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Abstract: The recent advancement in computational capabilities and deployment of smart meters
have caused non-intrusive load monitoring to revive itself as one of the promising techniques of energy
monitoring. Toward effective energy monitoring, this paper presents a non-invasive load inference
approach assisted by feature selection and ensemble machine learning techniques. For evaluation
and validation purposes of the proposed approach, one of the major residential load elements having
solid potential toward energy efficiency applications, i.e., water heating, is considered. Moreover,
to realize the real-life deployment, digital simulations are carried out on low-sampling real-world
load measurements: New Zealand GREEN Grid Database. For said purposes, MATLAB and Python
(Scikit-Learn) are used as simulation tools. The employed learning models, i.e., standalone and
ensemble, are trained on a single household’s load data and later tested rigorously on a set of diverse
households’ load data, to validate the generalization capability of the employed models. This paper
presents a comprehensive performance evaluation of the presented approach in the context of event
detection, feature selection, and learning models. Based on the presented study and corresponding
analysis of the results, it is concluded that the proposed approach generalizes well to the unseen
testing data and yields promising results in terms of non-invasive load inference.

Keywords: machine learning; neural networks; ensemble learning; load inference; event detection;
feature selection; water heating

1. Introduction

Energy monitoring is considered an integral part of the future smart power grid system. With an
increasing number of prosumers and microgrid systems, it is vital to monitor the energy consumption
effectively and predict the consumption behavior for the long-term stability of a power grid. In this
context, advanced metering infrastructure (AMI) plays a significant role by enabling the utilities not
only to monitor the energy consumption of customers [1] but also to offer numerous incentive-based
programs to consumers toward energy efficiency [2,3]. AMI is a closed loop where the feedback
regarding energy consumption to consumers can be broadly classified into direct and indirect feedback.
Direct feedback refers to real-time appliance/circuit level energy consumption information (segregated
energy monitoring), while indirect feedback relates to monthly bills (aggregated energy monitoring) [4].
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1.1. Motivation

Today the smart grid concept transforms the end-users from passive to active consumers, who can
play a significant role in energy efficiency [5]. However, without direct feedback, it is unrealistic to
expect consumers to play an effective role in a sustainable and efficient energy system [4]. As with
direct feedback, consumers are not only able to monitor their electricity consumption effectively but
also contribute to energy saving [4,6]. In this context, Martinez et al. [7] present a comprehensive
review of more than 60 studies regarding feedback mechanism and concluded that direct feedback
leads to more energy savings as opposed to indirect feedback. Therefore, towards energy saving
and successful development of the smart grid system, effective energy monitoring at the segregated
level, i.e., direct feedback, is inevitable. Segregated energy monitoring could not only contribute to
the stability of the grid but also facilitate numerous real-world applications in the context of energy
efficiency and conservation.

1.2. Literature Review

One of the techniques toward segregated energy monitoring is referred to as load disaggregation,
also known as energy disaggregation [8] or power disaggregation [9]. Load disaggregation refers to a
broad range of methodologies where the accumulated load profile is converted into a segregated one
using numerous techniques. Mostly, it can be classified into two categories, namely hardware methods
and software methods. The former is categorized into intrusive load monitoring (ILM) techniques and
smart appliances. Hardware methods are relatively simple to deploy, however, not widely used because
of constraints like scalability, reliability, interoperability, and high cost [10,11]. An alternative and
attractive load disaggregation technique is a software method commonly referred to as non-intrusive
load monitoring (NILM). The NILM process employs numerous pattern recognition techniques to
estimate the individual appliance/circuit operation state within the aggregated load data, i.e., acquired
from a single metering point [12]. Because of single-point measurements and its non-invasive nature,
NILM not only provides a cost-effective segregated energy monitoring solution but also address
consumers’ privacy concerns [13]. The NILM methodologies can be grouped into two categories:
event-based and eventless, in the context of working principles. Event-based NILM systems are
computationally more efficient compared to the eventless approach, as for the latter, all the samples of
the acquired load data are considered for inference [14]. An event-based NILM system comprises four
building blocks, namely data acquisition, event detection, feature extraction, and load classification.
Further details of the existing state of the art on NILM methodologies are presented in [15–17].

Data acquisition is a prerequisite of the NILM process that impacts the following stages in terms
of the selection of tools/methodologies as well as the type/number of appliances to be accurately
classified [6]. Numerous datasets have been collected at a different data granularity level and publicly
released. Some of the NILM datasets are Reference Energy Disaggregation Dataset (REDD) [18],
Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED) [19], UK Domestic
Appliance Level Electricity (UK-DALE) [20], GREEN Grid [21], and Pecan Street Inc. Dataport [22].
A recent trend revolves around high data granularity; consequently, most of the research is based
on high sampling NILM systems [23]. In this context, Guillén-García et al. [24] acquired voltage
and current measurements at 8 kHz of the sampling rate for electrical load identification using the
C-means algorithm. De Baets et al. [25] employed two distinct publicly available datasets that include
voltage/current measurements sampled at 30 kHz and 44 kHz respectively. Gupta et al. [26] proposed
a single point sensing approach for household electrical event detection and classification, where the
data acquisition system works in the range of 36–500 kHz. Moreover, Chang [27] proposed an
approach based on the wavelet transform of the time-frequency domain where the data granularity
is approximately 30 kHz. As high data granularity leads to transient features, consequently, it leads
to the inference of a greater number of appliances with higher accuracy [6,15]. However, the said
performance comes at a price of high cost and computational complexity due to the requirement of
additional high-end measurement devices [28]. Moreover, on social grounds, high data granularity also
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raises concerns regarding consumers’ privacy as their activities can be detected [29]. Most importantly,
high data granularity is not compatible with the existing metering infrastructure.

Recent advancements in computational capabilities significantly aided the NILM classification
methodologies. In this context, numerous techniques are adopted by the research community for the
NILM process, which include but are not limited to dynamic time wrapping [28,30], optimization [12,31],
machine learning [32–36], neural networks [25,37], and deep learning [38,39]. However, in the context
of NILM, supervised machine-learning models are more frequently used as compared to other
methodologies. For NILM classification, most of the existing research mainly focuses to employ the
learning models in a standalone configuration, where some research work presents a comparative
analysis of different independent learning models. For example, Azaza and Wallin [40] presented a
comparative performance evaluation of five different machine learning models, where the presented
study is based on a high data granularity of 30 kHz.

Based on the review of the existing NILM literature, it is observed that most of the research is
based on high data granularity. However, the existing metering infrastructure, e.g., revenue meter,
is generally not capable of high sampling data measurements, consequently, the high sampling NILM
systems are not a viable option for the existing metering infrastructure. Furthermore, load classification
in the NILM domain is mostly carried out using standalone machine learning models. However, in the
machine learning domain, “one size fits all” is not a case, consequently, standalone machine learning
models’ performance varies from case to case. In this context, ensemble learning, i.e., combining
different machine learning models to form a single optimal model, is a promising technique to balance
the performance of different standalone models. However, it is noted that very little research has been
done in terms of ensemble learning techniques in the context of NILM systems.

1.3. Contributions

To address the aforesaid limitations of the existing NILM literature, this research work proposes a
low complexity and low data granularity based non-invasive load inference approach for the existing
metering infrastructure. The proposed approach is assisted by ensemble learning techniques and
only relies on mean power as an input variable. Moreover, to realize the real-world applications,
the proposed approach is evaluated using one of the most significant and high-potential demand
response residential load elements, i.e., water heating. Further, in the context of NILM, categorical key
contributions of this research work are summarized as:

1. To realize the real-world implementation, the proposed approach is,

a. Thoroughly evaluated on real-world load measurements acquired at low data granularity
of 1/60 Hz, i.e., 1-min interval measurements;

b. Based on only a single input variable, i.e., mean power (in Watts).

2. Event Detection: As an extension of our previously proposed event detection algorithm [41],
a post-processing criterion is incorporated to further improve the event detection performance.
The extracted results are validated using an extensive sensitivity analysis.

3. Load Features: Four distinct load features are extracted for each detected event and further
analyzed using correlation-based feature selection methodology to identify the most significant
load features.

4. Classification: To facilitate the classification performance, this research work introduces two
diverse ensemble learning techniques, based on a combination of machine learning and artificial
neural network models, in the context of the NILM domain and comprehensive performance
evaluation and comparative analysis are presented.

5. A brief outlook in the context of real-world applications of the proposed approach is presented.

Overall, the proposed non-invasive inference approach for the residential water-heating circuit
is based on low sampling real-world load measurements and assisted by improved event detection,
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feature selection, and ensemble learning techniques, aiming to facilitate the real-world deployment of
NILM systems.

The rest of the paper is organized as follows: Section 2 presents the details of the system
formulations in terms of the problem statement, methodologies, and performance evaluation criteria.
Section 3 discusses the simulation studies carried out in this research work and the corresponding
analysis of the extracted results. Section 4 presents a brief outlook of the proposed approach. Finally,
Section 5 concludes this research paper.

2. System Formulation

This section describes the overall proposed system architecture presented in this paper, i.e.,
problem statement and research methodologies regarding data acquisition, event detection, feature
extraction, and classification toward NILM-based load inference.

2.1. Problem Statement

At a single metering point, the monitored time-series aggregated power load profile can be weighed
as an algebraic summation of m numbers of individual circuits’ power load profile, as presented
mathematically in (1).
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other miscellaneous circuits’ power load profiles that are not under consideration within the scope
of this research work. Within the scope of this paper, the main task is to infer the operating status
of the water-heating circuit with the only information of the main circuit, i.e., aggregated power
load. Water heating is not only one of the major load elements in the residential sector [42–44] but is
also a flexible/interruptible load element [45]. The said properties of the water-heating circuit make
it a high potential load toward numerous real-world energy efficiency applications, e.g., demand
response [44,46], power regulations [43], and peak shifting, and frequency response [47]. Consequently,
non-invasive inference of water-heating circuit is of utmost importance in the context of real-world
energy efficiency applications.

2.2. Methodology

An event-based low sampling NILM system, depicted in Figure 1, is employed in this research
work. It is worth noting that within the scope of this research the presented methodology is employed
for non-invasive inference of water-heating circuits, however, this can be further extended for the
non-invasive inference of other load elements; depending on the availability of load disaggregation
databases. Details of employed techniques at each stage/block presented in Figure 1 are explained below.

2.2.1. Data Acquisition and Preprocessing

For this research work, New Zealand (NZ) based electricity database, namely GREEN Grid
(https://reshare.ukdataservice.ac.uk/853334/) [21] is used. The recently released database is first of
its kind for New Zealand, where the data have been collected from 2014 to 2018 from a sample of
45 households, as part of the Renewable Energy and the Smart Grid (NZ GREEN Grid) project, a joint

https://reshare.ukdataservice.ac.uk/853334/
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venture of the University of Canterbury and the University of Otago, New Zealand. The NZ GREEN
Grid dataset contains a 1-min interval measurement of mean power (in watts) data for individual
circuits and main (total incoming power) circuit.Inventions 2020, 5, x FOR PEER REVIEW 5 of 20 
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As the acquired load data are based on real-world measurements, numerous measurement
uncertainties, e.g., noise, data spikes, and missing values are inevitable. Therefore, the acquired data
have been thoroughly pre-processed to take care of the said measurement uncertainties. Initially,
for simulation purposes, data are acquired from the timeframes that have consistent measurement
entries without any missing or error values. Further, the acquired raw data are re-arranged in a
more categorical (tabular) form for better visualization and validation for later stages. In terms of
eliminating the noise/data spikes that interfere with event detection, the acquired aggregated load
data are processed using the median filtering technique: a digital filtering technique that preserves the
edges while eliminating the undesirable noise/data spikes. A detailed explanation of median filtering
and its working phenomenon is presented in [48].

2.2.2. Event Detection

An event is defined as a transient portion within a signal when it deviates from the previous
steady-state and lasts until the next one [49]. The aggregated load power profile varies with each
transition in individual loads’ power profile. Event detection algorithms detect these changes in the
aggregated profile initiated by individual loads. So far, numerous event detection algorithms have
been proposed that can be broadly classified into three categories, namely expert heuristics, matched
filters, and probabilistic models [50].

This research work relies on an extended version of our recently proposed event detection algorithm
known as the mean absolute deviation-sliding window (MAD-SW) algorithm [41]. The MAD-SW
algorithm is extended by incorporating a post-processing step to further improve the event detection
performance. Table 1 presents a detailed description of the extended MAD-SW algorithm.
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Table 1. Event detection algorithm methodology.

MAD-SW

Input
Preprocessed aggregated load data, x
Process

1. Select sliding window width, ω
2. Initialize the filter having window width, ω, with the MAD value of input x

MAD = 1
N

∑N
i=1

∣∣∣xi − µx
∣∣∣

where,

µx = 1
N

∑N
i=1 xi

3. Using the sliding window concept and pre-selected window width,ω, compute iteratively the MAD value
4. Select a threshold value, δ, and compute the thresholding signal as

for i = length of x do
if MAD ≤ δ then

thresholding_signal(i) = 0
else

thresholding_signal(i) = 1
end if

end for

5. Use derivative to compute the edges and extract the corresponding starting and ending time instances of
the detected events

6. Post-processing

a. Ending time instance delay correction because of window width
b. Final event approval
c. Delay tolerance incorporation, i.e., the detected event is considered a true event if,

|tgound_truth − tdetected| ≤ ∆t
where, tground_truth, tdetected, and ∆t represent the ground-truth event starting time instance, detected
event starting time instance, and delay tolerance, respectively.

Output
Starting and Ending time instances of the detected events

The output of the MAD-SW algorithm in the form of starting and ending time indices (successive
ones) are linked together to acquire all the detected events (transient portions), within the aggregated
load power profile, for further processing according to the methodology presented in Figure 1.

2.2.3. Feature Extraction and Selection

The output of the event detection is merely an indication of transitions that occurred at different
time instances within the aggregated load and does not provide any information regarding explicit
circuits’ identification and corresponding status, i.e., turn-on or turn-off. To identify this, different load
features (also known as signatures) are extracted for each detected event, to be used as an input to
classification models. Features refer to the unique consumption pattern of a circuit and enable the
appropriate monitoring and classification of an explicit status of the given circuit from the aggregated
load profile.

In this research work, a feature set (F) comprising of four distinct load features based on statistical,
power, and geometrical features have been extracted. The proposed F is expressed in (3).

F =
{
SE, σ, Ppeak2peak, CDisp.

}
(3)
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SE, CDisp., σ, and Ppeak2peak represent the slope, coefficient of dispersion, standard deviation,
and peak-to-peak power magnitude of the detected events, mathematically given as in
(4)–(7), respectively.

SE =
PowerEvent_End − PowerEvent_Start

Time_InstanceEvent_End − Time_InstanceEvent_Start
(4)

CDisp. =
σ2

µ
(5)

σ =

√√√
1
N

N∑
i=1

(x i−µ)
2 (6)

Ppeak2peak = PowerEvent_End−PowerEvent_Start (7)

where µ and σ2 represent the mean and variance of the transient portion, i.e., event, given as in (8) and
(9), respectively.

µ =
1
N

N∑
i=1

xi (8)

σ2 =
1
N

N∑
i=1

(x i − µ)
2 (9)

Within the scope of this research work, the extracted load features are further evaluated using
feature selection methodology, i.e., correlation analysis, to identify the most significant load features for
further processing. Correlation analysis is employed to identify the highly correlated features within
the extracted feature set, F, as features with high correlation are linearly dependent, consequently,
having the same effect on target class in the context of classification. The employed methodology
will not only identify the most significant load features as an input to learning models for better
classification performance but also reduce the feature space dimensionality that plays a key role in
reducing algorithm complexity and training time.

2.2.4. Classification

The selection of classification models for a specific domain is a critical phase. A variety of factors
are involved when evaluating a classifier that includes but is not limited to features selection, training
set size, the dimensionality of the problem, and parameter tuning [51]. This research work aims to
introduce ensemble learning models for NILM classification. The ensemble learning [52] refers to a
range of methodologies that combine independent (base) learning models to generate one optimal
learning model/classifier for the given problem. It is mostly employed to improve the classification
performance and is considered a trustworthy methodology in the said context [53]. Ensemble learning
methodologies can be broadly classified into two categories, namely sequential and parallel ensemble
learners. In the former, the base-learners are sequentially generated, however, the latter refers to a
technique where the base-learners are generated in parallel. Both methodologies are employed in this
research work, where AdaBoost- and Voting-based classifiers are used in the context of sequential and
parallel ensemble techniques, respectively. The AdaBoost algorithm uses a weak base-learner to build
a strong learning model by adaptively adjusting the weights at each iteration [54]. The Voting classifier
merges several base-learners and the final prediction is based on a voting system, namely hard voting
or soft voting [55]. Hard voting refers to the majority voting, where soft voting is based on average
predicted probabilities.

Furthermore, for the employed sequential and parallel ensemble learners, the homogeneous
(employs single base-learner) and heterogeneous (employs diverse base-learners) structure, respectively,
are adopted. For said purposes, three independent and diverse supervised learning models including
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two machine learning models, i.e., logistic regression (LR) [56], decision trees (DT) [57], and one neural
network model, i.e., multi-layer perceptron-artificial neural network (MLP-ANN) [58], are used to
build the diverse ensemble learning models. Figure 2 graphically depicts the detailed methodologies
of the proposed ensemble learning models, employed in this research work.
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2.3. Performance Evaluation

For evaluation purposes, well-known performance metrics namely, f-score, recall, and precision
are used. F-score is a measure of a test’s accuracy and is defined as harmonic-mean of the recall and
precision, mathematically defined as in (10) [59].

F-Score =

(
Precision−1+Recall−1

2

)−1

= 2×
Precision×Recall
Precision + Recall

(10)

Recall is defined as the number of relevant items selected, where precision refers to the number
that selected items are relevant. Recall and precision are mathematically given as in (11) and (12),
respectively [59].

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

Accuracy is another performance metric used for the evaluation of classification models and is
defined as the fraction of predictions the model classifies correctly [60], given as in (13).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

The terminologies of TP, FP, FN, and TN represent true positive, false positive, false negative,
and true negative respectively, and are well defined in [35].
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3. Simulations and Results

Based on the presented research methodologies, comprehensive digital simulation studies have
been carried out using Core i7 (8th Generation) desktop PC having 32 GB RAM. Moreover, in terms of
simulation tools, MATLAB® R2018b and Python 3.6.7 (scikit-learn (https://github.com/scikit-learn/

scikit-learn) version 0.21.3 [55]) are used. The following subsections present the details of simulation
studies in terms of simulation parameters, extracted results, and corresponding analysis for each
building block of the research methodology presented in Figure 1.

3.1. Event Detection Results

For event detection simulation, 30 days of load measurements are acquired from a real-world
household of the NZ GREEN Grid database. To accommodate the diversity of consumption patterns
of different load elements, the acquired load data are taken from different months of a year. For event
detection simulation purposes, the details of the acquired load data and event detector parameters are
presented in Table 2.

Table 2. Load data and event detection attributes.

Household Data ID rf_01

Data Timeframe
(In 2014)

11–15 March; 11–13 April; 12–13 May
12–15 June; 14–15 July; 11–15 August

11–14 September; 11–15 October
Duration; No. of Data Samples 30 Days; 43,200

Threshold Value 150 W

Based on the attributes presented in Table 2, comprehensive simulations are carried out to assess
different input parameters on the performance of the event detection algorithm. Table 3 presents a
detailed performance evaluation of the event detection algorithm at different values of window width,
where the delay tolerance is fixed at 0, i.e., exact match.

Table 3. Performance evaluation in the context of window width.

Delay Tolerance (mins) 0
Window Width (Samples) 2 * 3 4 5 6

Total Detected Events 3651 3367 2853 2412 2005
True Positive 3058 3016 2495 2042 1639
False Positive 593 351 358 370 366

False Negative 651 698 1224 1684 2093
Precision % 83.76 89.58 87.45 84.66 81.75

Recall % 82.45 81.21 67.09 54.80 43.92
F-Score % 83.10 85.19 75.93 66.54 57.14

* Minimum two sample values are required to extract meaningful MAD values.

From Table 3, it is observed that MAD-SW performs optimally at a window width of 3 yieldings
to the results of around 81, 89, and 85 percent in terms of recall, precision, and f-score, respectively. It is
also observed that a continuous drop in all concerned performance metrics has been occurred with an
increase in window width. The observed decline in recall performance metric is due to the drastic
upsurge in false negative detection with an increase in window width. The same phenomenon was
observed in [41] for the load data of the Pecan Street Inc. Dataport [22] database.

Further, Table 4 presents MAD-SW performance evaluation and sensitivity analysis in terms
of delay tolerance “∆t” where the window width is kept constant at ω = 3 because of the optimal
performance of MAD-SW as shown in Table 3.

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
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Table 4. Performance evaluation in the context of delay tolerance.

Window Width (Samples) 3
Delay Tolerance (mins) 0 1 2 3 4

True Positive 3016 3208 3253 3286 3307
False Positive 351 159 114 81 60

False Negative 698 386 228 123 69
Precision (%) 89.58 95.28 96.61 97.59 98.22

Recall (%) 81.21 89.26 93.45 96.39 97.96
F-Score (%) 85.19 92.17 95.01 96.99 98.09

It is evident from Table 4 that the incorporation of ∆t significantly improves the performance
of the MAD-SW algorithm. As a consistent increase in true positive detection with an increase in
delay tolerance value is recorded, consequently, leading to a persistent increase in algorithms overall
performance. This determined that ∆t defines the event detector accuracy and is directly proportional
to the performance [61], however, an optimal value must be selected to minimize the tradeoff between
event detection performance and estimation of energy consumption at later stages. Hence, based on
the presented results in Table 4, ∆t = 2 is selected as an optimal value. For ∆t > 2, the event detection
f-score improvement is marginal, however, at a later stage larger ∆t will lead to higher error in the
estimated and actual energy consumption. Figure 3 depicts the overall performance trend of the event
detection algorithm in terms of ω and ∆t.
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Figure 3. Event detection performance results (a) window width, (b) delay tolerance (shaded region
represents the best results).

Based on the extracted results and the presented analysis, ω = 3 and ∆t = 2 are selected as the
optimal parameters for further event detection simulations. Table 5 presents different attributes of
diverse real-world households employed in this research work for non-invasive load inference of water
heating, along with the corresponding event detection results based on the optimal parameters for
event detection algorithm.
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Table 5. Training and testing household data attributes and event detection results.

Training Data Testing Data

Data ID rf_02 rf_02 rf_31 rf_36 rf_42
Data Timeframe 11–30 May 2014 1–10 July 2014 1–7 September 2016 21–27 June 2017 7–13 January 2017

No. of Days/Samples 20/28,800 10/14,400 7/10,080 7/10,800 7/10,800
Detected Events 1504 898 166 390 60

It is worth noting that all the selected (testing) households, presented in Table 5, possess mostly
different individual load circuits along with diverse consumption patterns. Even the similar load
circuits in different testing households have different installation configurations, e.g., household ID
rf_42 has a single circuit configured for laundry and freezer having a circuit label of “Laundry &
Freezer$4128” [62]. In contrast, household ID rf_36 has two dedicated circuits for the said having the
circuit labels of “Washing Machine$4146” and “Kitchen Appliances$4145” [62]. Likewise, household
ID rf_42 has a load circuit labeled as “Lighting (inc heat lamps)$4129” where household ID rf_36 has a
load circuit labeled as “Lighting$4149,” which potentially implies that the latter has no heat lamps.
A detailed layout of the individual circuits within the employed testing residential households are
depicted in Figure 4, where further details can be found in [62]. All these constraints lead to a
widely varied consumption pattern which is not only hard to predict precisely but also yield variable
inference performance.
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3.2. Feature Extraction and Selection Results

As per the methodology presented in Section 2.2.3, four distinct load features, as given in (3),
are extracted for each detected event of all households given in Table 5. The extracted load features
are further evaluated using correlation analysis to identify the most significant ones for accurate load
classification. Figure 5 presents the feature selection, i.e., correlation analysis, results for different
testing households’ data.
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It is evident from the results presented in Figure 5 that for all testing households the load features,
i.e., SE (Slope) and Ppeak2peak (P2P Power) are highly correlated to each other, i.e., ≥0.9. Similarly,
CDisp.(Coef. Disp.) and σ (St. Dev.) are highly correlated to each other with a correlation ≥0.83. Hence,
from the larger perspective of models’ performance, complexity, and computational need, the highly
correlated features are excluded and a new feature set, FInput, is formulated that will act as an input to
the models for classification purposes within the scope of this research work. The newly formulated
load feature set, FInput, is expressed as in (14).

FInput =
{
SE, CDisp.

}
(14)

3.3. Classification Results

For classification purposes, the methodologies discussed in Section 2.2.4 are employed and
comprehensive simulation studies are carried out on load data presented in Table 5. To further validate
the effectiveness of the proposed approach in terms of generalization capability of learning models,
four different households, as given in Table 5, are employed for evaluation purposes. It is worth
noting that the employed households for training and testing purposes of the learning models have
dedicated water-heating load circuits, however, the other individual circuits may vary in terms of
availability and installation configuration [62]. Initially, all employed models are evaluated using
k-fold cross-validation to validate their effectiveness toward unseen testing data. Later, all employed
learning models are trained on 20 days of load data from a single (training) household and rigorously
tested on a diverse set of testing households. The testing households also include the same household
as used for training purposes, however, the data acquired for testing purposes are entirely unseen
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for the training phase. In the given context, Table 6 presents the details of different learning models’
parameters adopted for the digital simulation within the scope of this research.

Table 6. Learning models’ parameters.

Models Parameter *

MLP-ANN activation = ‘relu’; solver = ‘sgd’; hidden_layer_size = (100)
DT criterion = ‘gini’; splitter = ‘best’

Voting Ensemble voting = ‘hard’
AdaBoost Ensemble N = 50; algorithm = ‘SAMME.R’

* Explanation and further details of the given parameters can be found in [55].

Based on the simulation studies, the extracted results in terms of individual circuit operation status
inference and overall performance are presented in Table 7. It is worth noting that in Table 7, WHON,
WHOFF, Misc.ON, Misc.OFF, P, R, and F represent water-heating circuit turn-on, water-heating circuit
turn-off, miscellaneous circuit turn-on, miscellaneous circuit turn-off, precision, recall, and f-score,
respectively. Moreover, CAb(x) and CV(x) represent the AdaBoost and Voting ensemble learning
models/classifiers, respectively.

Table 7. Circuit-level inference results (in percentages).

Standalone Models Ensemble Model
LR DT MLP-ANN CV(x) CAb(x)

ID Status P R F P R F P R F P R F P R F

rf_02

WHOFF 94 88 91 85 88 87 94 85 90 94 88 91 85 87 86
WHON 90 85 88 79 84 81 90 87 88 90 87 88 79 84 81

Misc.ON 91 94 93 90 86 88 92 94 93 92 94 93 90 86 88
Misc.OFF 93 97 95 93 91 92 91 97 94 93 97 95 92 90 91

Weighted Avg. 92 92 92 88 87 87 92 92 92 92 92 92 87 87 87

rf_31

WHOFF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WHON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Misc.ON 100 83 91 100 73 84 100 82 90 100 83 91 100 73 84
Misc.OFF 100 72 84 100 69 82 100 72 84 100 72 84 100 71 83

Weighted Avg. 100 80 88 100 72 83 100 79 88 100 80 88 100 72 84

rf_36

WHOFF 87 72 79 72 83 77 86 72 78 87 73 80 78 85 82
WHON 79 69 74 74 79 76 78 70 74 80 71 75 75 78 77

Misc.ON 72 82 77 77 72 75 72 81 76 73 82 77 77 74 76
Misc.OFF 74 88 81 78 64 70 74 87 80 75 88 81 82 74 78

Weighted Avg. 78 77 77 75 75 75 78 77 77 79 78 78 78 78 78

rf_42

WHOFF 71 100 83 38 100 56 71 100 83 71 100 83 38 100 56
WHON 83 100 91 56 100 71 83 100 91 83 100 91 56 100 71

Misc.ON 100 96 98 100 84 91 100 96 98 100 96 98 100 84 91
Misc.OFF 100 92 96 100 68 81 100 92 96 100 92 96 100 68 81

Weighted Avg. 96 95 95 91 80 82 96 95 95 96 95 95 91 80 82

As evident from the results presented in Table 7, all the employed learning models attained
promising performance for unseen testing data at circuit level inference. However, the DT model
relatively lags in performance compared to the others. It is also observed that household ID rf_31 makes
itself a prominent candidate in terms of water-heating circuit inference results, where all the employed
models yield zero inference results. However, it is worth noting that the achieved results do not
correspond to the worst performance of the employed models, as in reality there was no ground-truth
water-heating circuit activity for the given data acquisition timeframe of household ID rf_31.

The employed learning models are also evaluated in the context of individual households and
for the said purpose the accuracy performance metric, given in (13), is employed. The corresponding
results are presented in Table 8, where all the results are in percentages.
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Table 8. Household-level accuracy performance results (%).

Voting Based Ensemble AdaBoost Ensemble
Testing Households IDs LR DT MLP-ANN CV(x) DT CAb(x)

rf_02 92.09 87.41 91.87 92.42 87.41 87.08
rf_31 79.51 71.68 78.91 79.51 71.68 72.28
rf_36 77.43 74.87 77.17 78.20 74.87 77.94
rf_42 95 80 95 95 80 80

For the given testing households, the results presented in Table 8 are further depicted in Figure 6
to better visualize the performance comparison among different employed ensemble learners and their
respective standalone base-learner/s.
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As evident from the detailed results presented in Table 8 and performance comparison presented
in Figure 6, in most of the cases the ensemble learners attained higher accuracy performance compared
to their respective standalone base-learner/s. Except for a single case, where the AdaBoost ensemble
learner lags in performance compared to its respective base-learner, i.e., the DT model, however,
the performance lag is marginal, i.e., 0.33% only. Further, it is also observed that the accuracy
performance of all the learning models varies from house to house. This is expected because of diverse
set of testing households as well as the corresponding testing households’ data are entirely unseen in
the training phase of the learning models.

The employed learning models are also evaluated in terms of an entire set of diverse testing
households within the scope of this research work. In this context, Figure 7 (in the form of boxplot)
presents an overall accuracy performance of the employed learning models, i.e., ensemble learners vs.
respective standalone base-learners.
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The red horizontal line within the box in Figure 7 represents the median values. Similarly,
in Figure 7, the yellow and green dotted lines represent the median and minimum performance attained
by the employed ensemble learners. It is seen in Figure 7 that both ensemble learners attained better
overall accuracy performance compared to their respective standalone base-learner/s. As the AdaBoost
learner enhances the performance of the weak base-learner, i.e., the DT model, by attaining a median
accuracy performance improvement of 1.54%. On the other side, the voting ensemble model balances
out the individual shortcomings of its respective base-learner members, i.e., LR, DT, and MLP-ANN,
and attained a median accuracy performance improvement in a range of 0.17% to 8.53% compared to its
respective base-learner members. From the extracted results, seen in Figure 7 (Left Side), it is also noted
that the voting ensemble achieves a marginal improvement of 0.17% compared to one of its respective
members, i.e., the LR model. But it is worth noting that there is a probability that in the presence of the
best-performing member, the ensemble model does not lead to any performance improvement [63].
However, for the given problem, i.e., non-invasive load inference, both employed ensemble leaners,
i.e., homogeneous and heterogeneous, achieved classification performance improvement.

4. Outlook

In the context of real-world deployment, low data granularity based non-invasive load inference
technique is of utmost importance, as it can be extended to disaggregate the major residential load
elements, e.g., water heating, electric vehicles, air-conditioning units. More importantly, disaggregation
of these load elements can further facilitate the demand side management strategies as the corresponding
outcome in form of appliance or circuit level feedback will significantly facilitate the consumers to
effectively manage their loads’ operation. This could not only help the sustainable operation of
energy systems but also facilitate the consumers in terms of savings due to load shifting of their high
consumption load elements [64]. Non-invasive load inference can also facilitate the commercial and
industrial sectors, e.g., in the commercial sector, the proposed non-invasive load inference approach
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can play a significant role in terms of monitoring distinct load patterns (energy audit) without affecting
the individual vendors’ privacy. Moreover, the proposed approach facilitates the industrial sector not
only in terms of load monitoring, i.e., operation patterns, fault diagnosis, but also helps in terms of
potential load identification for demand response applications.

Further, in the context of system perspective, the authors of [65] presented a comprehensive
overview of NILM applications; exploring numerous NILM-assisted real-world applications including
but not limited to, homecare monitoring systems, appliance scheduling, energy audit, personalized
recommendation systems, demand response, and fault detection. The study broadly classified
numerous NILM applications into four categories, namely consumer-based applications, utility-based
applications, policy-based applications, and manufacturer-based applications [65]. Concisely,
the non-intrusive load inference approach has solid potential toward energy efficiency, and further
research particularly in the context of low data granularity and real-world applications will significantly
facilitate all the stakeholders including but not limited to utility providers, consumers, policymakers,
and manufacturers.

5. Conclusions

This paper proposed a non-invasive load inference approach for water-heating circuit using
ensemble machine learning methodologies. For the said purpose, an event-based NILM methodology,
assisted by correlation-based feature selection technique and diverse machine learning models,
is adopted, and comprehensive digital simulations are carried out on real-world low granularity (1-min
sampling rate, i.e., 1/60 Hz) load measurements: NZ GREEN Grid database.

In the context of event detection, the MAD-SW algorithm’s performance is improved with
post-processing. Similarly, the extracted load features of detected events are further evaluated
using feature selection methodology to identify the most significant load features for classification
purposes. For NILM classification, two diverse ensemble learning techniques are introduced to
facilitate inference performance. Under the given conditions, homogeneous sequential (AdaBoost) and
heterogeneous parallel (Voting) ensemble learning techniques are successfully employed. Based on
the presented analysis of the extracted results, it is concluded that the proposed non-invasive load
inference approach not only attained promising inference results but also showed good generalization
capabilities in the context of unseen testing data. Further, it is noted that the employed ensemble
learners provide classification performance improvement compared to their respective standalone
base-learners. However, it is worth noting that the performance improvement allowed by the employed
ensemble models came at a price of model complexity and computational power. Consequently,
a trade-off exists between the performance and computational requirements. Hence, it is exclusively
the choice of the end-user as well as the sensitivity-level of the given problem to prefer performance
over computational efficiency or vice-versa.

Based on the presented research work and corresponding findings, it is concluded that ensemble
learning can facilitate non-intrusive load monitoring, even at low data granularity. Further, the outcome
of non-invasive load inference of water heating has a solid potential to facilitate numerous real-world
energy efficiency applications, e.g., demand response, load forecasting, and load scheduling strategies.
In the future, this research will be extended in terms of broader applications of the proposed approach
toward energy efficiency.
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