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Abstract: This paper presents an approach to lane detection for a vehicle. The positions of the lane
marks can be evaluated by visual information of the image captured from a single charge-coupled
device (CCD) camera. This proposed approach originally utilizes the properties of the CCD array in a
camera to achieve the aim of objects positioning, since one pixel information produces two equations
and increases one unknown variable. After camera calibration, this approach can therefore evaluate
the intrinsic parameters of a camera from more pixel information. The configuration of the CCD chip
cells is the key factor in this approach. The pixels of a resulting image directly reflect the geometry of
the CCD cell, or the CCD array, in the camera. According to the attitude of the camera, this paper
constructs the coordinate transformation that can resolve the geometrical relations between the film
coordinate (the CCD array) and a fixed coordinate. This paper also provides associated techniques to
facilitate the proposed approach, including image geometry analysis, distribution analysis of the CCD
array, least mean square error (LMS) algorithm, etc. A down scaled experiment for lane detection is
used to verify the feasibility of the proposed approach. The results show that the proposed approach
is able to achieve object positioning.

Keywords: CCD array geometry; CCD chip cell; coordinate transformation; intrinsic parameter;
Lane detection; least mean square error (LMS); object position evaluation; visual information
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1. Introduction

Over the past decades, considerable effort has been put towards the study of object position
evaluation by computer visual information. Various approaches and techniques have been developed
throughout manifold applications, including both applications and theories. Some used more than
one camera so as to establish the position information of an object [1–4]. Rankin et al. addressed a
stereo vision-based terrain mapping method for the off-road autonomous navigation of an unmanned
ground vehicle (UGV) [1]. Chiang et al. developed a stereo vision 3D position measurement system for
a three-axial pneumatic parallel mechanism robot arm [2]. Richa et al. presented an efficient approach
for heart surgery by using stereo images from a calibrated stereo endoscope in medical application [3].
Luna et al. have studied a sensor system to measure the 2-D position of an object that intercepts a
plane in space [5]. However, it may be laden to equip with two or more cameras in some applications.
For instance, Zhou presented an approach to geo-locate the ground-based object from video stream
by a single camera equipped in an unmanned aerial vehicle (UAV) [6]. The measuring system from
the vision information may not be one of the main functions in some applications, but the system
can provide more advantageous functions for those applications without implementing any extra
hardware or device.
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Camera calibration of is one of the crucial issues in computer vision. Camera parameters which
require calibration include intrinsic and extrinsic ones [7]. The internal camera geometric and optical
characteristics are intrinsic, while the 3D position and orientation of the camera frame relative to a
certain world coordinate system are extrinsic. The intrinsic parameters of a camera are sometimes
fixed, such as mounted orientation and position, distortion, CCD chip position, chip cell distance, etc.
Although not all the techniques need any calibration object, the calibration of a camera is indispensable
for some techniques of computer vision applications [8–11].

A sensor system which evaluates the positions of objects by visual information with a single CCD
camera is presented. Some techniques of this proposed approach were adopted from the invention
patented in Taiwan [12]. It utilizes the properties of the CCD array in a camera in order to measure the
positions of objects that are on regular geometric lines, curves, or surfaces. This paper not only adopts
the approach to solve the lane detection problems, but provides the evaluation procedure and discusses
its errors. The technique in this study may not have to utilize any calibration object and can be regarded
as self-calibration, or the so-called 0D approach [13]. The intrinsic parameters of the camera need
to be obtained. This will result in a mathematical problem if all intrinsic parameters are evaluated
by an image taken from the camera, although no calibration objects are necessary. An overview of
this area can be found in [14] and the references therein. For example, the distortion calibration must
be considered for most cameras. The distortion parameters—which are the intrinsic parameters of a
camera—are constant for all pixels in an image taken by this camera [9]. This paper takes into account
the radial distortion, since the radial distortion contributes the major errors to the distortions of the
camera in this study. This paper details the mathematical model of the camera system in regard to the
coordinate transformation between a fixed coordinate and a CCD chip coordinate. It also constructs
the computational procedure for the object positioning system.

The notations in this paper are as follows: [.] denotes a matrix;
→
P denotes the position vector of

point P, while
⇀
OA denotes the origin position vector of A-coordinate;

 xA
yA
zA


A

denotes the x, y, and z

components of a position vector in A coordinate, that is, xA
yA
zA


A

≡
→
OA +

[ →
i A

→
j A

→
k A

]  xA
yA
zA

 =
→
OA + xA

→
i A + yA

→
j A + zA

→
k A (1)

where the unit vectors
→
i A,

→
j A, and

→
k A are the orthogonal bases of A coordinate in x, y, and z axes,

respectively. Hereafter in this paper, the position vector is in the fixed coordinate as the symbol A

is omitted. It is intuitive that a vector
→
P can be represented both in A coordinate and B coordinate.

That is,

→
P =

 xA
yA
zA


A

=

 xB
yB
zB


B

, (2)

or

→
P =

→
OA +

[ →
i A

→
j A

→
k A

]  xA
yA
zA

 =
→
OB +

[ →
i B

→
j B

→
k B

]  xB
yB
zB

. (3)

2. Coordinate Transformation

A spatial object can map on the corresponding chip cell of the CCD array, or the pixel in an
image taken by a camera. From the pinhole phenomenon, the object—the mapped pixel on the CCD
array—and the lens center should be collinear after calibration for the camera distortion. The mapped
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pixel on the CCD array and the lens center can formulate the line equation in algebra intuitively, and
the other one can satisfy the line equation as long as their position vectors are represented in the same
coordinate system. In general, we can use the fixed coordinate to represent these position vectors.
Therefore, the coordinate transformation from the CCD array coordinate (or the film chip coordinate)
to the fixed coordinate is significant by this approach. Figure 1 shows the relations between the fixed

coordinate and the film chip coordinate, where
→
O and

⇀
OF are the origins of the fixed coordinate and

the film chip (CCD array) coordinate, respectively. For convenience, as shown in Figure 1, we can
assign the orientations of the x-axis and the y-axis in the film chip coordinate to conform to the pixel

orientations of the x-axis and y-axis in an image. Let
(

x y z
)T

and
(

x y z
)T

F
denote any

position represented in the fixed coordinate and in the film chip coordinate, respectively; i.e., x
y
z

 =

 x
y
z


F

(4)

According to the definitions, x
y
z

 ≡ →O + x
→
i + y

→
j + z

→
k =

→
O +

[ →
i
→
j
→
k
]  x

y
z

, (5)

and  x
y
z


F

≡
→
OF + x

→
i F + y

→
j F + z

→
k F =

→
OF +

[ →
i F

→
j F

→
k F

]  x
y
z

, (6)

then,

→
O +

[ →
i
→
j
→
k
]  x

y
z

 =
→
OF +

[ →
i F

→
j F

→
k F

]  x
y
z

 (7)
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In general,
⇀
O =

(
0 0 0

)T
and

⇀
OF =

(
0 0 0

)T

F
. That is, the positions of objects

can refer to the position of the camera.
⇀
OF can also be represented in fixed coordinate; i.e.,

⇀
OF =

(
xF0 yF0 zF0

)T
. In Figure 1, the mounted position for the camera,

⇀
OM =

(
0 yM zM

)T

F
,
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where yM and zM can be obtained from the specifications of the camera.
⇀
OM can be assigned just

above the origin of the fixed coordinate with zero x-axis and zero y-axis components.
⇀
OM has only the

z component in the fixed coordinate, or
⇀
OM =

(
0 0 H

)T
, where H is the height of

⇀
OM and H can

be measured directly. According to (7),

[ →
i
→
j
→
k
]  0

0
H

 =
[ →

i
→
j
→
k
]  xF0

yF0

zF0

+
[ →

i F
→
j F

→
k F

]  0
yM
zM

 (8)

The origin of the film chip coordinate represented in the fixed coordinate can be

→
OF =

 xF0

yF0

zF0

 =

 0
0
H

− T

 0
yM
zM

, (9)

where [ →
i F

→
j F

→
k F

]
=
[ →

i
→
j
→
k
]
· T, (10)

T =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1


 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


 1 0 0

0 cosφ −sinφ

0 sinφ cosφ


 0 0 1

1 0 0
0 1 0

, (11)

and ψ, θ, and φ denote the Euler angles of the camera for the yaw, pitch, and roll angles, respectively.
Consequently, the coordinate transformation from the film chip coordinate to the fixed coordinate
defined in (4) can become  x

y
z

 =

 xF0

yF0

zF0

+ T

 x
y
z

 (12)

In Figure 1, let
→
L be the lens center position where

→
L ≡

 0
0
f


F

=

 xL
yL
zL

 (13)

Substituting (13) into (12), the lens center position in the fixed coordinate becomes xL
yL
zL

 =

 xF0

yF0

zF0

+ T

 0
0
f

 (14)

The CCD array, or the film chip of a camera, consists of the CCD cells which sense the light
energy to make an image collected by the corresponding pixels. Figure 2 sketches the configuration
of the CCD array, where U is the width of the CCD array, V is the height of the CCD array, Uc is the
width of the CCD cell, Vc is the height of the CCD cell, and Nu and Nv are the numbers of the CCD

cells on the film chip in the width and height directions, respectively. Let
(

Px Py

)T

Pxy
in which

Px = 1, 2, · · · , Nu and Py = 1, 2, · · · , Nv denote the index of the CCD cells on the chip.
(

Px Py

)T

Pxy

is indeed the same as the pixel index of the image. Let
→
P Pxy ≡

(
xPxy yPxy zPxy

)T
stand for the
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position vector at the center of the chip cell for a pixel indexed by Px and Py in the image. Then, the
chip cell center position can be as follows.

→
P Pxy =

 xPxy

yPxy

zPxy

 =


(U−Uc)(2Px−Nu−1)

2(Nu−1)
(V−Vc)(2Py−Nv−1)

2(Nv−1)
0


F

, (15)

Substituting (15) into (12), the position at the center of the chip cell in the fixed coordinate in terms
of the pixel index of the image becomes

 xPxy

yPxy

zPxy

 =

 xF0

yF0

zF0

+ T


(U−Uc)(2Px−Nu−1)

2(Nu−1)
(V−Vc)(2Py−Nv−1)

2(Nv−1)
0

 (16)
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Figure 2. The configuration of the chip cells for the film chip (CCD chip) in front view.

This section has derived the positions of some significant points represented in the fixed coordinate
from the film chip coordinate by the appropriate coordinate transformation in (12). According to (16),

it can be intuitive to obtain the chip cell center position indexed by
(

Px Py

)T

Pxy
, which is also the

pixel index of the image. Based on the pinhole model of a camera, an object from the scene mapped
onto the CCD array, or the image, can be formulated as a line equation that makes two equations
in three-dimensional (3D) space. In addition, the object in the scene, the lens center, and the center
position vector of the corresponding chip cell mapped from the object must be collinear. If there are
n objects, there should be n lines, or 2n equations. In the case that a set of the evaluated objects is
on a regular curve (e.g., a line, a circle, etc.), n objects will increase n + 2 unknowns, including two
regular curve parameters. Theoretically, the position evaluations for the objects are feasible since the
equations increased are more than the unknowns increased. The Euler angles of the camera are not
intrinsic parameters. They are sometimes fixed for images taken by the same camera in applications.
However, the Euler angles will make the position evaluations inaccurate for a slight misalignment of
the attitude for a camera.

3. The Evaluations of Camera Parameters and Object Positions

To exemplify the proposed approach, this paper assumes a case wherein the evaluated objects in

the scene are collinear on the ground. According to the pinhole phenomenon, a point
→
P of the objects

which are collinear with the equation y = mx + y0 on the ground (z = 0) maps on the CCD chip cell at
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a pixel indexed by
(

Px Py

)T

Pxy
. Therefore, points collinear on

→
P = ( x mx + y0 0 )

T
satisfy the

line equation as follows.
x− xL

xPxy − xL
=

mx + y0 − yL
yPxy − yL

=
−zL

zPxy − zL
(17)

or
(x− xL)(yPxy − yL)− (mx + y0 − yL)(xPxy − xL) = 0, (18)

(x− xL)(zPxy − zL) + zL(xPxy − xL) = 0, (19)

where xL, yL, zL, xPxy , yPxy , and zPxy are defined in (14) and (15). If a set of points
→
P i = ( xi mxi + y0 0 )

T
in a fixed coordinate maps onto a set of pixels

(
Px,i Py,i

)T

Pxy
in the

image, or the CCD array, where i = 1, · · · , n, there will be 2n equations according to (18) and (19).
In this evaluation approach, ψ, θ, φ, and H are the fixed variables for an image, while the line parameters
m and y0 are also fixed, but only xi is a variable. One pixel information in an image produces two
equations and one variable. Therefore, as for the objects on a regular curve, there should be at least NF
pixel information in an image to solve the additional NF variables and NF fixed variables theoretically.
In Figure 1, yM, zM, and the CCD geometry are known. If there is more than NF pixel information, the
evaluations of camera parameters and positions of objects can apply the least square approach from the
quadratic performance index. That is, if there are Nj(Nj ≥ 2) pixel information on the j-th line (i.e., mj
and y0j are both constants for any j = 1, 2, ..., NL, where NL denotes the number of regular lines), the
least square approach can be defined as minJ, where J is the quadratic performance index and

J =
NL
∑

j=1

Nj

∑
i=1

[(xi − xL)(yPxy ,i − yL)− (mjxi + y0j − yL)(xPxy ,i − xL)]
2 + [(xi − xL)(zPxy ,i − zL) + zL(xPxy ,i − xL)]

2

(20)
The optimal evaluated values of the unknown variables, including fixed and additional ones, can

be obtained if J is minimized. The solution of minimization in (20) might not converge to a unique one
by numerical methods or mathematical algorithms. The solution highly depends on the initial guess
values of the variables. There are two ways to improve the solution accuracy of (20) in calculations.
One is to increase the number of objects on the same line. The other is to choose more accurate initial
guess values of the variables.

Figure 3 shows an evaluation system with a DH-HV2003UC camera, while this paper uses the
3DM-GX1 gyro mounted on the camera in order to measure the exact attitude, or the Euler angles,
of the camera. Regarding the verification purpose of this proposed approach, this paper compares the
exact attitudes with the evaluated ones. It additionally utilizes a laser distance meter to measure the
height more precisely from the ground (platform) to the mounted position of the camera on its stand.
According to the specifications of this camera, the CCD chip parameters are as follows. U = 6.4 mm,
V = 4.8 mm, Uc = 4.2 µm, Vc = 4.2 µm, Nu = 800, Nv = 600, yM = −27.25 mm, and zM = 2.53 mm.
These parameters are crucial to the evaluation of the positions of objects by the proposed approach,
since they play the key role in the accuracy of the position evaluation approach. As for the camera
distortion calibrations, this paper only takes into account the radial distortion of the camera, rather
than other types of distortions in this application, such as the decentering distortion, the thin prism
distortion, etc. Based on the images taken by the camera, the radial distortion of this camera is of the
barrel type, with a negative distortion constant equal to −8.3042 × 10−7 in pixels.
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Figure 3. The verification of the evaluation for the measurement system with gyroscope.

The position evaluation of the lane marks is a practical example, for instance, of the lane departure
warning system of vehicles [15–17]. Figure 4 shows the downscaled simulation scenario for the position
evaluation of the lane marks, while the geometry of the platform is also illustrated in Figure 4b. In this
example, m1 = m2 = 0. There are four cases used to verify the feasibility of the proposed approach.
They are the conditions as follows: (a) ψ = 0.0◦, θ = 0.0◦, φ = 0.0◦; (b) ψ = 10.0◦, θ = 0.0◦, φ = 0.0◦;
(c) ψ = 0.0◦, θ = 10.0◦, φ = 0.0◦; (d) ψ = 10.0◦, θ = 10.0◦, φ = 15.0◦, respectively. The nonzero Euler
angles simulate the situations in which the position evaluations of the landmarks are on the road if
there are misalignments for the attitudes of the camera equipped in a vehicle. Figure 5 shows the
pictures taken by the camera for these four different cases. We can pick out the specified points as in
Figure 4b with their corresponding pixel indices in the pictures after some adequate image processes.
Table 1 lists the values of the corresponding pixel index, or Px and Py values, of the assigned lane marks
in these four different pictures. The axes defined in the pixel coordinate conform to those defined in
images. For instance, the definitions of y-axes in these different coordinates coincide with each other
but in opposite directions in real space, because of the pinhole effect. Therefore, the directions of the
x-axis and y-axis are, respectively, rightward and downward in pictures conventionally, but rightward
and upward in film coordinate with front view. Figure 6 sketches the position evaluation results of
the simulations in the case studies. The solid lines and the dashed lines stand for the exact positions
and the evaluated positions of the assigned lane marks, respectively. The evaluated positions of those
marks are all in the arithmetic progressions, and can be solved by numerical methods recursively.
These results show that the proposed approach can evaluate the positions of specified collinear objects,
even though there is a slight misalignment of the attitude for the camera. However, there are still
errors between the exact positions and the evaluated ones. The errors may come from the accuracy of
the camera geometry, the aspherical lens of camera, the accuracy of the pixel indexes chosen in the
result pictures, etc.

The accuracy of the position evaluations depends on the mapped-on positions of the pixels
of objects. The vehicle vibrations from rough roads, and the external image disturbances from ill
environment such as rain, light, shadow, etc., are indeed the key factors which affect the recognition
accuracy. In practice, the effects of vehicle vibrations are relatively small because of the shock absorbers
on the vehicle. A camera stabilizer could be equipped for the sake of capturing a high quality image if
the vehicle vibrations are tremendous. The effects of the image disturbances from the environment are
one of the most significant issues. Some image process may overcome the image noise and disturbance
problems such as medium filter, vector median filter, vector directional filter, adaptive median filter,
adaptive nearest neighbor filter, etc.
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Figure 4. The downscaled simulations for the position evaluation of the lane marks. (a) The scenario 
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Figure 5. The result pictures of the 4 scenarios as (a) 0.0=ψ , 0.0=θ , 0.0=φ ; (b) 0.10=ψ , 
0.0=θ , 0.0=φ ; (c) 0.0=ψ , 0.10=θ , 0.0=φ ; (d) 0.10=ψ , 0.10=θ , 0.15=φ . 
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Table 1. 
xP  and 

yP  values of the assigned 10 lane marks in four different pictures of the 4 

scenarios. 

Mark A B C D E F G H I J 

(a) xP  191 223 246 263 276 571 539 514 497 484 
yP  501 470 448 430 416 509 476 452 434 419 

(b) xP  301 334 360 377 389 666 638 618 602 590 
yP  495 465 441 425 411 511 475 450 432 418 

(c) xP  194 227 249 266 279 565 534 511 496 481 
yP  403 370 344 327 313 413 378 351 333 318 

(d) xP  334 356 374 385 394 691 653 626 606 590 
yP  427 387 356 334 317 344 316 296 283 269 

4. Conclusions 

This paper presents an approach to evaluate the positions of objects by utilizing a single 
camera. An image can provide the information of the objects captured on the CCD chip cells. For 
instance, a pixel can produce two equations and an additional variable. Besides, some variables for 
the camera are fixed. If the objects are in regular geometry, a limited amount of pixel information 
can form enough equations to solve the position evaluation problems via the coordinate 
transformation. The properties of the CCD array serve as the main reference dimensions for the 
evaluation of the positions of objects in an image. The accuracy of the position evaluations depends 
on the pixels of objects picked out in an image, while it is sometimes not easy to discern the exact 
pixels of objects in the image. That is, if the image position of a point is not exact, the results which 
depend on its image coordinate will cause erroneousness in the position evaluations of objects. The 
image disturbances from vehicle vibrations or image background are also significant for the 
position evaluation accuracy. It is suggested to equip a camera stabilizer if the vibrations are serious, 
and to apply some image filter to reduce the effect of image disturbances before the position 
evaluation. The initial guess of the evaluated variables in (20) is crucial, and will affect the 
approached solutions. Future study can focus on the number of pixels selected in an image that can 
abate the effects of the initial guess in the position evaluations of objects. 
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Figure 6. The evaluation results of the 4 scenarios as (a) ψ = 0.0◦, θ = 0.0◦, φ = 0.0◦; (b) ψ = 10.0◦,
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Table 1. Px and Py values of the assigned 10 lane marks in four different pictures of the 4 scenarios.

Mark A B C D E F G H I J

(a)
Px 191 223 246 263 276 571 539 514 497 484
Py 501 470 448 430 416 509 476 452 434 419

(b)
Px 301 334 360 377 389 666 638 618 602 590
Py 495 465 441 425 411 511 475 450 432 418

(c)
Px 194 227 249 266 279 565 534 511 496 481
Py 403 370 344 327 313 413 378 351 333 318

(d)
Px 334 356 374 385 394 691 653 626 606 590
Py 427 387 356 334 317 344 316 296 283 269

4. Conclusions

This paper presents an approach to evaluate the positions of objects by utilizing a single camera.
An image can provide the information of the objects captured on the CCD chip cells. For instance, a
pixel can produce two equations and an additional variable. Besides, some variables for the camera are
fixed. If the objects are in regular geometry, a limited amount of pixel information can form enough
equations to solve the position evaluation problems via the coordinate transformation. The properties
of the CCD array serve as the main reference dimensions for the evaluation of the positions of objects
in an image. The accuracy of the position evaluations depends on the pixels of objects picked out in
an image, while it is sometimes not easy to discern the exact pixels of objects in the image. That is, if
the image position of a point is not exact, the results which depend on its image coordinate will cause
erroneousness in the position evaluations of objects. The image disturbances from vehicle vibrations
or image background are also significant for the position evaluation accuracy. It is suggested to equip
a camera stabilizer if the vibrations are serious, and to apply some image filter to reduce the effect of
image disturbances before the position evaluation. The initial guess of the evaluated variables in (20)
is crucial, and will affect the approached solutions. Future study can focus on the number of pixels
selected in an image that can abate the effects of the initial guess in the position evaluations of objects.
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