 4 excited by alpha particles. 5 ceramic with 0.3 Mg at% co-doping. 6 density for composition
Lu0.7Y0.3AlO3:Ce.



Instruments 2022, 6, 67 8 of 9

4. Conclusions

Development of ultrafast heavy crystals with sub-nanosecond decay time is important
to break the ps timing barrier for future HEP TOF system and ultrafast calorimetry, and for
GHz hard X-ray imaging. All Lu2O3:Yb and (Lu,Y)2O3:Yb samples from RMD show XEL
emission peaked at ~370 nm. Lu2O3:Yb ceramics show light yield up to 280 ph/MeV with
negligible slow component. Mixing Lu2O3 with Y2O3 increases light yield but introduces
a significant slow component of 100 and 2500 ns decay time. A sub-nanosecond decay
time of 1.1 ns was measured by using MCP-PMT. With a high density, an ultrafast decay
time, a light yield in the first nanosecond of 170 photon/MeV and an U/T ratio of 61%,
Lu2O3:Yb ceramics are promising for future TOF and ultrafast calorimetry applications.
This investigation will continue to optimize the composition of Lu2O3:Yb and increase its
transparency and ultrafast light while keeping the slow component under control.
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