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Abstract: A cosmic muon imaging system is essentially a particle tracking detector as known from ex-
perimental High Energy Physics. The Multiwire Proportional Chamber (MWPC) once revolutionized
this field of science, and as such it is a viable choice as the core element of an imaging system. Long
term construction and operation experience was gathered from a Japanese–Hungarian collaboration
that gave rise to the MWPC-based Muon Observatory System (MMOS), and is being used in Japan
at the Sakurajima volcano. The present paper attempts to draw conclusions on the thermal and
mechanical limits of the system, based on controlled measurements and detailed simulations. High
temperature behavior and effects of thermal cycling and conditioning are presented, which appear to
consistently allow one to propose quality control criteria. Regarding mechanical stability, the relation
between gluing quality (tensile strength) and expected stress from vibration (during transportation)
determines the safety factor to avoid damages. Both of these are presented and quantified in the paper
using a conservative and austere approach, with mechanical simulations validated with experimental
modal testing data. One can conclude that mechanical stress during industrial standard air freight
shipping conditions is nearly a factor of three below the calculated maximum stress.

Keywords: muography; proportional chambers; field application; environmental effects; modal
testing; finite element simulation

1. Introduction

Cosmic muon imaging, or Muography in short, is an emerging interdisciplinary
field [1], which relies on instrumentation developed for High Energy Physics. Muography
may be widely applied to quantify the mass distribution of large objects of interest, as
a complementary tool for geosciences or industrial applications. The imaging is based
on the precise measurement of the number and direction of the incoming muons, using
devices called tracking detectors. The most successful of such detectors are based on
scintillators [2–4], nuclear (photographic) emulsions [5–7], or various gaseous detector
types [8–10]. The present paper deals with the latter: gaseous detector operation, design
and operation has a very broad literature, extending over decades, and is well described
in textbooks. [11,12]. The rate of muons even near the Earth’s surface is much lower than
in accelerator-based experiments, and it is further reduced by large objects of interest or
underground (mountain, cave, mine, etc.); therefore, large sized detectors are essential for
sufficient statistics.

Incremental R&D by our group led to different detector prototypes that proved useful
for various muography applications. The asymmetric-type MWPC or “Close Cathode
Chamber” is well suited for space limited underground investigation [13]. A more clas-
sical design [10] has a lower position resolution, and can even be used for educational
purposes [14]. The most important features in these detectors are the low total weight,
relatively easy construction and the high (>98%) efficiency. The dedicated tracking system
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for muography has to be designed and optimized from the very beginning for high me-
chanical and environmental stability. Low energy and gas consumption are mandatory in
field applications where usually gas bottles and commercial batteries are used [15,16].

Field conditions are largely different in terms of environmental effects (temperature,
humidity, mechanical stress) from that in a classical laboratory, therefore muography instru-
ments need to be validated, and accordingly improved to ensure full functionality under
relevant conditions. In this paper, we present first the key design concepts, which proved
relevant to field stability. Then, studies related to high temperature tolerance are shown to
find the extreme working parameters of the muography detectors. Finally, a detailed study
quantifies the expected mechanical stress in the detectors during transportation, and it is
compared to measurements of tensile strength of relevant mechanical joints in the chamber.

2. Large Chambers for Muography

There are chamber designs that optimally suited those muography applications where
geometrical size is not an immediate concern. Here, we consider the three of our most-used
MWPC types; these are the “MWPC-50” with 0.33 m2, “MWPC-80” with 0.59 m2 and
“MWPC-120” with 0.88 m2 sensitive area. Figure 1 shows the schematic drawings of these
detectors, indicating the actual sensitive area dimensions.
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2.1. Construction of MWPCs

Consistent choice of materials is a key construction principle for these chambers [10]: all
walls (including the cathode planes with thin copper layer on each side) are glass fiber
reinforced epoxy (G10 or FR4), which is a strong composite material. For gluing, epoxy
adhesive is applied, which achieves gas tightness, has high mechanical resistance, is highly
resistant against humidity, and it has constant volume during the curing process. The
components responsible for electronic connections, particularly of the wires, are made of
FR-4. The 3D printed support pillars are made of an ABS material, where gluing quality
had to be evaluated (see Section 4 below). The chamber construction takes place on a flat
(optical) table with the following main steps:

1. Base plate preparation including the electronics support and the wire holders;
2. Stretching and fixing the pick-up wires with proper positioning and tensioning;
3. Gluing side bars with gas in- and outlets;
4. Stretching and fixing the anode- and field shaping wires;
5. Installation of inner support structure;
6. Closing the chamber;
7. Installing external mechanical components and electronics.

Figure 2 shows the cross section of the chamber after it is constructed, indicating the
elements with numbers installed in the specific steps. Steps 1, 3, 5 and 6 take place on a flat
table to ensure proper geometry, whereas stretching and wire fixing (by manual soldering)
are done on a dedicated rotating wire-winder frame [14].
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a large Faraday-cage. 

Figure 2. Cross section of the MWPC detectors. The Anode/field wire plane and the Pick-up wire
plane are perpendicular to each other and the wires are fixed with soldering. The readout electronics
are installed on top of the chambers with proper noise reduction shielding [10].

The sense wires in all the detector types are 20 micrometer diameter Au-plated tung-
sten wires, a very typical choice for such detectors [12]. Both field wires and pick-up wires
are 0.1 mm diameter, made out of uncoated brass. The high voltage, 1700 V, was chosen to
have a conveniently low gas gain, below 10,000, but to ensure a very high signal-to-noise
ratio [10]. All the field wires and pick-up wires are connected to individual channels of
amplifier within the Front End Electronics (FEE). All the sense wires are connected together
and to an RC circuit in order to improve noise filtering from the input high voltage. The
grounding is essential for proper noise performance: in practice, the chamber acts as a large
Faraday-cage.

Practical experience showed that the high voltage connections are solely responsible
for sensitivity to humidity, therefore a careful design was needed to reduce leakage current.
It must be noted that only the sense wires are on (positive) high voltage, whereas all other
components are close to ground potential. The basic idea of the high voltage connector and
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the actual design can be seen in Figure 3. High voltage enters on a well-insulated cable,
and connects to the chamber. All the elements which are at high voltage are geometrically
close to each other (lower part of photograph). Once the chamber is finalized and tested,
this region is filled with epoxy glue. The corresponding electric components are indicated
on the bottom panel of Figure 3 with a dashed line rectangle. This solution ensures that
there is no high voltage trace or component that can be reached by external humidity, and
thus leakage current is drastically reduced. Stable chamber operation was achieved up to
90% humidity (RH) levels.
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Figure 3. Schematics of high voltage connection and the signal extraction (bottom of left panel) and
the actual design with the ADC-card adapter. Note the gluing that covers all components on high
voltage, indicated with the dashed line box on the right panel. The ADC-card acts as amplifier, and
transmits the converted anode wire amplitude information to the DAQ [14].

2.2. Readout, Power Supply and DAQ System

The detector layers, for simplicity, are supplied with the same anode high voltage
provided by the high voltage unit. The data lines from the complete telescope are connected
to the DAQ-board, which integrate triggering logic and timing [16]. DAQ is controlled by a
single Raspberry Pi 3 (RPi) microcomputer.

The DAQ records events that fulfill an appropriately chosen trigger condition, com-
bined from the triggers of the individual layers. A typical example is at least 3 or 4 chambers
coincident trigger, out of any of the 7 or 8 chambers in the telescope. This ensures very
high trigger efficiency and a conveniently low event rate [1]. The complete DAQ setup
integrates HV- and LV supplies, DAQ-board (trigger, timing and signal adapter), the con-
trolling RPi, and a dedicated sensor for registering environmental parameters. The physical
arrangement is shown in Figure 4.
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2.3. Gas Supply System

For working gas, an industrial argon and carbon dioxide mixture is used in 82:18 pro-
portions (that has a typical 100 ppm purity): a popular premix in welding industry as
shielding gas, therefore it is cost-efficient and easily accessible. It is imperative for field
applications (mining, closed space) that the gas is a non-flammable and non-toxic mixture.
The chambers can be connected serially with plastic tubes (polyurethane or polyethylene
is preferable over PVC) and the gas has to be supplied to the system with a conveniently
low flow between 0.5–2 L/h [15]. In the case of outdoor operation, the daily temperature
changes cause a significant volumetric change of the gas, which needs to be buffered on the
open end of the gas line.

3. Effects of Environmental Parameters: Operation and Long-Term Stability

One of the key parameters describing the working point of any gaseous detector is the
avalanche gain, which is proportional to the mean of measured signal amplitudes. Even
though this relationship is difficult to determine, the stability of the measured gain is very
useful in evaluating the performance of a detector. Once the range of reliable operation
is established, it is easy to cross-check if the system stays within the working envelope.
(Note that efficiency is always close to 100%, therefore efficiency change is more difficult to
measure than change of gain).

3.1. Gain Dependence on Operational Parameters

The gain depends on environmental parameters through the change of gas den-
sity [12]: the gain increases when density decreases. Furthermore, if the dark current
increases, the effective anode voltage drops (due to the noise-filtering serially connected re-
sistors), which in turn results in reduced gain. To formulate this effect linear approximation
can be used and each different effect can be characterized with a single term [15]:

lnG = G0 − κI + ηTT − ηpp. (1)

Note that G is the actually measured mean amplitude (in arbitrary units, direct output
from an ADC), with temperature dependent FEE amplification, for this reason the constants
for the temperature and the pressure are not the same (with opposite sign).

3.2. Testing at High Temperatures, and Effects of Temperature Cycling

Field experience showed that the detectors as described above are functional in a broad
range of environmental parameters, with high temperature and high humidity resulting in
performance loss (detectors had no problem functioning just above freezing temperatures,
however, no detailed studies were done so far on what is the lower limit of operation). In
order to simulate extreme (high) conditions for the chambers, a measurement setup with a
“Heat box” was constructed where the temperature could be increased up to 60 ◦C. The
arrangement is shown on the left of Figure 5. The “heat box” is a nearly 1 m3 volume well
insulating box. Two 50 W power resistors were responsible for the heating, which was
distributed and circulated by a small fan. The THP (Temperature, Humidity, Pressure)
sensors were placed at two different locations inside to monitor possible temperature
gradients. Due to the good heat insulation and the efficient air circulation inside the box,
temperature gradients were found to be well below 2 ◦C. In this configuration, the power
supplies and the DAQ system were outside to decouple any temperature effects on those
components; however, all other detector electronics were inside the box.

The gain values and the environmental parameters during a representative 36 days
measurement period inside the box can be seen in Figures 6 and 7. Three high-temperature
cycles were performed, with heating lasting for 1–2 days. There were four recently built
“MWPC-120” type (120 cm wide) detectors in the box, which before the test were never
under non-laboratory temperature conditions.
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Figure 7. The temperature and the current values are also plotted during the 36 days of measurement
period (left). Note the dark current peaks during elevated temperatures. The trigger efficiency of the
chambers was sufficiently high in the whole period (right).

There is a recognizable effect, which we observed earlier particularly at the Sakurajima
Observatory [17], that higher temperature results in an increased dark current and a corre-
sponding decreased gain due to the reduction of the chamber anode voltage. Observing
the controlled temperature cycling in Figure 5 of the four new chambers, a very interesting
pattern emerges. The anode (dark) current as a function of temperature, shown in Figure 8,
increases exponentially, reaching a few hundred nA at 40 ◦C. It is confirmed, as shown in
Figure 5, that detectors operate well even at dark currents well above 2000 nA, without
apparent problems, such as noise, permanent damage or temperature runaway. Tracking
efficiency is consistently high up to 50 ◦C.
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temperatures. This can be used to “prepare” the chambers for field applications where temperature
fluctuations are high.

Comparing the different cycles in Figure 8, there is a “tempering” effect: the dark
current reaches a considerably lower level at the same temperature, after few days of a
cooler period. Taking the temperatures when the dark current I reached 500 nA resulted
42 ◦C in the first cycle, 44 ◦C in the second cycle and 46 ◦C in the third cycle. This procedure
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allowed us to not only qualify detectors but also to moderate the effect of the current on the
chambers by applying a few heat cycles. Table 1 shows the temperature values at 500 nA
after each heat cycle.

Table 1. The temperature values after each heat cycle when the system reaches 500 nA total current
and the maximum temperature. The batch 0 is related to the measurement shown in Figure 6; the
others are related to new chambers for field application (four chambers per batch). This procedure
with 4 heat cycles has become a part of the construction.

Batch
1.Cycle 2.Cycle 3.Cycle 4.Cycle

∆T1-3 [◦C]
T500nA TMax T500nA TMax T500nA TMax T500nA TMax

0. 42 48 44 48.5 46 50 - 4

1. 40 51.5 42 51 44 52 45.5 54 4

2. 38 51 39.5 52 41 54 42 50 3

3. 40 51 42 53 43 53 44 52 3

4. Testing the Epoxy Resin Strength at Different Material Joints

During detector construction explained above, gluing is performed exclusively using
epoxy resins. These adhesives can appear with various forms for example flexible or rigid,
transparent or colored, and the pot life (the time where the adhesive can be used) can
be different as well. Additionally, its attributes can be changed with active components.
Many different materials can be joined with it, such as metal, wood, ceramic and polymer,
although the strength of the bond can be different [18,19]. The construction of the cham-
bers requires joining different materials (glass reinforced epoxy elements, copper layered
elements, ABS-based polymer pillars), therefore it is relevant to know the behavior of the
adhesive between these parts. In this section, corresponding measurement procedures and
results are presented.

From the building process as presented earlier it is obvious that the inner support
structure and the chamber walls—ensuring gas tightness besides mechanical stability—are
the most critical for structural integrity. The former means the adhesive bond between the
pillars and the copper layered base plates, the latter is the glass reinforced epoxy walls and
the copper layer. For testing purposes, dedicated specimens were made which can be seen
in Figure 9. In both cases, a small rectangular piece of the baseplate (cathode) material
was used, with holes. Unique aluminum holders were manufactured for the tensile meter
grip to hold it, to which the baseplate specimens were screwed. The tensile test results are
shown in Figure 10.
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Figure 10. The tensile test of the different material joints.

The result of this “static” tensile test can be seen in Table 2. These values has been
used in the comparison with measurements (modal testing) and calculations below.

Table 2. The results of the tensile test. The average force is calculated from the three different
measurement. The areas of the different specimens are also shown.

Average Force [N] Tensile Strength [MPa]

Pillar-Baseplate (A = 22.4 mm2) F = 128 σ = 5.7

G10-Baseplate (A = 200 mm2) F = 293 σ = 1.5

5. Study of Vibration Effects during Transportation

The transportation process of the detectors to the measurement site is usually a
complicated activity, and may include long land- and air transport. The detectors must
not suffer any damage during a standard handling process. Proper packaging includes a
polymer foam material as a spacer between each detector, which reduces vibration effects
(damps highest frequencies and shocks). A relevant feature is that the foam can distribute
the different loads with their large area and thus not acting on a localized point. In this
section a modal analysis will be performed for one completed chamber to determine the
eigenfrequencies with measurement and Finite Element Method (FEM), with the aim to
quantify the expected stress. After validating the simulation, a random vibration analysis
will be carried out, imitating the air transport to achieve the stress field from the vibration
and check if the bonded joints are sufficiently strong.

5.1. Experimental Modal Testing of a Chamber

In general, the modal testing can be used for the characterization of the vibrations and
to investigate the dynamic properties of a system in the frequency domain. To build up
the mathematical model of a structure, it is necessary to measure the vibration parameters
(eigenfrequency, damping, mode shapes etc.). In this investigation, modal analysis will
be used for a chamber to examine its vibration behavior and only the vertical direction is
interesting, which is normal to the area of the chamber, denoted by z, because during the
transport this is the most relevant direction.

When using a modal hammer, it is enough to excite the system in a few points, because
all of the modes getting excited at the same time (except those when the hit point is a node).
The measurement setup can be seen in Figure 11.
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Figure 11. The measurement setup with the modal hammer and the two accelerometers. Polymer
foam supports were put under the chamber at the corners.

To measure the signals of the hammer and the two accelerometers, they were connected
through a compact DAQ system to a PC. The accelerometers were calibrated with a Brüel
and Kjaer type 4294 exciter. To visualize, the input and output signal can be seen in
Figure 12.
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Figure 12. The output signal from the accelerometer and the input signal from the hammer. In an
ideal case the impact would be a Dirac-delta excitation, in reality it is finite width and must be free
from contact bounce (multiple hit).

After performing the Fourier transformation of every measurement, the eigenfrequen-
cies appear as peaks. Figure 13 shows all the measurements together. The eigenfrequencies
are summarized in Table 3.

In order to estimate the damping ratio for the FEM simulations below, one can approx-
imate the envelope curve of the measurements, assuming that the largest amplitudes are
coming from the first eigenfrequencies and defining the damping ratio with that for the
system. Choosing the proper damping ratio value, the envelope curves can be plotted for
the modal testing, as shown in Figure 14.
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Accelerometer A FFT [Hz] Accelerometer B FFT [Hz]

f1 = 13.883 f1 = 13.667

- f2 = 21.333

f3 = 37.667 f3 = 37.667

f4 = 51.167 f4 = 51.167

f5 = 62.130 f5 = 62.000
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5.2. Modal Analysis Using FEM Calculation

For the Finite element simulation, Ansys 2020 R2 student (20.2-July 2020) software
was used where the materials were added with the following properties:

- FR-4/G10 (The base plates, the wire holder elements and the beams): ρ = 2000 [kg/m3],
Ex = 20.4 [GPa], Ey = 18.4 [GPa], Ez = 15 [GPa], νx = 0.11 [-], νy = 0.09 [-], νz = 0.014 [-].

- ABS-based 3D printer filament (support pillars): ρ = 1250 [kg/m3], E = 1.85 [GPa]

The mass of the detector is 7 kg. In order to validate the model, the mass should not
differ more than 5% (which was indeed true) and the first few eigenfrequencies should not
differ more than 10%.

In the simulation structure, a modal analysis system was connected with a random
vibration module to acquire the relevant information, such as eigenfrequencies. The
element type was the general SOLID 186, which is a 20-node, 3DoF per node element and
the degrees are the x, y, z displacements. For the mesh, the multizone method was applied
where uniform hexa domains builds up the model. The first validation of the model is to
ensure independence on mesh density. The results are shown in Table 4.

Table 4. The number of elements used and the first eigenfrequencies are shown here. The error is less
than 1% therefore the simulation is independent from the mesh.

Coarse Ncoarse = 1784 f1,coarse = 12.361 [Hz]
δmesh = 0.19%

Dense Ndense = 3402 f1,dense = 12.361 [Hz]

Figure 15 shows the meshed model with springs at the four corners imitating the foams.
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Figure 15. The meshed model with the springs at the corners. Further springs were added to each side
at the x-y plane to prevent the rigid body motion, the eigenfrequencies in the z direction are the same.

The results from the simulation are summarized by Table 5.

Table 5. The results from the simulation and the modal testing. It seems that the third and fourth
frequencies are too close to each other and it could not be seen in the FFT.

Simulation [Hz] Modal Testing (Average) [Hz] Error

f1,FEM = 12.798 f1,Meas = 13.667 δ1 = 7.1%

f2,FEM = 23.258 f2,Meas = 21.333 δ2 = 9%

f3,FEM = 38.830
f3,4,Meas = 37.667 δ3,4 = 4%

f4,FEM = 39.502

f5,FEM = 55.214 f5,Meas = 51.335 δ5 = 7.6%

f6,FEM = 66.038 f6,Meas = 62.011 δ6 = 6.5%

f7,FEM = 74.070 f7,Meas = 68.330 δ7 = 8.4%
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From the nice agreement between measured and simulated eigenfrequencies, one can
conclude that the simulation is reasonably close to the experimental reality, and thus the
model is validated. The second and the third mode shapes are shown in Figure 16.
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5.3. Random Vibration

In general, the random vibration is the most complex type of vibration where both
the input and output signals characterized by random approach. D.J. Ewins [20] specifies
the method to calculate the Auto- or Power Spectral Density (PSD) or even Cross Spectral
Density (CSD) for a pair of function. The PSD is useful when the resonances and harmonics
are hidden in the time data and if we want to know where the energy lies. In this case the
ASTM D 4169 standard [21] was used, which defines the performance testing of shipping
containers and systems. In this standard, well-detailed methods are given for uniform basis
of evaluating the ability of transportability. The test plan consists of many steps, which
investigating if the equipment withstands the environmental challenge. From the whole
cycle, the vibration part is discussed in this paper and assumed that sudden impacts will
not appear or will appear but will not damage the system during transportation. This
standard refers to a test method which is discussed at ASTM D 4728 standard [22]. It
covers the random vibration testing of shipping units and determines the measurement
techniques related to the performance of the container. In addition, the development and
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use of vibration data is discussed. For the simulation, PSD from “g” acceleration data
was used where different assurance levels defined for the particular transportations (road,
railway, air). To be on the safe side, assurance level 1 was used, which is a high level of
test intensity and has a low probability of occurrence. The properties of this PSD for air
transport can be found in Table 6.

Table 6. The definition of the g acceleration PSD with the frequency range and the amplitudes [22].

Frequency Hz Assurance Level 1 Assurance Level 2 Assurance Level 3

2 0.0004 0.0002 0.0001

12 0.02 0.01 0.005

100 0.02 0.01 0.005

300 0.00002 0.00001 0.000005

Overall, g rms 1.49 1.05 0.74

Duration (min) 180 180 180

The lack of the fatigue test implies that a quite conservative approach must be used
during the simulation to somehow connect the “static” and the “dynamic” measurements.
In summary:

# The test profile is the highest level of assurance, as was shown before;
# The scale factor or coincidence interval is the highest (3σ or 99.73%);
# The applied damping ratio is low ζ = 0.02 estimated from the modal analysis (In the

literature, the value that is used in the industry for initial guessing when there is no
information about the damping [23,24] is approximately 0.02);

# Much more foams are used in the real transport box;
# It is a one-time transportation to the measurement site;
# Impacts are not included.

The model and the applied assurance level are shown by Figure 17.
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To emphasize again, the comparison of the “static” and the “dynamic” results are not
exactly appropriate and the authors only rely on the conservative approach to connect the
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tensile test and the random vibration analysis. Table 7 shows the comparison and the safety
factor for each connection.

Table 7. The comparison of the results from tensile test and the vibration simulation.

Connection Tensile Strength [MPa] Stress from Vibration [MPa] Safety Factor

G10-base plate
σMeas = 1.47

σRandomvibr. = 0.15 n = 9.8

FR4-base plate σRandomvibr. = 0.46 n = 3.2

Pillar-base plate σMeas = 5.7 σRandomvibr. = 2.12 n = 2.7

Considering that the maximal stresses from the vibrations occurs only with a very
small percentage and even safety factor remains, the chambers can be transported without
a problem.

6. Discussion

Muography instrumentation is derived from High Energy Physics tracking detectors,
from experimental setups where an expert crew would install high performance systems,
and ensure availability of around the clock maintenance and operation. For those applica-
tions which were proposed for practical muography [1], this is very far from reality. One key
step is the detector transportation, which most conveniently proceeds with standard courier,
therefore anticipated mechanical stress is the same as expected at the transportation indus-
try. The results above concluded that for the specific detector designs used particularly
at the Sakurajima Muography Observatory [25], structural integrity is secured by a broad
margin. As a result of safe transportation, the world’s largest volcano-targeting tracking
system could be realized and is still operational [26]. A further step will be controlled long
term endurance tests, as well as realistic impact tests.

Resistance against elevated humidity is mandatory both for underground and surface-
based installations—in the former, humidity is usually constantly high at constant tem-
perature, whereas in the latter, cooler time of the day, or even rain results in a humid
environment. The present paper described a possible way to drastically improve humidity
tolerance of the detectors, with the main concept of a single high voltage entry point, and
complete sealing (with epoxy resin) of any external components at high voltage.

Operation at a broad temperature range, particularly at hot conditions, seemed to be
challenging for most types of muography tracking systems. The results presented above
were based on a controlled test in the “heat box”. After some upgrade, the heat box will also
be used to simulate the effect of humidity to the system. It will be particularly interesting to
investigate further the demonstrated “tempering” effect with newly constructed chambers
and to later adapt a prescribed heat treatment step into the detector building and quality
assurance process.

7. Conclusions

Muography detectors improved drastically during the last decade, with dedicated
systems available for a broad range of applications. Experience with field installation and
operation allowed developers to identify key design aspects for various technologies, which
ensures a rapid, safe installation with as little crew as possible and the ability to run systems
with minimal maintenance. Gaseous detectors are well suited for Muography applications
due to their high efficiency, high resolution and cost effectiveness, however, traditionally
these systems were more fragile than alternative detection materials (such as scintillators).
This paper presented a systematic approach to improve mechanical and environmental
tolerance of gaseous detectors, methods for testing and model validation, and practical
construction processes. The demonstrated safe operation well above 45 ◦C and tolerance
from vibrations during standard air freight transportation ensures predictable behavior for
a broad range of applications.
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