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Abstract: The paper deals with the problem of forming spectra of non-periodic signals in real-time.
The disadvantage of the existing approaches is the dependence of the formed spectrum on time as a
parameter and the possibility of obtaining the signal spectrum in its original definition only for a fixed
time, as well as a high amount of computation. In this regard, a computationally efficient algorithm
is proposed for forming a spectrum of non-periodic functions on a time interval that is constantly
updated with a given sampling step, which ensures the invariance of the generated spectrum to
time as a parameter. The algorithm is based on obtaining differential equations that are based on
generalized differentiation with respect to a variable time interval of spectral components and their
solving while using the fourth-order Runge–Kutta method. A numerical simulation of the developed
algorithm was performed using the MATLAB mathematical modeling package using the example
of a substantially non-linear function. Based on the practical results, a comparative evaluation of
computational and time complexity has been performed in solving the problem. Based on the obtained
experimental results, it is concluded that it is possible to effectively use the proposed algorithm to
calculate the current spectrum of non-periodic functions with the requirement of small sampling
steps, i.e., when calculating the spectrum in real-time.

Keywords: current time interval; differential equations; generalized differentiation; Runge–Kutta
method; spectrum of non-periodic functions; spectrum generation algorithm

1. Introduction

The analysis of the spectra of current physical processes in real time is one of the most important
tasks of signal processing [1–3]. This problem is relevant, not only in the analysis of various control
and communication systems, but it also finds wide application in navigation systems, seismology,
astronomy, and others.

Presently, this problem is solved either by calculating the Fourier transform for function f(t) with
a variable upper limit of integration [4–6], or the classical Fourier-series expansion [7–9] on a time
interval Ti (Ti = Ti+1 + ∆T; i = 1, 2, . . . ) constantly updated with a given sampling interval ∆T:

f (t) =
a0

2
+
∞∑

k=1

akcosk
2π
Ti

t + bksink
2π
Ti

t, (1)
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ak =
2
Ti

∫ Ti

0
f (t)cosk

2π
Ti

dt,

bk =
2
Ti

∫ Ti

0
f (t)sink

2π
Ti

dt, k = 0, 1, 2, . . . .

In the first case, the spectrum that formed depends on time as a parameter, thus obtaining the
signal spectrum in its classical definition (that is, independent of time) is possible only at a fixed t. In the
second case, there is a large amount of computational costs [9] to reduce which methods of discrete
transformation, such as Fast Fourier Transform (FFT) [2,10,11], are widely used. The amount of FFT
calculations that require ~Nlog2N multiplication operations [10,12] is somewhat reduced as compared
to traditional conversion. This does not radically change the situation, since, when calculating the
current spectrum, this number of multiplication operations must be performed at each new time step
with a constantly increasing time interval. Such shortcomings of both approaches create significant
difficulties in their practical use.

2. Theoretical Assumptions

2.1. Task Definition

In this regard, there is a need to develop such an algorithm for calculating the spectrum of
non-periodic functions on a time interval that was updated with a given sampling interval, which,
on one hand, does not require large computational costs and, on the other hand, provides the formation
of the spectrum in its original–classical, definition (1).

2.2. Task Solution

For the construction of this algorithm, the variations ∆ak and ∆bk of spectral coefficients ak and bk
that are caused by a change in the time interval Ti by the value ∆T are preliminarily found. Using the
equation of generalized differentiation by variable Ti (Leibniz formula), we have for the corresponding
spectral components:

∂ak
∂Ti

= − 2
T2

i

∫ Ti
0 f (t)cosk 2π

Ti
tdt

+ 2
Ti

(
2πk
T2

i

∫ Ti
0 f (t)tsink 2π

Ti
tdt + f (Ti)cosk 2π

Ti
Ti

)
,

∂bk
∂Ti

= − 2
T2

i

∫ Ti
0 f (t)sink 2π

Ti
tdt

+ 2
Ti

(
−

2πk
T2

i

∫ Ti
0 f (t)tcosk 2π

Ti
tdt + f (Ti)sink 2π

Ti
Ti

)
.

(2)

Considering further that

∂ak
∂k

= −
2
Ti

2π
Ti

∫ Ti

0
f (t)tsink

2π
Ti

tdt,

∂bk
∂k

=
2
Ti

2π
Ti

∫ Ti

0
f (t)tcosk

2π
Ti

tdt,

(3)

Equation (2) is written as

∂ak
∂Ti

= −
1
Ti

ak −
k
Ti

∂ak
∂k

+
2
Ti

f (Ti),

∂bk
∂Ti

= −
1
Ti

bk −
k
Ti

∂bk
∂k

.
(4)



Inventions 2020, 5, 15 3 of 11

Since k changes discretely in increments of one, an approximation is possible ∂ak
∂k = ak − ak−1,

∂bk
∂k = bk − bk−1, which allows us to finally write the differential equations that describe the dynamics of

changes in spectral coefficients, as follows:

∂ak
∂Ti

= −
1
Ti
· [(1 + k)ak − kak−1] +

2
Ti

f (Ti),

∂bk
∂Ti

= −
1
Ti
· [(1 + k)bk − kbk−1].

(5)

The search for the solution of differential Equation (5) under known initial conditions leads to the
formulation of the Cauchy problem, where the initial conditions are: T0 = Ti−1 is the end time of the
previous time interval, a0 = ai−1 and b0 = bi−1 are the coefficients that are calculated on the previous
interval according to the Equation (1).

In practice, the most common method for solving ordinary differential equations y = q(x, y)
is the fourth-order Runge–Kutta method [13–15]. In this case, each step calculates the value of the
function q(x, y) of the right side four times; each value y[i + 1] is obtained based on the previous one,
according to the equation:

y[i + 1] = y[i] + ∆y[i], (6)

where
∆y[i]=h/6(K1+2K2+2K3+K4);

K1 = q(x[i], y[i]);

K2 = q(x[i] + h/2, y[i] + hK1/2);

K3 = q(x[i] + h/2, y[i] + hK2/2);

K4 = q(x[i] + h, y[i] + hK3);

h is the size of the grid step according to the argument x.
When calculation spectral coefficients ak and bk in Equation (5) in this scheme, the argument x[i] is

the variable Ti, the argument y[i] is the coefficients ak[i], bk[i]. Consequently, the calculation procedure
takes the form:

Ka1 = −
(1 + k)ak[i] − kak−1[i]

Ti
+

2
Ti

f (Ti),

Ka2 = −
(1 + k)(ak[i] + h K1a

2 ) − k(ak−1[i] + h K1a
2 )

Ti +
h
2

+
2

Ti + h/2
f (Ti + h/2),

Ka3 = −
(1 + k)(ak[i] + h K2a

2 ) − k(ak−1[i] + h K2a
2 )

Ti + h/2
+

2
Ti + h/2

f (Ti+h/2),

Ka4=−
(1+k)(ak[i]+hK3a) − k(ak−1[i]+hK3a)

Ti+h
+

2
Ti+h

f (Ti+h),

∆ak[i] = h/6(Ka1 + 2Ka2 + 2Ka3 + Ka4),

ak[i + 1] = ak[i] + ∆ak[i];

Kb1 = −
(1 + k)bk[i] − kbk−1[i]

Ti
,

Kb2 = −
(1 + k)(bk[i] + h K1b

2 ) − k(bk−1[i] + h K1b
2 )

Ti + h/2
,

(7)
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Kb3 = −
(1 + k)(bk[i] + h K2b

2 ) − k(bk−1[i] + h K2b
2 )

Ti + h/2
,

Kb4 = −
(1 + k)(bk[i] + hK3b) − k(bk−1[i] + hK3b)

Ti + h
,

∆bk[i] = h/6(Kb1 + 2Kb2 + 2Kb3 + Kb4),

bk[i + 1] = bk[i] + ∆bk[i].

The accuracy of the solution of which is largely influenced by the value of the step h of the grid,
a numerical estimate of the accuracy of determining the dynamics of changes in the spectral coefficients,
given below, was made to analyse the computational efficiency of the obtained equations.

3. Results

3.1. Experimental Design

The numerical simulation of the developed algorithm was carried out using the MATLAB (The
MathWorks, Inc., USA) mathematical modeling package, which allows for additionally estimating
the time costs for the solution. To assess the accuracy of the proposed algorithms, three essentially
nonlinear functions were considered as a test function:

f (t) =
sin(t)

1 + 2cos22t
· e−0.015t;

f2(t)=sin2t+2e0.05t;

f3(t) = (0.5t + cos(t)) · e−0.2t.

(8)

The spectra of this function were constructed for time intervals T0 = 50.1 s and T0 = 51.0 s both
using classical integral transformations (1) to form the reference spectra and while using the proposed
algorithm for the sampling interval ∆T = 0.001 s. The grid step h for the Runge–Kutta algorithm was
assumed to be equal h = 0.0001.

The evaluation of the comparative results of modeling the values of spectral coefficients ak[i]
and bk[i] obtained using the integral transformation (1) and the proposed algorithm was carried out
according to the following criteria:

• By graphical representation of calculated coefficients and reconstructed signals;
• On the Central Processing Unit (CPU) time during calculations;
• Relative performance, defined as the percentage of the difference between the time estimates of

calculations performed using the classical (see Equation 1) and the developed algorithms, and the
time of calculation using the classical algorithm; and,

• Based of the standard deviations analysis of the spectral coefficients values ak[i] and bk[i] calculated
by the above algorithm from the reference values akr[i] and bkr[i] calculated by the integral
transformation (1).

The estimation of the CPU operation time during the calculations was made on the personal
computer Intel Core i5-2500 3.30 GHz.

3.2. Numerical Modelling

Figure 1 shows the graphical results of modeling the spectral coefficients akr[i] and bkr[i] (solid
line), ak[i] and bk[i] (dotted line) that were obtained using the traditional and the proposed algorithms
for the function f 1(t) in the time interval T0 = 50.1 s, respectively.
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Figure 1. Graphic representation of the spectral coefficients ak (a) and bk (b) for the f1(t) function in 
time interval T0 = 50.1 s and sampling interval ΔT = 0.001 s. 

The CPU operating time in the calculation using the integral transformation (1) was 1.7188 s, in 
the calculation according to the proposed algorithm −0.0625 s. The relative performance of the 
proposed algorithm in this case amounted to 96.4%. The mean square deviations of the spectral 
coefficients were: for the coefficients ak[i] s1 = 0.0020; and, for the coefficients bk[i] s2 = 0.0018. 

The time signals for the f1(t) function that was reconstructed from the received spectra are shown 
in Figure 2. Here, a solid line shows the restored signal for 50.1 s, as calculated from the spectrum 
that was obtained using the integral transformation (1), and dotted line from the spectrum obtained 
using the proposed algorithm. 

 
Figure 2. Recovered f1(t) function signals for the time interval T0 = 50.1 s. 

At this time interval (for 102 time samples of the current spectrum formation), the coincidence of 
the spectral coefficients ak[i] and bk[i] calculated by the proposed algorithm with the reference values 
akr[i] and bkr[i] calculated by the integral transformation (1), as well as the restored signals, is almost 
complete, as can be seen from the simulation results. At the same time, the time spent on the process 
of calculating the current spectrum in the proposed algorithm decreased by more than 96% when 
compared to the classical one. 

Figure 1. Graphic representation of the spectral coefficients ak (a) and bk (b) for the f 1(t) function in
time interval T0 = 50.1 s and sampling interval ∆T = 0.001 s.

The CPU operating time in the calculation using the integral transformation (1) was 1.7188 s, in the
calculation according to the proposed algorithm −0.0625 s. The relative performance of the proposed
algorithm in this case amounted to 96.4%. The mean square deviations of the spectral coefficients were:
for the coefficients ak[i] s1 = 0.0020; and, for the coefficients bk[i] s2 = 0.0018.

The time signals for the f 1(t) function that was reconstructed from the received spectra are shown
in Figure 2. Here, a solid line shows the restored signal for 50.1 s, as calculated from the spectrum that
was obtained using the integral transformation (1), and dotted line from the spectrum obtained using
the proposed algorithm.
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Figure 2. Recovered f 1(t) function signals for the time interval T0 = 50.1 s.

At this time interval (for 102 time samples of the current spectrum formation), the coincidence of
the spectral coefficients ak[i] and bk[i] calculated by the proposed algorithm with the reference values
akr[i] and bkr[i] calculated by the integral transformation (1), as well as the restored signals, is almost
complete, as can be seen from the simulation results. At the same time, the time spent on the process
of calculating the current spectrum in the proposed algorithm decreased by more than 96% when
compared to the classical one.
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Figure 3 shows the graphical results of modeling the spectral coefficients akr[i] and bkr[i] (solid
line), ak[i] and bk[i] (dotted line) that were obtained using the traditional and the proposed algorithms
for the function f 1(t) in the time interval T0 = 51.0 s, respectively.
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Figure 3. Graphic representation of the spectral coefficients ak (a) and bk (b) for the f 1(t) function in
time interval T0 = 51.0 s and sampling interval ∆T = 0.001 s.

The CPU operating time in the calculation using the integral transformation (1) was 1.8750 s, in the
calculation according to the proposed algorithm −0.3594 s. The relative performance of the proposed
algorithm in this case amounted to 80.8%. The mean square deviations of the spectral coefficients were:
for the coefficients ak[i] s1 = 0.0147; and, for the coefficients bk[i] s2 = 0.0089.

The time signals for the f 1(t) function reconstructed from the obtained spectra are shown in
Figure 4. Here, a solid line shows the recovered signal for 51.0 s, calculated from the spectrum obtained
using the integral transformation (1), and dotted line from the spectrum that was obtained using the
proposed algorithm.
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At this time interval T0 = 51.0 s (for 103 time samples of the current spectrum formation), the
coincidence of the spectral coefficients that were calculated by the given algorithm with the reference
ones, as well as the reconstructed signals, has somewhat deteriorated when compared to the previous
time interval, which is due to the accumulation of step-by-step calculation errors in the proposed
recurrent algorithm. However, nevertheless, the time spent on the process of calculating the current
spectrum in the proposed algorithm was still more than 80% less as compared to the classical one.

Since the proposed algorithm shows fairly stable results for small time intervals, the results of
numerical simulation for the f 2(t) and f 3(t) functions are immediately presented for the time interval T0

= 51.0 s, after which a generalized evaluation of the results for all three functions for the time intervals
T0 = 50.1 s and T0 = 51.0 s.

Figure 5 shows the graphical results of modeling the spectral coefficients akr[i] and bkr[i] (solid
line), ak[i] and bk[i] (dotted line) that were obtained using the traditional and the proposed algorithms
for the function f 2(t) in the time interval T0 = 51.0 s, respectively.
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Figure 5. Graphic representation of the spectral coefficients ak (a) and bk (b) for the f 1(t) function in
time interval T0 = 51.0 s and sampling interval ∆T = 0.001 s.

The CPU operating time in the calculation using the integral transformation (1) was 1.5938 s, in the
calculation according to the proposed algorithm −0.3281 s. The relative performance of the proposed
algorithm in this case amounted to 79.4%. The mean square deviations of the spectral coefficients were:
for the coefficients ak[i] s1 = 0.0006512; and, for the coefficients bk[i] s2 = 0.00082342.

Figure 6 shows the time signals for the f 2(t) function that was reconstructed from the obtained
spectra. Here, a solid line shows the recovered signal for 51.0 s, which was calculated from the spectrum
obtained using the integral transformation (1), and the dotted line from the spectrum that was obtained
using the proposed algorithm.
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Figure 7 shows the graphical results of modeling the spectral coefficients akr[i] and bkr[i] (solid
line), ak[i] and bk[i] (dotted line) obtained while using the traditional and the proposed algorithms for
the function f 3(t) in the time interval T0 = 51.0 s, respectively.
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Figure 7. Graphic representation of the spectral coefficients ak (a) and bk (b) for the f 2(t) function in
time interval T0 = 51.0 s and sampling interval ∆T = 0.001 s.

The CPU operating time in the calculation using the integral transformation (1) was 1.6250 s, in the
calculation according to the proposed algorithm 0.3281 s. The relative performance of the proposed
algorithm in this case amounted to 79.8%. The mean square deviations of the spectral coefficients were:
for the coefficients ak[i] s1 = 0.0172; and, for the coefficients bk[i] s2 = 0.0342.

Figure 8 shows the time signals for the f 3(t) function that was reconstructed from the obtained
spectra. Here, a solid line shows the recovered signal for 51.0 s, as calculated from the spectrum that
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was obtained using the integral transformation (1), and dotted line from the spectrum obtained using
the proposed algorithm.
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As follows from the results, for all three functions, the performance estimates have 
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3.3. Evaluation of Numerical Modelling

Table 1 provides a generalized estimate of the results of numerical simulation for functions f 1(t),
f 2(t), and f 3(t) at time intervals T0 = 50.1 s and T0 = 51.0 s.

Table 1. Generalized evaluation of the results of numerical modeling.

Time
Interval T0 = 50.1 s T0 = 51.0 s

Evaluation
Criterion

Standard
Deviation
for ak[i]

Standard
Deviation
for bk[i]

Performance,
%

Standard
Deviation
for ak[i]

Standard
Deviation
for bk[i]

Performance,
%

f 1(t) 0.0020 0.0018 96.4 0.0147 0.0089 80.8
f 2(t) 0.000066253 0.0004806 97.0 0.0006512 0.00082342 79.4
f 3(t) 0.0020 0.0107 98.8 0.0172 0.0342 79.8

As follows from the results, for all three functions, the performance estimates have approximately
the same values—the relative performance of the process of calculating the current spectrum for the
time interval T0 = 50.1 s is more than 96%, for T0 = 51.0 s about 80%.

In order to assess the effect of the value of the time interval on the growth of errors that were caused
by the accumulation of incremental error calculation in the proposed algorithm, for the considered
nonlinear functions are constructed based on changes (Figure 9) in the values of standard deviation
values of the spectral coefficients ak[i] (dashed line) and bk[i] (solid line) recovered signals in the interval
from 50.1 to 60.0 s.
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Figure 9. Dependences of changes in the mean square deviations of spectral coefficients ak[i] and bk[i]
for f 1(t) (a), f 2(t) (b), and f 3(t) (c) functions in the range from 50.1 s to 60 s.

From the analysis of these dependencies, we can conclude that the temporal nature of the mismatch
of spectral coefficients depends on the type of function being modeled and the nature of its nonlinearity.
Accordingly, for the function f 1(t) deviation of the recovered spectrum above the value of 0.005 is
observed at 52 s, for the function f 2(t) at 59 s, for the function f 3(t) at 51 s. In this case, for 51 s (Figure 8),
the recovered signal generally shows a slight deviation, but fluctuations that occur at the spectrum
boundaries lead to an increase in the standard deviations of the spectral coefficients.

4. Conclusions

The results of numerical modeling allow for drawing a conclusion regarding the possibility
of effective practical use of the proposed approach to the calculation of the current spectrum of
non-periodic functions under the requirement of small sampling steps (i.e., when calculating the
spectrum in real time). In comparison with the most effective method of spectral characteristics
formation—FFT, the developed algorithms have the following advantages. Firstly, their number
of multiplication and addition operations at each step is constant and it does not depend on the
increasing number N of time samples of the signal, being determined by the step of its sampling
and the current value T of the increasing time interval and, secondly, this number of operations
is incommensurably small when compared to the constantly increasing number of FFT operations
Nlog2N at the current interval.

The implementation of the developed algorithm is particularly relevant in systems of measurement
and the spectral processing of broadband signals in real time–telecommunications, navigation,
and others.
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