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Abstract: In part II of this group of papers, the control of the gait of a biped robot during
rectilinear walk was considered. The modeling approach and simulation, using Kane’s method with
implementation leveraged by Autolev, a symbolic computational environment that is complementary,
was discussed in part I. Performing turns during the walk is technically more complex than the
rectilinear case and deserves further investigation. The problem is solved in the present part III as an
extension of part II. The robot executes a rectilinear walk on a local reference frame whose progression
axis is always tangent, and its origin performs the involute of the path curve. The curve is defined by
its curvature (osculating circle) and center of curvature (evolute) along the path. Radius of curvature
and center can change continuously (in practice at every sampling time). For postural equilibrium,
Center of Gravity and Zero Moment Point (COG/ZMP) follow the same preview reference proposed
for rectilinear walk (cogRe fx (t), ˙cogRe fx

(t), cogRe fy(t), ˙cogRe fy
(t)). The effect of the turn on the sagittal

plane is negligible and is ignored, while on the frontal plane it is accounted for by an offset on COG
reference to compensate for the centrifugal acceleration. The body trunk and local frame rotation,
and the generation of the references on this moving frame of the free foot trajectory during the swing
deserve attention.

Keywords: gait; postural equilibrium; ZMP; preview control; biped robotics; exoskeletons;
turn while walking

1. Introduction

This part III extends the results of the previous part II of this paper, where the control of a biped
robot in rectilinear walk was described. As before, the modeling approach uses Kane’s method [1],
and the notation adopted is the one of Autolev [2], the symbolic computational environment originally
developed by Kane to support his method.

The Jacobian matrix, used for the control as described in part II, is here referred to the local
moving frame, instead of the inertial Cartesian space. The present extension has been motivated by
the desire to maintain the control of the rectilinear walk as far as possible unchanged in transferring it
to a walk with turns.

Literature basically follows two approaches for turning: omnidirectional turning, mostly related
to techniques where joint motion is generated in real time, or extending with turning tracking of
periodic preview signals. There are few studies about direction control. In [3], motion stability during
turning is ensured by adjusting the swing leg center of mass (COM) and hip position trajectories in
a trial and error fashion. Kajita et al. [4] proposed a 3D Linear Inverted Pendulum Model (LIPM)
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for bipedal walking pattern generation, but no information was revealed about the complete gait
generation or about the experimental validation.

[5,6] and more recently [7,8] studied the turning motions for biped with a Zero Moment Point
(ZMP) based footstep planning.

Besides the standard turning motion, Shi et al. [9] proposed a method for online omni-directional
walking pattern generation, but no information was revealed about the complete gait generation or
about the experimental validation.

Chevallerau et al. [10] propose a control law to regulate the walking direction through the net
yaw motion about the stance foot over a step.

Lu et al. [11] also use LIPM for postural equilibrium and two parameters for controlling direction
independently for the body and swinging the foot: θ for body rotation during double stance only, and
K for smoothing COM trajectory for feet stamp position.

Our approach belongs to this second category of preview tracking, but unlike previous works, it
is based on a running local reference frame with respect to which the robot maintains rectilinear walk,
to rotate this frame and move its origin with respect to the world coordinates to follow an involute
of the path curve during turns. The postural and gait control of the robot is obtained defining and
tracking Cartesian trajectories on this moving frame, adopting the appropriate (i.e., from the joint space
to the local moving frame—this is simple using Autolev, as it offers efficient mathematical expressions
to be used in real time control for all the necessary kinematic relationships) Jacobian matrix to transfer
these trajectories to the joint space.

The central point of the approach is the preview of the Center of Gravity (COG) of a biped robot
proposed for a rectilinear walk. The radius and center of curvature of the curve change continuously for
a completely arbitrary path (in practice at every sampling period). Then, ignoring interaction between
the frontal and sagittal planes, and radius changes, the control scheme remains almost unchanged,
with respect to the rectilinear walk. Only the COG trajectory on the frontal plane of the robot has to be
corrected in order to take into account the centrifugal acceleration during the turn.

Trunk rotation and swing foot rotation around the vertical axis are solved simplifying the approach
of [11], by needing only one variable: the angle of rotation of the moving reference θz. In fact, the trunk
angle around the vertical axis is programmed to maintain continuously, during double and single
stance, the frontal plane of the robot orthogonal to the walk path, and the swing foot angle follows the
trunk using a feedback, similar to the one proposed by [10]. For the swing foot, different to the other
approaches where the joint trajectories were computed with alternative techniques, or were not well
documented, the rectilinear walk in a moving local frame defines a trajectory that can be, at each step,
interpolated with simple polynomial functions in real time and corrected by feedback.

2. Modellng and Degrees of Freedom

In the modeling approach discussed in part I, applied to the rectilinear walk, the rotational
velocities of the swing foot (θ̇z f oot2

), and of the trunk (θ̇zhat ) were constrained to zero. In this case, these
angles are controlled, so, in single stance, the model has two more degrees of freedom (θzankle1

and
θzankle2

), and in double stance one more (θzankle1
) with respect to the rectilinear walk. The control of

these new degrees of freedom requires two new reference trajectories.

3. Gait with Turns

A planar walk is assumed. The reference COG trajectory coordinates given in the rectilinear walk
and their time derivatives, identical to those adopted in part II, are

COGxpreview(t), ˙COGxpreview(t), COGypreview(t), ˙COGypreview(t). (1)

Indicate with N the inertial reference frame with origin No and unit vectors n1, n2, n3, according to
the right-handed convention, n3 being the vertical axis pointing upward. L is a local moving reference
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frame defined by its origin Lo and unit vectors l1, l2, l3. l1 are aligned at each instant to the direction of
walk tangent to the path curve, l2 is orthogonal to l1 on the horizontal plane and l3 vertical, aligned
with n3. The plane l2 − l3 is parallel to the frontal plane of the robot. The vector from No to Lo is
indicated with lo.

The point P is the current position at time t of the COG projection on the walk path, parametrized
by its arc length s(t). p(t) is the vector from the No to P, xL = s(t), yL = 0 are the coordinates of P on
the local frame, and x(t), y(t), detailed later, on the inertial frame.

The walk path (see Figure 1) is a regular plane curve defined by its curvature (osculating circle)
and its center of rotation (involute) as function of s(t) [12]. In planning the trajectory the arc length
will coincide with the preview of COG along x: s = COGxpreview . To generate an arbitrary path, radius
and center of rotation change continuously. In practice, they are updated at every sampling time with
radius Ri, i = 1,· · · , n. The rotation around n3 of the local frame L, coincident with that of the robot
frontal plane, is defined during one sampling period by

θ̇z(t) = ṡ(t)/Ri. (2)

Figure 1. Walk trajectory and COG trajectory during a turn.

After n − 1 sampling periods, at instant tn−1, sn−1, xn−1, yn−1 and θzn−1 indicate, respectively, the
arc length, the world coordinates x, y and the orientation angle. The significant elements to define the
kinematics of the local frame during the next nth period, shown in Figure 2, are detailed as follows.

The rotation angle, from Equation (2) with radius Rn, is

θz(t) = θzn−1 +

t∫
tn−1

θ̇z(τ)·dτ. (3)

The center of rotation Cn with respect to No is defined by the vector

cn = (xn−1 − Rnsin(θzn−1))n1 + (yn−1 + Rncos(θzn−1))n2, (4)

using the last sampling position.
The current walk position P(t) with respect ot No is expressed using the center Cn and the local

reference frame L:
p(t) = cn − Rnl2(t). (5)

Given p(t), the origin of frame L, through the vector from No to Lo(t), is

lo(t) = p(t)− s(t)l1(t), (6)
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i.e., Lo(t) executes the involute of the path curve.
The current coordinates of P(t) in N are obtained from the scalar products

x(t) = p(t) · n1, y(t) = p(t) · n2. (7)

In Appendix A , a fragment of the Autolev code used to generate the expressions for the real time
computation of the necessary functions is presented.

Figure 2. The kinematics of the moving reference frame during one sampling period.

4. Trunk and Feet Rotations

The trunk rotation simply follows continuously the angle θz of rotation of the local reference
frame as defined by Equation (3). This maintains the frontal plane orthogonal to the direction of walk
during the whole stride period.

The feet, vice versa, follow a different rotation pattern, as they can rotate during the single stance
period only, one at the time when they swing. Their velocity starts from and goes to zero during
the acceleration and deceleration at Toe1 o f f and Heel2 strike (see part I for the definition of the gait),
i.e., when they leave and touch the ground at each step.

To maintain the pace of turn, a standard bell shaped pattern is adopted during the period of swing
for the angle velocity of each foot, and its amplitude is controlled in real time by feedback, to ensure
during a step that the mean of the angles of the two feet (θ f oot1 + θ f oot2(t))/2 ∼= θtrunk(t) = θz(t)
follows the trunk angle. The result is shown in Figure 3. The small misalignment between trunk and
feet angles is due to the feedback sampled at each step period.



Inventions 2016, 1, 8 5 of 13

Figure 3. Behavior of rotational angles of trunk (blue) and feet (right green, left red) around the
vertical axis.

5. COG and Feet Reference Trajectories in Local Frame

In the local reference frame that accompanies the turn of the robot, COGxpreview and COGypreview

along l1 and l2 remain almost unchanged with respect to the rectilinear walk. Only COGypreview has to
be corrected by an offset so as to compensate for the centrifugal acceleration influencing ZMPy. In fact,
during the turn, the ZMPy is not only affected by the accelerations and decelerations of the COGy but
also by the centrifugal acceleration due to the speed of rotation. Adopting the standard linearized
inverted pendulum approximation, the actual ZMPy is given by

ZMPy = COGy − COGz/g · ( ¨COGy + ˙COG2
x · (Rn − COGy)/Rn

2) (8)

Thus, in order to guarantee the desired position of the ZMP on L, the following a priori correction
term must be added to the original COGypreview for rectilinear walk:

COGz/g · ˙COG2
x · (Rn − COGypreview)/Rn

2 (9)

Moreover, using the extended COG/ZMP estimator outlined in the Appendix A of Part II, this
acceleration is detected as an external disturbance and a further a posteriori correction is introduced.

The reference trajectories (along x and y) of the swing foot, also, require a modification, to take into
account the relative motion of the local frame with respect to the world frame. To easily understand
and as an example, one stride following an ideal circular path is performed in Figure 4, and in Figures 5
and 6, the trajectories along xL and yL are compared with those of the rectilinear walk, i.e., R = ∞,
drawn in dashed lines.
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Figure 4. Trajectories of feet (green and blue) and COG (red) on the plane x − y for an ideal
circular stride.

Figure 5. Comparison of the trajectory along xL of rectilinear walk (dashed) and walk with
turn (continuous).

Figure 6. Comparison of the trajectory along yL of rectilinear walk (dashed) and walk with
turn (continuous).

Circularity during a step in reality is not a stringent requirement, as these trajectories are generated
in real time to adapt to the actual path, as described in the next subsections.
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5.1. Implementation of the Swing Foot Reference along xL

In the rectilinear walk, the velocity of the swing foot along x is similar to a bell shaped function
with an integral equal to twice the step length stepL on a time interval equal to the single stance period.
In fact, in the rectilinear walk, a symmetrical or skewed standard bell function is taken as reference of
the velocity, and its amplitude is adaptively corrected in real time to maintain the feet aligned with
the ZMPx.

In the walk with turns, this will not be sufficient, and a correction must be added to the original
trajectory to be computed step by step in order to zero the forward velocity of the foot on the world
reference at contact with the ground.

Figure 4 shows the center path of the COG and the trajectories of the two feet during a stride; the
forward foot (blue line) will initially support the step. In Figure 5, the x coordinates of the feet on the
moving frame L are plotted, the difference with respect to the rectilinear walk, drawn with dashed
lines, is evident, and analyzed more closely.

The position and velocity of the center of the supporting foot during the period of time it remains
on the ground, i.e., a step plus a double stance period, is computed with the technique of generating the
involute of an arc of a circle described in Section 3. Indicating the arch length with s, and considering
that at the end of the double stance the foot that will support the next swing advances the COG position
of one step length, the following equations result:

xFoot1L(s) = s + (R + L f eet/2 · phase) · sin((0.5 · stepL · (stepP + dsP)/stepP − s)/R)

ẋFoot1L(s) = (1 − (1 + L f eet/2 · phase) · cos((0.5 · stepL · (stepP + dsP)/stepP − s)/R) · stepL/stepP

0 ≤ s ≤ stepL · (stepP + dsP)/stepP.
(10)

On the rectilinear walk, those equations are simply:

xFoot1L = stepL/2 · (stepP + dsP)/stepP

ẋFoot1L = 0
. (11)

L f eet is the distance between the two feet along the y axis, phase = ±1 according to whether the
center of rotation is at the right or left of the supporting foot, stepL and stepP are the step length and
period, dsP is the period of double stance.

With x0, x1, ẋ0, ẋ1 the position and velocity of the correction term for the swing foot at the
beginning and end of a single stance period is indicated. Note that the beginning of the swing
period corresponds in Equation (10) to s = stepL · (stepP + dsP)/stepP and the end to s = 0. From the
difference between Equations (10) and (11), it results that positions and velocities of the correction
term at the beginning and end of the swing interval are:

x0 =− x1 = (R + L f eet/2 · phase) · sin((0.5 · stepL · (stepP + dsP)/stepP − s)/R)

ẋ0 =ẋ1 = (1 − (1 + L f eet/2 · phase) · cos(0.5 · stepL · (stepP + dsP)/stepP/R) · stepL/stepP
, (12)

i.e., at the extremes, positions have opposite values and velocities are identical.
Measuring x0 and ẋ0, and assuming as initial position x0, initial velocity ẋ0 and final position

−x0 + δx, a third order polynomial for the correction during the next single stance period is derived at
each step. δx has been introduced to adapt, by feedback in real time at each step, the correction to the
real path.

To obtain the new reference trajectory, this correction is added to the original one of the
rectiliear walk.
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5.2. Implementation of the Swing Foot Reference along yL

Without turns, the feet motion along y is zero, as it does not deviate from a baseline at a
constant distance from the walk path. Vice versa, when the moving frame rotates, a correction has to
be considered.

In the ideal condition of Figure 4, the trajectory of the swing foot on L to connect two successive
support periods is shown in Figure 6. It starts and ends approximately at the same value, with the
opposite derivative, reaching near the mid-distance the baseline of the rectilinear walk. To interpolate
this function, a fourth order polynomial is necessary.

Let y0 and ẏ0 be the position and velocity of the foot center along l2 at the end of the previous
double stance period. Choose y1 = y0 + δY, ẏ1 = −ẏ0 as values of the position and its velocity at the
end of the next single stance period, and ym = L f eet/2 · phase the position at mid-distance. With these
five values, a fourth order polynomial is computed in real time for the reference trajectory to be used
for the next single stance period. As in the previous section, δy is used in feedback, step by step, to
adaptively bring the feet trajectory at the end of the single stance to ZMPy.

6. A Simulation Example

The following figures show the results of the dynamical simulation of the control of a model
identical to the one in the previous part II, i.e., a man 1.78 m tall of 75 kg wearing an exoskeleton of
30 kg during an “S” shaped path, with a distance between the feet of 0.34 m, a step length of 0.5 m, a
step period of 0.9 s, and a double stance interval of 0.18 s. The control and the example are identical to
those of part II, and the description of the simulator built at Politecnico di Torino is contained in part I.
There, in particular, the critical issues related to the contact between feet and ground are discussed.

The path was obtained as described in Section 3 with a sampling period of 10 ms, a radius
changing at a rate of 7.5 during the time of a step, with a minimum value of 2 m.

In Figure 7, the rotational angles of trunk and feet are shown. The non-perfect symmetry of the
feet angles is a consequence of the feedback with sampling interval of the step period. However, it is
argued that this will be of no consequence.

The yL coordinates of the feet are shown in Figure 8. During the swing period, the reference and
its tracking can be seen. The effect of the feedback in maintaining the feet on the baseline is evident.

Similarly, Figure 9 shows the tracking of the swing feet xL coordinates. The reference during
single stance is shown as a dashed line.

Figure 7. Behavior of rotational angles of trunk (green), right (red) and left (blue) feet along the vertical axis.
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Figure 8. Trajectories in time during a left turn, along l2, of toes and heels on the local frame.

Figure 9. Tracking of the feet trajectories along l1 during the turn (reference and trajectory).

The trajectories of toes, heels, COG and ZMP on the horizontal plane of the world frame are
presented in Figure 10, with details in Figure 11. Note the position of the center of the supporting
foot and the average of the point cluster of the ZMP on the support. The behavior of the radius that
generates the path is in Figure 12.

Figure 10. Trajectories on the horizontal plane of the world frame of COG, ZMP, tips and heels.
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Figure 11. Details of the trajectories on the horizontal plane of the world frame of COG, ZMP, tips and
heels (legend is as in Figure 10)

Figure 12. The behavior of the radius that generates the “S” shaped path.

Figures 13 and 14 show the behavior of COG, ZMP, tips and heels in the local frame during
one stride.

The blue line is the COG behavior (the dashed line is the reference), the red line is the ZMP, the
black lines are heel and toe. The rectilinear dashed lines in Figure 14 indicate the baselines of the
two feet.

Figure 13. Trajectories along l1, of COG reference (blue dashed), COG (blue), ZMP reference (red
dashed), ZMP (red), tips and heels (black) on the local reference frame.
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Figure 14. Trajectories along l2, of COG reference (blue dashed), COG (blue), ZMP reference
(red dashed), ZMP (red), tips and heels (black) on the local reference frame.

7. Conclusions

An extension of the rectilinear walk of a biped to the walk with turns has been presented. It is
obtained by transferring a rectilinear walk and the tracking of reference trajectories on a Cartesian
moving frame that accompanies the turns of the curvilinear path in addition to controlling the joints
using the appropriate Jacobian matrix from joint space to this moving space. The path curve of
the walk can be arbitrary and is generated in real time by changing the radius of curvature at each
sampling time.

A minimalistic approach has been adopted in the definition of the reference trajectories, with
the aim to generate and adapt them in real time. This accounts for bell shaped functions, third and
forth order polynomials, whose parameters are corrected by feedback in order to maintain a coherent
walking pattern.

The inconsistency of these (somewhat arbitrary) trajectories with the multichain kinematics of the
biped was accomodated, as shown by the simulations, by the adoption of the “extended Jacobian” and
weighted least squares of part II. With the objective of adaptively providing a reference pattern for the
biped, a further extension toward a completely free walk, is the on line change of the gait parameters
L f eet, stepP, stepL, dsP. This is actually under investigation and will be the object of future works.
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Appendix A: Autolev Code Fragment—The Kinematics of the Local Frame L

% during one sampling period
% i n e r t i a l frame
Frames N
% l o c a l frame
Frames L
% current nominal p o s i t i o n and c e n t e r of r o t a t i o n
Points , P , C % c o r r e n t post ion on the path , c e n t e r of r o t a t i o n

% arc length , coordinate of the path and v e r t i c a l r o t a t i o n angle a t time t
Var iab les s ’ , x , y , thetaz ’
S p e c i f i e d cogRefx ’
Constants radius , s0 , x0 , y0 , the taz0 % i n i t i a l condi t ion f o r a sampling period
s = s0
t h e t a z = the taz0
s ’ = cogRefx ’ % the arc length v e l o c i t y i s the same than the COG v e l o c i t y along x
thetaz ’ = s ’/ radius

% simple r o t a t i o n of the l o c a l frame around z of t h e t a z
simprot (N, L , 3 , t h e t a z )

% p o s i t i o n of the c e n t e r of r o t a t i o n on the i n e r t i a l frame
P_No_C> = ( x0 − radius∗ s i n ( the taz0 ) ∗N1> + ( y0 + radius∗cos ( the taz0 ) ∗N2>

% current nominal p o s i t i o n from the c e n t e r of r o t a t i o n
P_C_P> = −radius∗L2>

% o r i g i n of the l o c a l r e f e r e n c e
P_P_Lo> = −s∗L1>

% coordinates of the nominal p o s i t i o n on the i n e r t i a l frame
x = Dot ( P_No_P> , N1>)
y = Dot ( P_No_P> , N2>)

At the end of each sampling period to prepare for the next

x0 = x
y0 = y
thetaz0 = t h e t a z
s0 = cogRefx
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