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Abstract: The Taguchi method is widely used for the optimization of mechanical design and this
study is used it in the design of a 2D circular flexure hinge for a z-tilt piezoelectric based nano-scale
compensation stage. Maximum displacement of the stage is 16 µm at z-axis and ±30 arcsec at θx

and θy. The most important design parameters for such a flexure hinge are minimal diameter, body
height, and notch radius. The important requirements for the optimal design of a flexure hinge is
that the z-tilt stage should have the highest possible natural frequency and the smallest coupling
displacement. Simulation results show the nano-stage to have a higher natural frequency (626 Hz)
and lower coupling displacement (0.032%). A kinematic model for the z-tilt stage has also been
proposed in this study and the experimental results show the actual natural frequency of 510 Hz to
be slightly lower than in the simulation. By keeping the angular displacement less than ±30 arcsec
for z-tilt motion of the stage, the results of tracking experiments show a coupling displacement of
300 nm for the z-axis and 1 arcsec for θx while the θy tracked a sine wave of 1 Hz and an amplitude of
5 arcsec.

Keywords: Taguchi; z-tilt; stage; optimization; flexure hinge

1. Introduction

The important features of a nano- or micro-scale compensation stage are fast response, high
positioning resolution, and excellent positioning repeatability. The two most common kinds of
nano-scale compensation stage are x-y-yaw and z-tilt. The x-y-yaw stage is like that proposed by
Lee et al. [1], and the z-tilt stage is like another proposed by Liu et al. [2]. The structure of z-tilt stages
is usually simpler than that of x-y-yaw stages. However, the shape of the flexure hinges in a z-tilt stage
influences stage bandwidth and coupling displacement more than in an x-y-yaw stage. Both types
of nano-scale compensation stage can be of a coplanar design. Although, a coplanar stage has many
advantages such as small size, a low center of gravity (which means a higher frequency response),
low cumulative mechanical setup error and so on, coupling displacement is intensely influencing
positioning accuracy [3]. For example, when the stage is moved in the y-direction, displacement in
the x-direction will not be zero. To decrease the coupling displacement, flexure hinges with reduced
stiffness should be considered. However, lowering the stiffness of the flexure hinges can also lower the
system bandwidth. Design of the flexure hinges should provide for an optimal coupling displacement
to stage bandwidth ratio.

A Scott–Russell amplifying mechanism which was employed one-dimensional flexure hinges
was analyzed by Chen et al. [4]. Ahuett-Garza et al. conducted a study about large deflection planar
compliant mechanisms constructed by one-dimensional flexure hinges which is similar to the Chen’s
study [5]. In Ahuett-Garza’s study, three kinds of one-dimensional flexure hinge were simulated.
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Tian et al. is using adaptive Simpson integration and polynomial approximation techniques to develop
the dimensionless empirical equations for three kinds of one-dimensional flexure hinges [6,7]. The
results show that the dimension and form of flexure hinges influence the stiffness and rotational
precision. Although above research can analyze one-dimensional flexure hinges very well, there are
too many parameters that are difficult for analyzing. The Taguchi method can be used to figure out the
optimal parameters for such a system without a lot of experimentation and complex mathematical
calculation being necessary. Some studies applied the Taguchi method to design the mechanics which
are employed in one-dimensional flexure hinges [8–10].

This study used Taguchi to find the optimal design parameters for a two-dimensional flexure
hinges of a z-tilt compensation stage. The three motions of the z-tilt stage are the linear motion in the
z-axis, angular motion in the x (θx) and y (θy) axes. The easiest way to achieve z-tilt motion is to use
three piezoelectric-flexure-hinge modules (PFM) as shown in Figure 1. Here, each PFM consists of a
flexure hinge and a piezoelectric actuator. Figure 2 shows a simulation that explains why flexure hinges
are needed for a z-tilt stage. The upper one shows the stress concentrated on the piezoelectric actuator
and deformation that occurs on the work platform if there is no flexure. This problem can be avoided
by the use of flexure hinges. Two kinds of flexure hinge are commonly used, notched and circular [11].
Circular flexure hinges are usually employed on z-tilt stages because motion is two-dimensional. Other
kinds of flexure hinges with special shapes have been proposed by Jywe [12]. Flexure hinges are not
limited to use on nano-scale stages, but can also be used in such applications as tool compensation
as proposed by Andrew Woronko et al. [13]. The main problem of piezoelectric actuator usage
is hysteresis which causes low positioning accuracy. For increased positioning accuracy, Lin et al.
adopted a hysteresis observed control method [14]. Banning et al. built a hysteresis model for hysteresis
displacement compensation [15]. There are some different models are used for hysteresis compensation
such as the classical Preisach model [16], Inverse Preisach Model [17], Bouc–Wen model [18], and so on.
The improvement of mathematical model compensation methods is limited. Thus, some studies using a
compensator with a PID (proportional–integral–derivative) controller to improve the steady state error
and dynamic tracking performance like Ru et al. proposed [19]. Beside mathematical compensation
methods (e.g., feed-forward compensator), Liu et al. employed a capacitor in the piezoelectric driving
circuit for hysteresis reduction and the method is called capacitor insertion method [2]. This study was
concerned with positioning accuracy. Thus, only a PI (proportional–integral) controller was used.

There are three parameters which need to be taken into account in the design of a 2D circular
flexure hinge: the minimum diameter (b); the body height (h); and the notch radius (r), as shown in
Figure 3. Estimating of the static performance of a z-tilt stage, such as coupling displacement and
stage stiffness, can be made using simulation and stepwise displacement experiments. The dynamic
performance of a z-tilt stage can be tested by a tracking experiment [2,20]. The first part of this study
describes the use of the Taguchi method to optimize design of the circular flexure hinges. The second
part is a description of dynamic performance tests of the proposed z-tilt stage. At the last in this study,
some experiments were performed to check whether the results achieved the design intent.

Inventions 2016, 1, 15 2 of 15 

develop the dimensionless empirical equations for three kinds of one-dimensional flexure hinges 
[6,7]. The results show that the dimension and form of flexure hinges influence the stiffness and 
rotational precision. Although above research can analyze one-dimensional flexure hinges very well, 
there are too many parameters that are difficult for analyzing. The Taguchi method can be used to 
figure out the optimal parameters for such a system without a lot of experimentation and complex 
mathematical calculation being necessary. Some studies applied the Taguchi method to design the 
mechanics which are employed in one-dimensional flexure hinges [8–10]. 

This study used Taguchi to find the optimal design parameters for a two-dimensional flexure 
hinges of a z-tilt compensation stage. The three motions of the z-tilt stage are the linear motion in the 
z-axis, angular motion in the x (θx) and y (θy) axes. The easiest way to achieve z-tilt motion is to use 
three piezoelectric-flexure-hinge modules (PFM) as shown in Figure 1. Here, each PFM consists of a 
flexure hinge and a piezoelectric actuator. Figure 2 shows a simulation that explains why flexure 
hinges are needed for a z-tilt stage. The upper one shows the stress concentrated on the piezoelectric 
actuator and deformation that occurs on the work platform if there is no flexure. This problem can 
be avoided by the use of flexure hinges. Two kinds of flexure hinge are commonly used, notched and 
circular [11]. Circular flexure hinges are usually employed on z-tilt stages because motion is two-
dimensional. Other kinds of flexure hinges with special shapes have been proposed by Jywe [12]. 
Flexure hinges are not limited to use on nano-scale stages, but can also be used in such applications 
as tool compensation as proposed by Andrew Woronko et al. [13]. The main problem of piezoelectric 
actuator usage is hysteresis which causes low positioning accuracy. For increased positioning 
accuracy, Lin et al. adopted a hysteresis observed control method [14]. Banning et al. built a hysteresis 
model for hysteresis displacement compensation [15]. There are some different models are used for 
hysteresis compensation such as the classical Preisach model [16], Inverse Preisach Model [17], Bouc–
Wen model [18], and so on. The improvement of mathematical model compensation methods is 
limited. Thus, some studies using a compensator with a PID (proportional–integral–derivative) 
controller to improve the steady state error and dynamic tracking performance like Ru et al. proposed 
[19]. Beside mathematical compensation methods (e.g., feed-forward compensator), Liu et al. 
employed a capacitor in the piezoelectric driving circuit for hysteresis reduction and the method is 
called capacitor insertion method [2]. This study was concerned with positioning accuracy. Thus, 
only a PI (proportional–integral) controller was used. 

There are three parameters which need to be taken into account in the design of a 2D circular 
flexure hinge: the minimum diameter (b); the body height (h); and the notch radius (r), as shown in 
Figure 3. Estimating of the static performance of a z-tilt stage, such as coupling displacement and 
stage stiffness, can be made using simulation and stepwise displacement experiments. The dynamic 
performance of a z-tilt stage can be tested by a tracking experiment [2,20]. The first part of this study 
describes the use of the Taguchi method to optimize design of the circular flexure hinges. The second 
part is a description of dynamic performance tests of the proposed z-tilt stage. At the last in this study, 
some experiments were performed to check whether the results achieved the design intent. 

 

Figure 1. The simplest structure of a z-tilt stage. Figure 1. The simplest structure of a z-tilt stage.



Inventions 2016, 1, 15 3 of 15
Inventions 2016, 1, 15 3 of 15 

 

 
Figure 2. Simulation results of a z-tilt stage without (upper) and with (lower) flexure hinges. 

 
Figure 3. The important parameters for optimal circular flexure hinge design, the parameters 
including minimum diameter (b), body height (h) and notch radius (r). 

2. Flexure Hinge Optimal Design 

The S/N (signal-to-noise) ratio η is used as a performance evaluation index for optimal design 
results obtained by the Taguchi method. In this study, quality characteristics include: (1) the smaller 
the better (STB), the ideal value being zero, such as the poisoning error of a machine tool; (2) the 
larger the better (LTB), the ideal value here being infinity, such as the lifetime of a device; and (3) 
nominally the best (NTB), the special value of a target, such as the wavelength of a laser 

Figure 2. Simulation results of a z-tilt stage without (upper) and with (lower) flexure hinges.

Inventions 2016, 1, 15 3 of 15 

 

 
Figure 2. Simulation results of a z-tilt stage without (upper) and with (lower) flexure hinges. 

 
Figure 3. The important parameters for optimal circular flexure hinge design, the parameters 
including minimum diameter (b), body height (h) and notch radius (r). 

2. Flexure Hinge Optimal Design 

The S/N (signal-to-noise) ratio η is used as a performance evaluation index for optimal design 
results obtained by the Taguchi method. In this study, quality characteristics include: (1) the smaller 
the better (STB), the ideal value being zero, such as the poisoning error of a machine tool; (2) the 
larger the better (LTB), the ideal value here being infinity, such as the lifetime of a device; and (3) 
nominally the best (NTB), the special value of a target, such as the wavelength of a laser 

Figure 3. The important parameters for optimal circular flexure hinge design, the parameters including
minimum diameter (b), body height (h) and notch radius (r).

2. Flexure Hinge Optimal Design

The S/N (signal-to-noise) ratio η is used as a performance evaluation index for optimal design
results obtained by the Taguchi method. In this study, quality characteristics include: (1) the smaller
the better (STB), the ideal value being zero, such as the poisoning error of a machine tool; (2) the larger
the better (LTB), the ideal value here being infinity, such as the lifetime of a device; and (3) nominally
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the best (NTB), the special value of a target, such as the wavelength of a laser interferometer. In this
study, eight steps were followed to arrive at an optimal design for the 2D circular flexure hinges.

Step 1. Deciding the design parameters:
As previously mentioned, the three parameters this study is concerned with are the minimum

diameter (b), the body height (h), and the notch radius (r), as shown in Figure 3.
Step 2. Setting the parameter levels:
All parameters were set at three levels, as listed in Table 1, according to the required dimension

of the stage, design experience, heuristics, machining rationality, notch sensitivity, and research
results [8,21]. Please note, the optimal results based on level belong to local optimization, and are
not global.

Table 1. The level values of each parameter (mm).

Parameter Minimal Diameter Height Notch Rad.

Symbol b h r

Level code A B C

Level 1 4 25 3
Level 2 6 30 3.75
Level 3 8 35 4.5

Step 3. Building an orthogonal array:
In this study an OA9(33) orthogonal array (OA) was used in the simulation as shown in Table 2

where each level (A1, A2, A3, B1, . . . , C2, and C3) appears three times. The OA is balanced and there
is no repeated permutation.

Table 2. The OA9(33) orthogonal array.

Trial\Parameter A B C

1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2

Step 4. Defining the output response:
Two output responses were defined for the evaluation index:

(1) Natural frequency (η1): The natural frequencies of the z-tilt stage with no load and when loaded.
For such a stage, the system bandwidth is usually proportional to the natural frequency and so
the LTB equation was used for performance evaluation:

η1 = −10× log

(
1
n

n

∑
i=1

1
yi

2

)
(dB) (1)

(2) Coupling angular displacement (η2): The ideal value of coupling displacement is zero, so the STB
equation was used for evaluation:

η2 = −10× log

(
1
n

n

∑
i=1

yi
2

)
(dB) (2)
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In Equations (1) and (2), yi represents the simulation output value, for example, the natural
frequency (units can be ignored); n represents the number of output response (n = 1 for η1; n = 1 for η2).

Step 5. Performing simulation:
Dassault Systèmes CATIA V5R15 was used for simulation in this study. For natural frequency

simulation, this study used a z-tilt stage loading of zero and 5 kg. For coupling angular displacement
simulation, the z-tilt stage was rotated on the y-axis (θy) and observed the angular displacement of
x-axis (θx). Please note that, for a z-tilt stage, coupling displacement for the z-direction motion is zero.
Figure 4 shows the simulation setup and result, in which the applied force is ±20 N. The simulation
results are shown in Tables 3 and 4. Note that, since the stage is moved by constant force while
simulation, displacement θy for each trail is different. This study is employed percentage for judging
the simulation result.

Step 6. To compute the S/N ratio:
According to Equations (1) and (2) and Table 3, the S/N ratio for each trial can be computed as

shown in Table 5. The average S/N ratio denoted of η, for example, for A1 and B2 are:

η for A1 : ηA1 = (56.377)+(55.891)+(55.394)
3 = 55.887, and

η for B2 : ηB2 = (55.891)+(56.465)+(57.480)
3 = 56.612

(3)

After computation, Tables 6 and 7 were built. In the tables, δ represents the maximum
variation of average S/N Ratio of a single influencing parameter, which can be computed using
the following equation:

δ = ηmax − ηmin (4)

The value of δ also represents the degree of influence. A large value for δmeans the parameter
has more influence than others. For example, for a z-tilt stage the natural frequency and minimum
diameter are the most important. Table 7 were constructed and ranking was made according to the
degree of influence.
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Table 3. Simulation results.

Trial
Natural Frequency (Hz) Coupling Angular

Displacement (%)

No load 5 kg load Percentage

1 1143.25 510.24 1.02
2 1080.58 482.50 4.89
3 1018.74 455.83 8.57
4 1246.49 555.45 1.79
5 1154.19 515.47 1.71
6 1126.61 506.3 1.77
7 1408.27 626.49 0.03
8 1294.4 579.64 0.11
9 1218.48 546.85 0.32

Table 4. Simulated Displacements of each trial.

Trial z-Axis (µm) x-Axis (µm) θy (arcsec) θx (arcsec) θx/θy (%)

1 2.9 1.9 12.07 0.12 1.02
2 2.9 2.0 11.88 0.58 4.89
3 2.6 2.0 10.75 0.92 8.57
4 3.0 2.0 12.48 0.22 1.79
5 2.9 2.1 12.11 0.21 1.71
6 2.7 2.0 11.21 0.20 1.77
7 3.0 2.0 12.32 0.00 0.03
8 2.8 2.0 11.55 0.01 0.11
9 3.0 2.3 12.32 0.04 0.32

Table 5. S/N ratio calculation results (including orthogonal array).

Trial A B C Natural Frequency
(dB)

Coupling Angular Displacement
(dB)

1 1 1 1 56.377 59.828
2 1 2 2 55.891 46.214
3 1 3 3 55.394 41.340
4 2 1 2 57.117 54.943
5 2 2 3 56.465 55.340
6 2 3 1 56.300 55.041
7 3 1 3 58.164 90.458
8 3 2 1 57.480 79.172
9 3 3 2 56.971 69.897

Table 6. S/N Ratio of natural frequency simulation results.

Parameter b h r

Symbol A B C
Level 1 55.887 dB 57.219 dB 56.719 dB
Level 2 56.627 dB 56.612 dB 56.660 dB
Level 3 57.538 dB 56.222 dB 56.674 dB
δ 1.651 dB 0.997 dB 0.059 dB

Ranking 1 2 3
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Table 7. S/N Ratio of coupling angular displacement simulation results.

Parameter b h r

Symbol A B C
Level 1 49.127 dB 68.410 dB 64.680 dB
Level 2 55.108 dB 60.242 dB 57.018 dB
Level 3 79.842 dB 55.426 dB 55.526 dB
δ 30.715 dB 12.984 dB 9.154 dB

Ranking 1 2 3

Step 7. Deciding the optimal parameters:
From Tables 6 and 7, the optimal value of each parameter of the flexure hinge can be decided

based on the following principium:

1. If the output responses of the experiments have the same trend, select the level with the highest
S/N ratio.

2. If the output responses of the experiments have no similar trend and have different ranking,
select that with the lowest ranking.

3. If the output responses of the experiments have no similar trend and have same ranking, select
the level with the highest S/N ratio.

First, draw a cross-correlation chart from Tables 6 and 7 as shown in Figure 5. From this chart,
find the optimal value for each parameter according to the above principium. For parameter A,
the result satisfies principium 1, therefore, the optimization result of the minimum diameter is A3.
For parameter B, the result also satisfies principium 1, thus, the optimization result of body height
is B1. For parameter C, the result does not satisfy principium 1 or 2, thus, principium 3 is used to select
the optimal notch radius, in this study the choosing was C3. The optimal design parameters are listed
in Table 8.

Step 8. Checking correctness of the results.
The optimal results of each parameter are A3, B1, and C3, which agrees exactly with trial 7 of

the OA table. From Table 3, we can see that the natural frequency is highest and coupling angular
displacement is the smallest of all the values in the OA table. Thus, the stage clearly complies with the
required specifications and the output responses list in Table 9.

Table 8. Optimal circular flexure hinge design parameters.

Parameter Minimal Diameter Body Height Notch Radius

Parameter b h r
Level value A3 B1 C1

Optimal value 8 mm 25 mm 4.5 mm

Table 9. Specifications of the z-tilt stage design (simulation result).

Output Response Result

Natural frequency
No-load 1408.27 Hz

5 kg load 626.49 Hz

θy rotating Coupling angular displacement of θx 0.03%
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3. Kinematic Analysis

The positions of the PFMs are shown in Figure 6. The mathematical model of the stage movement
shows in Figure 7. The coordinate systems as seen in Figure 7 include: {R} the reference coordinate
system of the stage (the origin, or reference point), located at the center of the work platform; {Hi}
represents the center position of the flexure hinge of the PFM, where i = 1, 2 and 3; and {R'} represents

the position of the reference point after the stage has moved. Let
⇀
s =

[
sx sy sz

]T
be the

displacement vector of the z-tilt stage along the x-, y- and z-axes, as well as θx and θy to be the angular
displacement of the z-tilt stage. After the stage has moved, the center of the flexure hinge is moved to
a new position and the coordinate system is denoted as {Hi'}. For example, (see Figure 8) when the
reference point is moved from {R} to {R’}, the center position of the second flexure hinge is moved from

{H2} to {H2’}, in which
⇀
δ i =

[
0 0 δzi

]
represents the displacement vector of i-th piezoelectric

actuator. Note that since the PFMs can only move along their z-axes, the vector components of the x-
and y-axes are both zero. Assuming the distance and unity vector di from {Hi} to {R} is known, and
⇀
u i =

[
uix uiy uiz

]T
, vector from {Hi} to {R} is |di|

⇀
u i, when the stage is rotated along the x- and

y-axes, the new unity vector denoted
⇀
u i can be computed by the following equation:

⇀
u
′
i =

 1 0 0
0 cosθx −sinθx

0 sinθx cosθx


 cosθy 0 sinθy

0 1 0
−sinθy 0 cosθy

⇀
u i. (5)
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From Figure 8, the movement equation of the z-tilt stage can be derived as:

⇀
s = |di|

⇀
u i +

⇀
δ i − |di|

⇀
u
′
i, (6)

where the unity vectors are:

⇀
u i =

[
uix uiy uiz

]T
=

[
dix√

d2
ix+d2

iy+d2
iz

diy√
d2

ix+d2
iy+d2

iz

diz√
d2

ix+d2
iy+d2

iz

]
. (7)

After expanding, Equation (6) can be written as:
sx = |di|

(
uix − uixcosθy − uizsinθy

)
sy = |di|

(
uiy − uiycosθy − uixsinθysinθy + uizsinθycosθy

)
sz = δzi + |di|

(
uiz − uiysinθx + uixcosθysinθy − uizcosθycosθy

) . (8)

For a nano-scale z-tilt compensation stage, the angular displacement is much smaller than
one degree, thus Equation (8) can be linearized and simplified as below:

sx = − |di| uizθy

sy = |di| uizθx

sz = δzi + |di|
(
uixθy − uiyθx

) . (9)

From Equation (9), it can be seen that when the stage is rotated along x- and y-axes, coupling
displacement will occur in the z-axis. In this study, |di| is much smaller than 1 meter (57.306 mm), the
angular displacements of θx and θy are much smaller than 1 degree as well as uiz being smaller than 1.
In other words, the coupling displacements of sx and sy are very small and can be ignored. This means
the relationship between the actuators and the stage displacements can be written as: δz1

δz2

δz3

 =

 1 |d1| u1y − |d1| u1x
1 |d2| u2y − |d2| u2x
1 |d3| u3y − |d3| u3x


 sz

θx

θy

. (10)

Because of diz = dz, Equation (10) can be rewritten as: δz1

δz2

δz3

 =

 1 d1y −d1x
1 d2y −d2x
1 d3y −d3x


 sz

θx

θy

 = M ·
⇀
ψ (11)
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is the displacement vector of the working platform from {R} moving to {R’}; dz is the height between
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u i is the
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Figure 8. When the stage undergoes z-tilt motion, the center position of the flexure hinge is changed
from {H2} to {H2’}. In the figure, vector

⇀
s is the displacement vector of the working platform from

{R} moving to {R’}; vector
⇀
δ 2 is displacement vector of PFM2 at z-direction; the vectors |d2|

⇀
u 2 is the

distance vector from {R} to {H2}; |d2|
⇀
u
′
2 is the distance vector from {R’} the {H2’} after the working

platform moved.

4. Experimental Result

4.1. Subsection

The center positions of each PFM are listed in Table 10 and the distance from each reference
point to the center of each flexure hinge is |d1| = |d2| = |d3| = 57.306 mm. The unity vectors from

{R} to {H1}, {H2}, and {H3} are
⇀
u 1 =

[
−0.244 −0.423 0.873

]T
,
⇀
u 2 =

[
−0.244 0.423 0.873

]T
,

and
⇀
u 3 =

[
0.488 0 0.873

]T
respectively. Since the rotating center of the z-tilt stage is not on the

reference point, x- and y-axis coupling displacement exists only when the stage is rotated. Figure 9
shows the simulation result derived from Equation (8).
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Table 10. List of the position of each PFM (unit: mm).

PFMs Center Position x y z

PFM1 −14.000 −24.249 50.000
PFM2 −14.000 24.249 50.000
PFM3 28.000 0.000 50.000
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Figure 9. Coupling displacement simulation result. During simulation, the angular displacement of
the z-tilts was set to ±30 arcsec, and the coupling displacement was calculated using Equation (8).

4.2. Control of Stage Positioning

In this study, displacement of the z-tilt stage was measured using a Renishaw RLE10 laser
interferometer and a Hamamatsu S4349 quadrant Si PIN photodiode (QPD). The QPD was used to
measure the tilt angle using the principle of auto-collimation. The measurement principle can refer
to the previous studies [2,20]. Angle measurement resolution was about 0.1 arcsec, the measurement
error being smaller than 0.25 arcsec after calibration. The piezoelectric actuator and signal amplifier
used was an HPSt 150/14-10/12 VS22 and a PST 150/10/60 VS18. The stroke of the piezoelectric
actuators used was 16 µm. The angular displacement of tilt motion of the stage is about ±30 arcsec.
The signal was acquired using dSpace CP1103. The stage control following diagram (Figure 10) shows
the inclusion of a PI controller and a feed-forward compensator [22]. The experimental setup is shown
in Figure 11. In this study, minimum stepwise tests were performed to figure out the stage positioning
resolution. Figure 12 shows the results of test positioning of the z-tilt stage at 20 nm and 0.1 arcsec.
Signal noise can also be determined in the stepwise tests.
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Figure 12. Stage resolution experiment results: (a) z-axis movement; (b) θx movement; (c) θy movement.

Because the evaluation index of the optimal design of the flexure hinge relies on coupling
displacement and natural frequency, the following experiment was used as a check. Figure 13 shows
coupling displacement experiment result. The tracking signal is a sine wave with 1 Hz frequency and
±5 arcsec amplitude. The stage is controlled in closed loop with sampling rate of 800 Hz. When giving
the stage a sine wave command for θy only, the time response is shown in Figure 13b,c. The result
shows the coupling displacement of the z-axis and θx are about 300 nm and 1 arcsec. This is better than
the result obtained by simulation. The natural frequency of the stage was determined by an impulse
response experiment [14] and the Results are shown in Figure 14. The Natural frequency is about
510 Hz. This value is lower than that obtained by simulation.
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Figure 14. Stage impulse response experiment results: (a) frequency response of the stage before the
impulse test (signal noise); (b) frequency response of the stage when an impulse was input to the stage.
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5. Conclusions

In this study, an eight step Taguchi procedure was used to design a circularity flexure hinge for a
nano-scale z-tilt piezoelectric actuator based stage. The most important design parameters that effect
stage performance, natural frequency, and coupling displacement, are minimum diameter, body height,
and notch radius. The results show that the minimum diameter of the circularity flexure hinge is the
most important design parameter. The simulation results also show that the flexure hinge influences
stage coupling displacement more than natural frequency, and a smaller minimum diameter will
give less coupling displacement, but will decrease stage bandwidth and stiffness. Simulation and
experimental comparison table shows in Table 11. The stage natural frequency can be determined by
its impulse response and found a natural frequency of 510 Hz and coupling displacement of 300 nm
for z-axis, 1 arcsec for θx the stage tracked a sine wave of 1 Hz and an amplitude of 5 arcsec on θy.
The natural frequency of the experimental result is a little lower than in the simulation. This might
be because the stiffness of the piezoelectric actuator structure is not an object like that in the CATIA
simulation. The actuators are made of solid piezoelectric modules, a steel housing, a rubber o-ring,
and a cover. The actual physical structure of the piezoelectric actuators is looser and not so stiff as it is
in the simulation.

Table 11. Comparison between the simulation and experimental results.

Output Response Result

Natural frequency No-load 1408.27 Hz *

5 kg load 626.49 Hz 510 Hz

θy rotating Coupling angular displacement of θx 0.032% 20%

Note: * The natural frequency could not be measured due to the mirror used to reflect the laser ray was installed
on the 5 kg mount.
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