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Abstract: One-way clutches have been proposed for vehicle alternators. The clutch can play an
important role in reducing vibrations of the vehicle engine accessory system, but the severe vibrations
of the clutch subsystem limit its stability and durability. This paper investigates the nonlinear
vibrations of a one-way clutch between the accessory pulley and the alternator shaft. The one-way
clutch is modelled as a discontinuous stiffness system, and the simplified model is analyzed using
discontinuous transform to determine the periodic, primary resonance and the sub and super
harmonic resonance solutions. The typical system model is numerically solved and the spectrum
and phase plots are characterized. The results give a big picture of and insights into the nonlinear
vibration features of one-way clutch system. A relevant US patent is pending.

Keywords: vehicle alternator; engine system; front-end accessory; belt-pulley system; one-way
clutch; nonlinear dynamics

1. Introduction

Vehicle engine front-end accessory drive systems are widely used in passenger vehicles and
heavy-duty trucks. Using a single belt, engine power is delivered from the crankshaft to a variety
of accessories such as the air conditioner, alternator, power steering, water pump among others.
Crankshaft torque pulsations from the cylinder combustion in the engine, and dynamic accessory
torques could excite severe rotational vibrations of the subsystems [1–3]. The periodic firing of the
engine cylinders causes the crankshaft to have periodic motion superimposed on a steady angular
velocity. This periodic motion is transferred to various engine accessories. As the engine speed
increases, the frequency of crankshaft pulses increases, causing belt tension drop and belt slip on
the pulley. The alternator, with its very large moment of inertia, is most susceptible to dynamic
tension fluctuations; hence, there is a need to find ways to reduce the steady-state peak tension
drop across it. To address the issues of vibration, one-way clutch pulleys have been developed and
used in vehicle alternators [4–9]. With the aim of detaching the alternator from the rest accessory
subsystem during high speed transients and to reduce the transmission of torsional vibrations from
the internal combustion engine to the engine accessories, one-way clutches have been used more and
more frequently to decouple the alternator system and reduce the system’s vibrations. The one-way
clutches with wrap springs have been introduced into the generator to allow the high inertia element
to overrun the system when the pulley is decelerating.

To avoid the impact generated during system engagements, the wrap spring one-way clutch, also
called over-running alternator de-coupler (OAD), as shown in Figure 1 was used. It has a torsional
wrap spring-damper that connects the pulley to the outer ring of the clutch [4–8]. In wrap-spring
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clutches, a helical spring, typically wound with square-cross-section wire, is used. The torsion spring
also acts as a dampening mechanism which greatly reduces the belt vibration.
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numerically and used fast Fourier transform to derive the natural frequency of the nonlinear 
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of dynamical system numerically. They also studied the natural frequencies of the system by using 
the Galerkin method [12]. Zhu and Parker established a model of the accessory system with two 
pulleys having a one-way clutch, and the dynamical system was analyzed by using the harmonic 
balance method, with the dynamical properties characterized in terms of spring stiffness, excitation 
amplitude, and moment inertia of pulleys [13]. Zeng and Shangguan established a model of the 
accessory system, with three pulleys having a one-way clutch, which consists of a driving pulley, a 
driven pulley and a tensioner. The dynamical system is analyzed numerically by using the Gear 
method, with the dynamical properties being characterized and optimized in terms of clutch spring 
stiffness, excitation amplitude and moment inertia of pulleys [14]. In-vehicle experimental tests are a 
significant way to investigate the vibrations of alternator pulleys. An experimental procedure, 
including proper selection of parameters, measures and sensors, to evaluate the potential vibrations 
of each alternator pulley is proposed by Michelotti, Pastorelli et al. [15]. The existing research 
characterizes many linear and nonlinear vibration properties of one-way clutch for many specific 
cases. There has been a lack of overall understanding of global characteristics of the strong nonlinear 
vibrations of one-way clutch system. For practicing accessory drive designers in the 
automotive/heavy vehicle industries, the natural frequencies and dynamic response are of utmost 
interest. Predicting the system’s dynamic behavior in the design stage is important because the 
changes are difficult to accomplish once prototypes are built. This requires a comprehensive model 
of the one-way clutch to characterize the system’s properties, particularly all kinds of resonances. In 
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The application of the one-way clutch has a strong influence on the entire system’s dynamic
behavior. Under certain circumstances, the unique features of the one-way clutch allow the belt spans
to experience large transverse vibrations or the clutch to have larger torsional vibrations. There are
many research studies dedicated to the vibration analysis of a one-way clutch. To accurately predict
the entire system’s dynamic behavior, the motions of the one-way clutch need to be considered in
the models. This results in a strong nonlinear system due to the special stiffness discontinuous
property of the one-way clutch. Balaji and Mockensturm established a mathematical model of
accessory system with seven pulleys with a one-way clutch, and the piece-wise linear system is
numerically solved for specific cases using the Runge-Kutta method [10]. Ding and Zu solved a
similar model numerically and used fast Fourier transform to derive the natural frequency of the
nonlinear vibration [11]. For the similar model, Ding and Hu used two different approaches: (a) The
nontrivial solutions of viscoelastic model; and (b) the iterative solution, to determine the nontrivial
equilibriums of dynamical system numerically. They also studied the natural frequencies of the system
by using the Galerkin method [12]. Zhu and Parker established a model of the accessory system
with two pulleys having a one-way clutch, and the dynamical system was analyzed by using the
harmonic balance method, with the dynamical properties characterized in terms of spring stiffness,
excitation amplitude, and moment inertia of pulleys [13]. Zeng and Shangguan established a model
of the accessory system, with three pulleys having a one-way clutch, which consists of a driving
pulley, a driven pulley and a tensioner. The dynamical system is analyzed numerically by using the
Gear method, with the dynamical properties being characterized and optimized in terms of clutch
spring stiffness, excitation amplitude and moment inertia of pulleys [14]. In-vehicle experimental tests
are a significant way to investigate the vibrations of alternator pulleys. An experimental procedure,
including proper selection of parameters, measures and sensors, to evaluate the potential vibrations of
each alternator pulley is proposed by Michelotti, Pastorelli et al. [15]. The existing research characterizes
many linear and nonlinear vibration properties of one-way clutch for many specific cases. There has
been a lack of overall understanding of global characteristics of the strong nonlinear vibrations of
one-way clutch system. For practicing accessory drive designers in the automotive/heavy vehicle
industries, the natural frequencies and dynamic response are of utmost interest. Predicting the system’s
dynamic behavior in the design stage is important because the changes are difficult to accomplish once
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prototypes are built. This requires a comprehensive model of the one-way clutch to characterize the
system’s properties, particularly all kinds of resonances. In this paper, the functional principles of the
one-way clutch will be theoretically investigated and explained while the comprehensive resonances
features will be reported. The analytical results clearly show that there exist primary, subharmonic,
and superharmonic resonances. The numerical analysis illustrated the detailed cases. This study offers
some insights for the product design into how to pinpoint and avoid varied resonance cases.

2. Mathematical Model

Based on the real system of the wrap-spring one-way clutch [4–13], the model is given as follows.
When the rotations of the wrap-spring ends, for which the pulley rotation exceeds the accessory shaft
rotation, then the clutch is engaged. Power transmission takes place from the driving to the driven
pulley. For the alternate case where accessory rotation is less than pulley rotation, the wrap-spring
diameter decreases and the clutch disengages; no torque is transmitted. A theoretical model of one-way
clutch on a two-pulley system is shown in Figure 2. The driving pulley represents the crankshaft,
and its motion is specified as harmonic oscillation. In vehicle applications, engine firing pulsations
induce periodic fluctuations in crankshaft speed at the firing frequency. The driven pulley was
connected to the accessory. The one-way clutch is integrated between the accessory pulley and the
alternator shaft. The mathematical model of the system is given by the following equations:{

Jp
..
θp + cp

.
θp + kpθp + g

(
θp − θa

)
= M cos ωt

Ja
..
θa + ca

.
θa + kaθa + g

(
θa − θp

)
= 0

(1)

in which: θp and θa are the vibration angle of driven pulley and alternator shaft, respectively; Jp and
Ja are the moment of inertia of driven pulley and alternator shaft, respectively; cp and kp are the
damping and stiffness constants associated with driven pulley, respectively; kp = 2Kbrp

2, and ca and
ka are the damping and stiffness constants associated with the rotor of alternator, respectively. M and
ω are respectively the amplitude and frequency of excitation acted on driven pulley due to engine
firing excitation. The torque transmitted between the accessory pulley and alternator shaft is given
as follows,

g
(
θp − θa

)
=

{
kd
(
θp − θa

)
, θp > θa

0, θp > θa
(2)
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The equation described by Equation (1) has been studied numerically and theoretically under
particular conditions [13].

Generally, Equation (1) represents a strong nonlinear system. Consider the simplest case, θp ≥ θa;
the system is linear and the squares of the natural frequencies are derived as
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ω2
21,22 = (

k′11
Jp

+
k′22
Ja

)/2∓

√√√√(( k′11
Jp

+
k′22
Ja

)2

− 4
(

k′11k′22
Jp Ja

−
k′12k′21

Jp Ja

))
/2 (3)

in which k′11 = kp + kd, k′12 = kd = k′21 and k′22 = ka + kd. Furthermore, letting kd = 0,
which deteriorates to the natural frequencies of two independent systems: The accessory system
and the uncoupled alternator. For the case with both θp ≥ θa and θp ≤ θa, the system exhibits a
nonlinear feature.

Consider the case in which the driven pulley mode and alternator shaft mode motion can be
decoupled, and we just discuss driven pulley mode, then Equation (1) can be approximated by

Jp
..
θp + cp

.
θp + kpθp + kd

(
θp − θa

)
= M cos ωt, θp ≥ θa

Jp
..
θp + cp

.
θp + kpθp = M cos ωt, θp ≤ θa

(4)

By using the approach given in References [16,17], a comprehensive analytical solution is
systematically derived through the discontinuous transformation, and the results are given in
next section.

3. Theoretical Analysis

Closed form analytical solutions are of great significance in configuring the overall vibration
characteristics. The problem described by Equation (4) is identical to the harmonic force excited
by the unsymmetrical piecewise-linear spring-damping system. Because the non-linearities in this
problem cannot be assumed to be small, a general analytical solution, by only using conventional
methods such as the perturbation method, is not feasible. By using the discontinuous transformation
method [16,17], a far-from resonance solution, nearly a primary resonance solution, a super-harmonic
resonance solution and a sub-harmonic resonance solution are systematically derived as follows:

3.1. Free Vibration (under Unit Initial Condition)

θp =
ω0

2ω1
cos ω1t +

(
1− ω0

2ω1

)
cos(ω2t− β0) +

1
π

∞
∑

n=1

sin nα0 cos(ω1 + nω0)t + cos(ω1 − nω0)t
n

− ω1
πω2

∞
∑

n=1

sin nα0 cos[(ω1 + nω0)t + β0] + cos[(ω2 − nω0)t + β0]

n

(5)

in which ω1 =
√

kp/Jp, ω2 =
√
(kp + kd)/Jp, ω0 = 2ω1ω2/(ω1 + ω2), α0 = πω0/(2ω1),

β0 = π(1−ω2/ω1)/2.

3.2. Far-From Resonance Solutions

θp =
M
(
ω2

2 −ω2
1
)

π Jp
(
ω2

1 −ω2
)(

ω2
2 −ω2

) + M
(
ω2

1 + ω2
2 − 2ω2)

2Jp
(
ω2

1 −ω2
)(

ω2
2 −ω2

) sin ωt

+
2F
(
ω2

2 −ω2
1
)

π Jp
(
ω2

1 −ω2
)(

ω2
2 −ω2

) ∞
∑

n=1

cos 2nωt
(2n + 1)(2n− 1)

+
1
2
[A1 sin ω1t + A2 sin(ω2t + β0)]

+
A1

π

∞
∑

n=1,3,5

cos(ω1 − nω)t− cos(ω1 + nω)t
n

− A2

π

∞
∑

n=1,3,5

cos[(ω2 − nω)t + β0]− cos[(ω1 + nω)t + β0]

n

(6)

in which β0 = −πω2/ω, A1 = Mω/
[

Jpω1
(
ω2 −ω2

1
)]

, A2 = −Mω/
[

Jpω2
(
ω2 −ω2

2
)]

.
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3.3. Near-Primary Resonance Solutions

θp =

[
2M

(ω2
2 −ω2

1)Jp(2∆ + 1)
+

3M

4ω2 Jp(2∆ + 1)2

]
sin ωt−

π Jp

2ω2 Jp(2∆ + 1)
cos ωt

+
M

πω2 Jp(2∆ + 1)

∞
∑

n=1,3,5

cos(n− 1)ωt− cos(n + 1)ωt
n

− M(ωt− π)

πω2 Jp(2∆ + 1)

∞
∑

n=1,3,5

sin(n− 1)ωt + sin(n + 1)ωt
n

(7)

where ∆ =
(
ω2

1 −ω2)/(ω2
2 −ω2

1
)
.

3.4. Super-Harmonic Resonance Solutions

θp =
M
(
2n2ω2 −ω2 −ω2

1
)

Jp(n2 − 1)2
ω4

sin ωt +
2M
(
(ω2

2 −ω2
1
)

π Jp(n2 − 1)2(
ω2

1 − n2ω2
)
ω2

cos ωt

−
2M
(
(ω2

2 −ω2
1
)

π Jp(n2 − 1)2(
ω2

1 − n2ω2
)
ω2

cos nωt, n = 2, 3, 4, · · ·
(8)

3.5. Sub-Harmonic Resonance Solutions

For the case of ω2 � ω1, it can be derived out that the approximate solution in the proximity of
sub-harmonic resonant frequency is:

θp =
4lM

π2 Jpω1(l2 − 1)(ω− lω1)

∞

∑
n=1,3,5

cos
[
(n+1)ωt

l

]
− cos

[
(n− 1)ωt

l

]
n

, l = 2, 4, 6, · · · (9)

Figure 3 illustrates a typical result of the response amplitude as a function of the excitation
frequency ration. The curve in Figure 3 exhibits a series of resonant peaks including the 1/2th and
1/3th order superharmonic resonance, 2nd and 3rd order subharmonic resonance as well as the
primary resonance. It is noted that in existing research, certain experiments [9,15,18] were conducted
and compared with preceding linear vibration theory of a one-way spring clutch. This paper proposed
an advanced nonlinear vibration theory of the one-way clutch which encompasses the linear cases,
and as such, it is consistent with all existing experimental results.
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4. Numerical Analysis

In this section, the numerical analysis of a typical one-way clutch system, characterized by
Equation (1), is presented. Table 1 shows the parameters for the typical system. The frequency,
ω0, is considered as the natural frequency for the linear single degree of freedom system when the

accessory is not equipped with one-way clutch, and ω0 =
√

kp/
(

Jp + Ja
)
. Corresponding to the

case of the linear system which is mentioned in Section 2, the dimensionless natural frequencies are
Ω1 = ω1/ω0 = 0.987 and Ω2 = ω2/ω0 = 6.931 for the values in Table 1. These two dimensionless
natural frequencies could be the criterion to evaluate how the system works under different conditions.

Table 1. Parameters for typical cases.

Radius of Driven Pulley 0.0286 (m)
Radius of crankshaft 0.04 m

Driven Pulley Moment of Inertia 0.0016 (kgm2)
Alternator Moment of Inertia 0.0050 (kgm2)

Modal damping ratio 5%
Belt stiffness 250 kN/m

Clutch spring stiffness 50–1500 Nm/rad
Excitation amplitude 0.001 rad

Preload 2.3 Nm

To conduct the numerical analysis of the dynamic model with the above parameters using
MATLAB, the discontinuous stiffness nonlinearity which was indicated by Equation (2) can be
efficiently approximated as a continuous function. A smoothed function is used to approximate
the discontinuous stiffness nonlinearity g

(
θp − θa

)
.

g(δθ) =
1
2

Kd[1 + tanh(εδθ)]δθ (10)

in which δθ = θp − θa, and the ε is the smooth constant which is usually a large positive number,
for instance, ε = 10, 000 [13]. The clutch torque is approximated by a hyperbolic tangent function
as shown in Figure 4. What we want the approximated function to be is a proportional function,
with the slope being Kd when δθ ≥ 0 and being 0 when δθ ≤ 0. As shown by the results in Figure 4,
the approximation is obviously not accurate when ε = 10 because the curve deviates from the desired
trajectory, and the satisfied approximation is likely to be obtained for large ε > 100. This is because
the results of ε = 100 and ε = 10, 000 look to have overlapped each other in the figure. The actual
effects of different values of ε will be further investigated when conducting the frequency analysis by
employing these values below.
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From numerical investigation, we can estimate the effects of the approximations with a different
smooth constant, ε, for frequency analysis of the system as shown in Figure 5. In this case, Ω is the
ratio of excitation frequency and natural frequency of the system.
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From investigation we found that the approximation is compromised in numerical analysis
with ε = 1000 because the trajectory is not only discontinuous and disorderly, but also violate the
natural frequencies we derived above. An acceptable approximation is attained by using ε = 5000.
The approximation is well accomplished by using ε = 10, 000, the curve is continuous, and we can
clearly see the peaks of resonance around Ω1 and Ω2. Thus, a value ε > 10, 000 is employed when
conducting the following numerical analysis.

In the engine front-end accessory system, the excitation frequency is the engine firing frequency
which changes in a wide range. The root mean square (r.m.s.) of dynamic amplitude of the relative
pulley-accessory rotation, δθ − δθmean, versus excitation frequency, for different values of damping
ratios (ξ = 3%, 5% and 8%), are calculated and the results are shown in Figure 6 for the parameters
listed in Table 1.
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The frequency response for ξ = 8% shows that the behavior can be considered as linear.
For ξ = 3% and 5%, non-linear phenomena appear. It indicates that the system is sensitive to the
excitation amplitude. As we can see, there are two resonant regions within the two natural frequencies.
The system is linear when the clutch is engaged. The non-linearity occurs near the second resonant
region due to the decoupling of the clutch where the spring between pulley and accessory shaft is
inactive. The pulley and accessory shaft rotate in opposite directions near the second resonant region.
This behavior is called out-of-phase motion, and it tends to clutch disengagement. The amplitude
is higher near the first resonant region because of the in-phase motion of pulley and accessory shaft.
This means that the pulley and accessory shaft move in the same direction and are excited more directly
by the excitation from crankshaft vibration.

In this section, we employ a hyperbolic tangent function to approximate the discontinuous
nonlinearity of the system when conducting numerical analysis. Actual effects of different parameters,
smooth constant ε and damping ratio ξ, on the numerical analysis of the mathematical model
are investigated.

The phase plot and time response are shown in Figures 7 and 8, respectively, by employing
a sample excitation frequency of ω = 150 rad/s. The relative displacement δθ, which is θp − θa,
was considered as an important value to investigate the response of the dynamic system.
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The corresponding periodogram power spectral density estimate of δθ and waterfall plot of the
spectra of δθ are shown in Figures 9 and 10.
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5. Conclusions

In this work, nonlinear vibrations of one-way clutch in vehicle alternator system were modeled
and analyzed. A special attention was paid to comprehensive resonance properties of the nonlinear
system with bilinear stiffness non-smooth features. A two degrees-of-freedom lumped parameters
model was employed to account for torsional vibrations of the accessory system with one-way clutch
and the model was then simplified as a one degree-of-freedom system so as to derive a comprehensive
closed form solution. A non-smooth transformation was used to analyze the simplified model and
derive the solution. Our theoretical analysis has shown that the mathematical model is capable
of predicting a full range of dynamic responses properties including the primary, subharmonic and
superharmonic resonances. Numerical analysis was conducted for the two degrees-of-freedom lumped
parameters model, which pinpointed the true dominant nonlinear vibration modes. A global analysis
showed different scenarios that allowed an in-depth and general understanding of the one-way clutch
dynamics to be developed, whereas the numerical analysis helped to elaborate the detailed vibration
patterns related to specific parameters and define critical behaviors of the system. It is noted that
conventionally modeling and analyzing of torsional vibrations of engine front-end accessory drive
system have treated real global system to be a multiple degree-of-freedom system with sufficient
accuracy. As such, the lumped parameter system model used in this paper is accurate enough for the
application of alternator clutch subsystem.
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