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Abstract: Thermal radiation is the only heat transfer mechanism with vacuum compatibility, and
it carries energy at light speed. These advantages are taken in this work to design an oven for
smart phone panels. The temperature of panels is acquired from a numerical method based on
finite-difference method. The space configuration of the heating lamps as well as the relative distance
between lamps and the panel are control factors for optimization. Full-factorial experiments are
employed to identify the main effects from each factor. A fitness function Q considering both
temperature uniformity of the panel and the heating capability of the ovens is proposed. The best
oven among 27 candidates is able to raise panel temperature significantly with high uniformity.

Keywords: finite-difference method; full-factorial experiment; optimization; oven; smart phone
panel; thermal radiation

1. Introduction

Radiative heat transfer is one of three mechanisms that transfer thermal energy, and it has
played a critical role in multiple applications for its uniqueness. Thermal radiation is composed
of photons or electromagnetic waves emitted from a subject at a temperature greater than zero
Kelvin [1]. When radiation is emitted from a relatively hot subject and absorbed by a colder one,
heat is transferred successfully. Unlike the other two heat transfer mechanisms (heat conduction
and convection), radiative heat transfer requires no intervening media. That is, thermal radiation
is the only way to transfer heat in a vacuum. Moreover, heat travels at light speed, and its flux
is positively correlated with the fourth power of absolute temperature. These characteristics have
facilitated applications using thermal radiation in energy harvesting, temperature sensing, heating
objects, and others [2–11].

Ovens simultaneously utilizing thermal radiation and convection are popular for material
processing and food cooking. Thermal radiation is able to provide a large amount of heat at light speed,
while the convection helps temperature uniformity via fluid motion [12–14]. The first oven using
thermal radiation (infrared mainly) was patented in 1958 [14]. Many following studies and innovations
further enhanced the performance and reduced their fabrication cost [15–18]. A recent example was
the oven developed by Pakkala [18]. However, an oven using dual heat transfer mechanisms may not
fit all heating process needs. The glass panels of smart phones are an example because their tolerance
to particles is close to zero. A vacuum environment is necessary, and purely using thermal radiation
becomes the only choice.
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The objective of this work is thus to design an oven for smart phone panels, and the oven
only employs thermal radiation for heating. The advantages of thermal radiation, namely vacuum
compatibility and prompt heat transfer, will be fully employed. On the other hand, intrinsic drawbacks
resulting from thermal radiation will be diminished. One drawback is the dependence of emission
intensity on orientation and direction [1]. The other is uneven emissive power received on the
panel surface. These drawbacks not only downgrade the temperature uniformity of the panel,
but reduce its ultimate temperature. Attempts to fix the abovementioned drawbacks are briefed
in the following. First, an oven containing heating lamps was numerically constructed in a model
based on finite-difference method. Second, three control factors for optimization were selected from
oven configurations. Three levels were then assigned to each factor such that the total number of oven
configurations for testing was 27. Third, the temperature distribution of a panel was investigated in
each test. A quantitative analysis was conducted through a full factorial experiment. Fourth, a fitness
function Q was defined and utilized for quantitative evaluation of the oven performance. Performance
and detailed configurations of the best oven among the 27 candidates is presented at the end of
the manuscript.

2. Design Strategy

Figure 1 shows a sketch of the proposed thermal radiation oven, which is cuboid in appearance.
It contains six lamps for heating a glass panel, as shown in subgraph I. The panel is placed horizontally
in the middle of oven. Three lamps are located above and below the panel. Three lamps at one side and
their counterparts at the other side are located symmetrically with respect to the panel. The middle
lamp is directly above the center line of the panel. The other two are side lamps, and their alignment
is symmetric with respect to the center plane defined by the centerlines of the middle lamp and the
panel. Actually, the centerline of the oven is also on the center plane. Subgraph II shows the top view
of the oven. The lateral dimensions of the panel are length L = 150 mm and width W = 70 mm. The gap
between the edge of the panel and the oven wall is 25 mm for four sides. l symbolizes the horizontal
distance between the center line of the side lamp and the edge of the panel. Subgraph III provides the
front view of the oven. The vertical distance from the oven top or bottom to the panel is H = 100 mm.
Since the panel is for a smart phone, the thickness is as little as 0.7 mm. The diameter of each lamp is
D = 25.4 mm. h1 is the vertical distance between the center of a side lamp and the panel surface, while
h2 is the vertical distance between the center of the middle lamp and the panel surface.

Table 1 lists three dimensionless control factors (l/L, h1/H, and h2/H) considered in modeling.
Each control factor has three levels, and these levels form an arithmetic series. For l/L, the first level
(Level 1) is zero. The center line of a side lamp is aligned along with a panel edge. As the level
increases, side lamps get close to the middle one. The other two control factors are the vertical distance
between lamps and the panel surface. h1/H and h2/H are the gaps associated with the side lamps
and the middle one, respectively. The gap is enlarged as the level increases. Once the levels of all
control factors were specified, the configuration of the oven was determined for testing. A test was
then conducted numerically by heating a panel inside. Results were the temperature distribution at the
top surface of the panel. Key quantitative data about the distribution was also recorded for analysis.
One was ∆Tmax, the maximum temperature difference within the surface, to reflect temperature
uniformity. Another was Tavg, the average temperature over the surface. This value should be higher
than panel’s initial temperature Tini after the panel is heated. Here, Tini = 25 ◦C was set to be the
same as the temperature in the surroundings Tsurr and the commonly employed “room temperature”.
The temperature difference (Tavg − Tini) can be viewed as the heating capability of an oven. For an
ideal oven, temperature uniformity of the heated panel should be high, and heating capability of the
oven should be as large as possible.
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Figure 1. Configuration sketch of the proposed thermal radiation oven. Subgraphs I, II, and III are the
oven from stereoscopic perspective view, top view, and front view, respectively.

Table 1. Three levels of control factors l/L, h1/H, and h2/H.

Factor Level 1 Level 2 Level 3

l/L 0 1/6 1/3
h1/H 0.2 0.5 0.8
h2/H 0.2 0.5 0.8

A dimensionless fitness function Q is defined below to quantitatively evaluate the performance of
the oven in all tests:

Q =

{
Tmax−Tini

Tmax
, ∆Tmax ≤ 20 ◦C

0, ∆Tmax > 20 ◦C
(1)

where Q was first determined by ∆Tmax. If it was larger than 20 ◦C, the temperature of the panel varied
too much for the oven to be considered in further performance evaluation. As a result, Q was set to
null. On the other hand, Q was calculated for the remaining tests with ∆Tmax ≤ 20 ◦C. The calculation
not only needs the denominator ∆Tmax, but the numerator Tavg − Tini. Q is expected to be a large
positive number for an ideal oven, which brings about uniform and high temperature within panels.

3. Numerical Model

3.1. Thermophysical Properties

Lamps at 500 ◦C were used as heating sources in our numerical model. The emissivity of their
surfaces was assumed to be unity like a blackbody (i.e., εL = 1). The emission was partly absorbed
by the glass (SiO2) panel. Its thermal conductivity k and diffusivity a at room temperature were
k = 1.51 W/m·K and a = 8.34 × 10−7 m2/s, respectively [19]. Their variations with temperature were
not considered in modeling because the amount was trivial. Clearly, the panel was not a good thermal
conductor. Its temperature uniformity became critical for an oven using only thermal radiation.

Figure 2 shows the optical constants (refractive index n and extinction coefficient κ) spectra of
SiO2 [20]. The spectral range was from 0.2 µm to 20 µm, covering most of the emission spectra. These
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constants are employed later for calculating the spectral absorptivity αλ. When the wavelength was
between 0.2 and 8 µm, the extinction coefficient κwas almost zero. The penetration depth δ = λ/4πκ
was much greater than the thickness of the panel (0.7 mm), such that the panel was semi-transparent to
emission. Conversely, as the wavelength λ was longer than 8 µm, the penetration depth δ was almost
null. The panel became opaque to incident radiation, and the energy was either absorbed or reflected.Inventions 2017, 2, x  4 of 12 
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Figure 2. Optical constants (n and κ) of glass (SiO2) and the penetration depth (δ) of a 0.7-mm-thick
glass panel at the spectral range 0.2 µm ≤ λ ≤ 25 µm.

Figure 3 shows the absorptivity spectrum of a panel. Each plot corresponds to an incident angle
θ = 0◦, 15◦, 30◦, or 60◦. Since the difference among plots is insignificant, the angular dependence
of radiative properties was omitted in our model. On the other hand, wavelength-dependence was
obvious such that a total radiative property was averaged over the spectral range. A spectral radiative
property could be numerically obtained by solving Maxwell’s equations with the aforementioned
optical constants [21]. The spectral absorptivity αλ was equal to the spectral emissivity ελ according
to Kirchhoff’s law [19]. The spectrum could therefore be employed to obtain the glass emissivity.
Note that the total absorptivity αtotal is not the same as total emissivity εtotal because temperature
was different for the panel and lamps. The wavelength λ = 8 µm serves as a demarcation point in the
figure. When λ < 8 µm, the glass absorptivity was low, but radiation power of the lamp was high,
indicating that the absorption effect of the glass was poor in this range. When λ > 8 µm, the glass
emissivity was high, indicating that the glass had high energy loss in this range. In particular, when
8 µm 5 λ 5 10 µm or 20 µm 5 λ 5 25 µm, the absorptivity attenuated significantly. The reason is the
curves n and κ intersected in these two ranges. The radiative properties of the panel switched between
those of a dielectric and a metal.

Figure 4 shows the spectral emissive power from a blackbody following Planck’s distribution [19].
The power at temperatures Tb = 500 ◦C and 300 ◦C were treated as the ideal radiation intensity of
lamp and glass, respectively. The peak values of the two radiation intensities were at λ = 3.75 µm and
λ = 5.06 µm, respectively, indicating that the main distribution range of radiation energy was around
the peak point. In addition, the combined effect of the demarcation point of absorptivity and the
spectral distribution of the black body radiation intensity was considered, and the blackbody radiative
energy ratio (Equation (2)) was used as the basis for selecting the average band for total absorptivity
and total emissivity of the glass.
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Fλ1,λ2(Tb) =
1
σT4

b

∫ λ2

λ1

C1

λ5(eC2/λTb − 1)
dλ (2)

where σ = 5.67 × 10−8 W/m2·K4 is the Stefan–Boltzmann constant, and C1 = 3.742 × 108 W·µm4/m2

and C2 = 1.439 × 104 µm·K are the first and second radiation constants, respectively. According to
calculation, when 0.2 µm 5 λ 5 8 µm, the radiative energy ratio is F0.2 µm,8 µm(500 ◦C) = 0.76. When
5 µm 5 λ 5 25 µm, the radiative energy ratio is F5 µm,25 µm(300 ◦C) = 0.71, indicating that the two
bands are representative.
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Figure 4. Spectra of spectral emissive power (Eλ) from a blackbody at temperature Tb = 300 ◦C and
Tb = 500 ◦C. The wavelength (λmax) corresponding to peak of each spectrum is also listed.

In summary, the total absorptivity αtotal = 0.17 in the band of 0.2 µm 5 λ 5 8 µm was selected
as representative of the glass absorptivity, and the total emissivity εtotal = 0.79 in the band of
5 µm 5 λ 5 25 µm was selected as representative of the glass emissivity.
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3.2. Finite-Difference Method

In the simulation analysis of temperature distribution, we used the finite difference method to
directly analyze the steady state of panels. By assuming that the oven is internal heat-free and that the
glass is homogeneous, isotropic, and stable, the energy equation can be reduced to Equation (3):

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = 0 (3)

Then, Equation (3) can be converted into to Equation (4) according to the central difference
method [22]. Equation (4) is then solved using the tridiagonal matrix algorithm for temperature T at
node (i, j, k) and others. Solving this equation takes multiple iterations, and the iteration number is
specified with superscript m. Iteration continues until temperature is converged at every node.

1
∆x2 Tm+1

i−1,j,k +
(

1
∆x2 +

1
∆y2 +

1
∆z2

)
Tm+1

i,j,k + 1
∆x2 Tm+1

i+1,j,k

= − 1
∆y2 (Tm

i,j−1,k + Tm
i,j+1,k)−

1
∆z2 (Tm

i,j,k−1 + Tm
i,j,k+1)

(4)

Four sides of the glass were assumed adiabatic as boundary conditions. Because the upper
and lower surfaces were irradiated directly by lamps, they absorbed part of irradiation with total
absorptivity αtotal. At the same time, the surfaces emitted thermal radiation to the environment with
the total emissivity εtotal. Boundary conditions for these surfaces therefore included these parts and
conduction as listed in Equation (5):

αtotalεLG − εtotalσ
[

T4(x, y, zup or down)− T4
surr

]
= −k

∂T(x, y, zup or down)

∂z
(5)

4. Results and Discussion

4.1. Program Convergence

Figure 5a displays the flow chart for the calculation program. Firstly, the infrared lamp, glass
thermophysical properties, environmental thermophysical properties. Level of each control factor
was assigned in the MATLAB program for obtaining temperature distribution of the panel by cyclic
calculation. Secondly, by repeated iterations, results were output when they satisfied the following
two criteria. Equation (6) is criterion one to assure the convergence of temperature at node (i, j, k).
The maximum relative error of temperature Ti,j,k obtained from two successive iterations is less than
0.1%. Criterion two is to prevent the program from infinite iterations. The maximum number of
iterations was set to 400,000. If the loop number does not provide temperature convergence, an error
message will pop out.

max

∣∣∣∣∣T
m+1
i,j,k − Tm

i,j,k

Tm
i,j,k

∣∣∣∣∣ ≤ 0.001 (6)

Figure 5b chooses one of 27 combinations to make a grid convergence test. The control factors
of this oven were l/L = 0, h1/H = 0.5, and h2/H = 0.5, and the grid sizes for the test were ∆y = 1.75,
3.5, 7, and 14 mm, respectively. The upper and lower subgraphs show the convergence of the average
temperature Tavg and the maximum temperature difference ∆Tmax with the iteration number m,
respectively. Results showed that the results of the previous four mesh sizes were all convergent when
the number of iteration times m was about 300,000. In addition, the average temperature Tavg was
consistent with the maximum temperature difference ∆Tmax when the size of the grid was ∆y ≤ 7 mm.
To ensure convergence and consider the spatial temperature distribution resolution, the grid was set as
∆y = 1.75 mm.
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4.2. Temperature Distribution

Figure 6 shows the temperature distribution of the panel surface based on Table 2. Subgraphs (a),
(b), and (c) represent the temperature distribution when the control factor l/L was 0, 1/6, and 1/3,
respectively. Each subgraph contains nine (3 × 3) temperature figures. The darkest and lightest colors
correspond to 100 ◦C and 200 ◦C, respectively. Each row has the same control factor h1/H, and the
three rows correspond to h1/H = 0.2, 0.5, and 0.8, respectively. Each column has the same number
of h2/H, and the three columns from left to right correspond to h2/H = 0.2, 0.5, and 0.8, respectively.
Each temperature distribution corresponding to the control factor is also marked blue in the upper-left
corner, and the highest temperature Tmax, the lowest temperature Tmin, and the average temperature
Tavg are marked in green in the lower-left corner.

In Figure 6a, when h1/H = h2/H = 0.2 (the temperature distribution in the lower-left corner of
the figure), the glass had the highest average temperature (Tavg = 170 ◦C), because all the lamps were
close enough to the glass surface that the panel was effectively heated. In contrast, the temperature
distribution in the upper-right corner (h1/H = h2/H = 0.8) showed the lowest average temperature
(Tavg = 99.6 ◦C) when all the lamps were far away from the glass. However, once the lamp was near the
panel, the heat was concentrated below the lamps and the heat diffusion capacity of the glass is very
low, forming a partial high temperature, such as the high temperature occurring under the central lamp
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in the third column (h2/H = 0.2), and the first line (h1/H = 0) showing the high temperature below
the edge lamp. So, the compromise scheme is to improve the height of the lamp to h1/H = h2/H = 0.5,
and the temperature distribution is shown in the second rows and second columns. In this figure,
the temperature not only increased, but the distribution was also relatively uniform, indicating that
the heat radiation energy emitted by all lamps was more evenly irradiated on the panel surface.
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Table 2. Average temperature Tavg (◦C), maximum temperature difference ∆Tmax (◦C), and fitness
function Q in all tests. Each test used an oven configuration specified with levels in the same row.

Test l/L (Level) h1/H (Level) h2/H (Level) Tavg ∆Tmax Q

1 1 1 1 170.2 40.9 0
2 1 1 2 149.1 61.2 0
3 1 1 3 134.9 82.5 0
4 1 2 1 151.0 73.0 0
5 1 2 2 130.3 10.6 9.93
6 1 2 3 115.4 18.4 4.91
7 1 3 1 137.3 93.2 0
8 1 3 2 115.7 29.1 0
9 1 3 3 99.6 7.7 9.69
10 2 1 1 201.5 34.8 0
11 2 1 2 185.1 47.2 0
12 2 1 3 174.4 61.1 0
13 2 2 1 164.6 84.4 0
14 2 2 2 146.5 27.3 0
15 2 2 3 133.5 11.2 9.69
16 2 3 1 144.2 97.9 0
17 2 3 2 123.9 36.7 0
18 2 3 3 108.8 16.7 5.02
19 3 1 1 199.4 138.5 0
20 3 1 2 187.8 98.3 0
21 3 1 3 155.4 89.2 0
22 3 2 1 169.3 115.0 0
23 3 2 2 153.4 63.4 0
24 3 2 3 141.6 78.0 0
25 3 3 1 148.0 106.5 0
26 3 3 2 128.9 47.8 0
27 3 3 3 114.5 29.3 0

Figure 6b is the counterpart of Figure 6a. The difference is only that side lamps shrank to the
center so that l/L = 1/6. In addition to finding the same result as Figure 6a, we could clearly see the
effect of the two side lamps. The first effect was that the heating range of side lamp was also retracted,
and the high-temperature region was concentrated in the center of the glass. For example, the central
temperature distribution figure (h1/H = h2/H = 0.5) has a large pattern of high temperature in the center.
The second effect was that the average temperature was also increased, so when h1/H = h2/H = 0.2,
the maximum average temperature could even reach 201.5 ◦C. The third effect was that the temperature
at the edge of the glass was also increased. The main reason is that the side lamps shrank, and more
heat could be absorbed by the edge of the glass.

Figure 6c shows that the effect of the side lamps was more obvious, the highest temperature and
the average temperature of the glass increased, which could reduce the temperature drop caused by
increasing the distance between the lamps and the glass. For example, the average temperature of the
first row third line (h1/H = h2/H = 0.8) increased to 114.5 ◦C, but the three lamps were too close to the
glass, which made the heat concentrated in the middle of the glass line. This concentration caused the
highest and lowest temperatures to be at the center and edge, respectively, so the temperature difference
became larger. For example, in the first row of the third line (h1/H = h2/H = 0.2), the temperature
difference could reach 138.5 ◦C, which is unacceptable for an oven.

4.3. Main Effects and Fitness Function

Figure 7 shows the main effects of each control factor to make a comprehensive comparison.
The red line and the blue line represent the trend of the variation of control factors with the level of
Tavg and ∆Tmax, respectively. The numbers in the figure show the control factor’s effect, illustrating its
calculation method: the Tavg value of l/L at Level 1 was 108.7, meaning the average value of Tavg in
the l/L in line number 1 in Table 2. The results show that Tavg increased by 20 ◦C when the level of l/L
rose from Level 1 to Level 2, but the ∆Tmax only increased by 0.1 ◦C. When the level of l/L increased to



Inventions 2018, 3, 36 10 of 12

Level 3, the variation of Tavg was not significant (<2 ◦C), but the ∆Tmax obviously increased (>38 ◦C).
This indicates that a moderate reduction in the distance between lamps could obviously increase Tavg

without ∆Tmax of the panel, but further decrease of the distance between lamps would not only yield a
minor increase the average temperature, but lead to a sharp rise in the temperature difference. The best
level of l/L was therefore l/L = 1/6 (Level 2). In terms of h1/H and h2/H performance, it was found
that Tavg decreased monotonically when their levels increased. ∆Tmax decreased obviously when
the Level 1 was raised to Level 2, but ∆Tmax changed little when it continued to increase to Level 3.
This indicates that increasing the distance between the lamps and the glass is helpful to reduce the
temperature difference, but will also decrease the average temperature. The best level of h1/H and
h2/H was therefore h1/H = h2/H = 0.5 (Level 2).
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However, when l/L was 1/6 and h1/H = h2/H = 0.5, the figure in the center of Figure 6b shows
that ∆Tmax was larger than 20 ◦C, so the combination l/L = 0 and h1/H = h2/H = 0.5 should be taken
into account. Its temperature distribution figure shows more uniformity and the Tavg was not very low.
So, the value of fitness function Q for each combination was calculated and listed for analysis below.

Table 2 lists the 27 combinations of control factors l/L, h1/H, and h2/. Furthermore, the Tavg and
∆Tmax of panel and fitness function Q for each combination are shown in the table. It was found that
the highest and lowest Tavg were in Test 10 (201.5 ◦C) and Test 9 (99.6 ◦C), respectively. The highest
and lowest ∆Tmax were in Test 19 (138.5 ◦C) and Test 9 (7.7 ◦C), respectively. The highest and lowest
fitness function Q were in Test 5 (9.93) and Test 25 (1.15), respectively. Obviously, the number is
quite discrete, so the effect of each oven was quite different. In addition, Test 5 which was treated
as the choice of optimal combinations had the highest Q. So, the optimal design level was l/L = 0
and h1/H = h2/H = 0.5.

5. Conclusions

This work proposes and successively optimizes an oven utilizing radiative heat transfer as the
single heat mechanism for smart phone panels. The temperature distribution of the glass panel was
modeled based on the finite-difference method. The spatial configuration of six heating lamps as well
as their relative distance with respect to the glass panel gave three control factors for optimization.
Results showed that a well-tuned lamp configuration was able to increase the average temperature of
the panel without seriously deteriorating temperature uniformity. On the other hand, enlarging the
gap between lamps and panel benefited temperature uniformity but reduced the heating capability
of the oven. Among 27 candidates, the oven with l = 0 mm, h1 = 50 mm, and h2 = 50 mm performed
the best with fitness function Q = 9.93. This work has given a preliminary but systematic way of
developing a thermal radiation oven. A comprehensive study taking into account more practical issues
than this work will be followed up soon.
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Nomenclature

a thermal diffusivity, m/s2

C1 first radiation constant, 3.742 × 108 W µm4/m2

C2 second radiation constant, 1.439 × 104 µm·K
D diameter of infrared lamp, m
E emissive power, W/m2

Fλ1,λ2 fraction of the total emission in a wavelength interval λ1 5 λ 5 λ2

G irradiation, W/m2

H height, m

h1
vertical distance between the upper/lower side of oven wall and panel top/bottom
surface, m

h2 vertical distance between center of the middle lamp and panel, m
k thermal conductivity, W/m·K
L length of glass panel
l lateral distance between center of a side lamp and the closest edge of glass panel, m
Q fitness function
T temperature, K
W width of panel, m
x, y, z Cartesian coordinate system
Superscript
m number of iterations
Subscripts
avg average
b blackbody
down bottom surface of panel
ini initial temperature
i,j,k incidence dummy index for x, y, and z
L heating lamp
max maximum
min minimum
surr surrounding
total total radiative property
up top surface of panel
Greek symbols
α absorptivity
∆ difference
δ penetration depth, m
ε emissivity
θ incident angle, degree
κ extinction coefficient
λ wavelength, m
σ Stefan–Boltzmann constant, 5.67×10-8 W/m2·K4

Abbreviations
CFD computational fluid dynamics
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