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Abstract: When an optimal control problem requires an important computational effort, a metaheuris-
tic algorithm (MA) can be a useful approach. An MA is conceived to solve a specific optimal control
problem having a characteristic objective function. This algorithm solely yields only an optimal
offline solution. The desideratum to have a closed-loop implementation can be fulfilled through
a supplementary “tool”, the Receding Horizon Control (RHC) structure. This paper addresses a
particular case and integrates Evolutionary Algorithms into the RHC structure. The main objective is
to propose a general harmonization between the Controller of the closed loop and the Evolutionary
Algorithm. Some details concerning the implementation of the closed loop and Controller are de-
scribed. The impact of the RHC’s prediction technique upon the control sequences’ encoding is also
analyzed. Two general structure Controllers are proposed, one of them conceived to cope with re-
strictive time constraints. Practical ideas have been illustrated through a case study: the well-known
optimal control of a fed-batch reactor for ethanol production. This time, our implementation achieves
a closed-loop solution. The results from the programs and simulation series validate the Controllers,
EAs, and the closed-loop structure. Generally speaking, the association between RHC and EA can be
a realistic solution to optimal process control.

Keywords: optimal control; metaheuristic algorithms; evolutionary algorithms; simulation

1. Introduction

Optimal control of a dynamic system is a usual task in process engineering. If the
process has mathematical properties sufficient to apply theoretical control laws, this task
can sometimes be achieved without significant computational complexity. Other times
the computational effort is important, or we do not dispose of known control techniques.
In this case, metaheuristic algorithms integrated within appropriate control structures
constitute a realistic solution. This kind of algorithms (see [1–3]) have been used intensively
in control engineering (see [4–7]) because of their robustness and capacity to cope with big
complexity problems.

A metaheuristic algorithm (MA), like simulated annealing, genetic algorithm, evo-
lutionary algorithm (AE), ant colony systems, particle swarm optimization, etc., is not
by itself prepared to achieve a closed-loop control structure. That is why it needs to be
integrated into a structure like Receding Horizon Control (RHC) (see [8–10]) or Model
Predictive Control ([11,12]). Both structures use prediction techniques that could involve
MAs because prediction is usually optimization.

This work has rather practical relevance because it is first addressed to a practicing
professional engineer who wants to implement an optimal control structure using an
Evolutionary Algorithm (see [11,13–15]). More precisely, there are several requests and
given data that define our work:
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• A real process has to be controlled over a given control horizon;
• We dispose of a process model (usually nonlinear), usually a set of all algebraic and

differential constraints imposed by the dynamic environment;
• A closed-loop control structure has to solve an Optimal Control Problem (OCP). Its

Controller should optimize an objective function and meet some constraints over
the control horizon. The objective function contains a terminal penalty term, which
renders the prediction of the optimal control sequence a complex task;

• A basic version of the EA can find the optimal value of the objective function over the
control horizon.

The RHC structure is a general and simple control structure involving a prediction
technique that can fit with an evolutionary algorithm. For this reason, the solution proposed
by this paper is based on the RHC structure whose Controller makes optimal predictions
using an EA. The implementation aspects emphasized in our presentation mainly refer to
two topics:

• The harmonization between the prediction RHC structure technique and the EA;
• The implementation of a Controller based on an EA with an acceptable computa-

tional complexity.

Section 2 briefly presents the elements that define an OCP and introduces the notations
used in the next sections.

After recalling the RHC structure, Section 3 proposes the first version of the Controller.
This is organized as a function and includes the slightly modified basic version of the EA.
At each sampling moment, the EA is executed to determine the optimal control sequence
covering the prediction horizon. The Controller takes the first value of this sequence and
makes it its current control output. After that, this value is applied to the process. At each
call, the prediction horizon decreases and keeps the final moment of the control horizon
(see for comparison [9–11]).

In this work, we propose two versions of the Controller. The EA calls for a numerical
integration function using a discretization step equal to the closed-loop sampling period.
Consequently, the encoding of a control sequence uses a number of genes proportional
to the prediction horizon’s length. The greater computation effort of the Controller is
sustained in the first sampling period when the prediction horizon is the largest. Using
simulations, the implementer has to decide whether the Controller’s execution time is less
than the sampling period; that is, the Controller can be implemented.

The second version of the Controller, proposed in Section 4, improves the computa-
tional complexity such that the execution time would be lower than a sampling period.
Regardless of the prediction horizon’s length, the discretization steps’ number is constant.
In other words, the encoding of a control sequence always uses the same number of genes.
If the increase of the discretization steps does not significantly affect the computation
accuracy, this version can improve the computational complexity and assure the feasibility
of the Controller.

Section 5 presents a case study concerning a particular OCP and the controller im-
plementation using an adequate EA. The performance index is a terminal penalty. The
main objective is to show how a peculiar OCP can be solved and implemented using such
a controller. Notice that we do not aim to solve a particular OCP and compare our solution
with other approaches but, rather, highlight some implementation aspects. The resulting
RHC structure will be simulated to validate the quasi-optimal behaviour of the closed loop.

The addressed problem deals with the optimal control of a fed-batch reactor for ethanol
production (OCEP). First of all, an EA is chosen to solve this problem and yield an open-loop
solution. Section 5.1 describes an evolutionary algorithm (EAv0) that solves the OCEP
problem. Although EAv0 does not refer to a closed-loop implementation, it will prove
its capacity to solve the open-loop problem. It also allows us to assess the computational
complexity. A simulation series is conducted to evaluate the performances of a typical
solution and its state evolution.
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The implementation of the Receding Horizon Controller for the OCEP problem is
presented in Section 5.2. EAv0 is slightly modified to obtain EAv1, which is a constituent of
the Controller. The control sequence is encoded by a vector of real values whose dimension
is proportional to the prediction horizon’s length. The closed-loop evolution (Controller’s
outputs and the process’ states) is simulated, considering the real process, which is identical
to the process model. The computation complexity is evaluated on the overall control
horizon, using simplifying hypothesis.

A Controller’s second version—used to solve the OCEP problem—which can improve
the computation complexity, is presented in Section 5.3. Algorithm EAv0 is modified to
generate EAv2, such that a control sequence is encoded by a constant number of real values,
regardless of the prediction horizon’s length. The evolution of the closed loop, including the
new Controller, is simulated. The computation complexity of EAv2 is analyzed in contrast
with EAv1 to prove that the first one is smaller, at least in the first sampling periods.

The results of the simulation series have proved that the RHC structure with the
Controller that is able to integrate an EA is feasible with good quasi-optimal behaviour.

2. Defining Elements of an Optimal Control Problem

In the upcoming sections, we briefly recall the defining elements of an optimal control
problem (OCP) and their usual notations, but we do so in a way that is adapted to the
presentation of the next sections. Let us consider an OCP whose control horizon is finite,
for example [0, H · T], where H is a positive integer and T is the sampling period. The
discrete moments tk = k·T will be specified simply by k = 0, 1, · · · , H.

We suppose that a discrete process model, used to simplify the presentation, is avail-
able and given in Equation (1). An eventual continuous model can always be converted
into a discrete one.

x(k + 1) = f (k, x(k), u(k)); k = 0, 1, · · · , H − 1, (1)

The vectors u(k), x(k) have m and n elements (m, n ∈ N+), respectively, and f is an
n-dimensional vector function with all regularity properties demanded by the calculations.

Any control sequence U0, defined as below, meets certain constraints and determines
the system evolution over the control horizon:

U0
D
= < u(0), u(1), . . . , u(H − 1) > (2)

This system evolution has to be optimal under a performance index. The latter mini-
mizes a specific objective function, which has the discrete form presented in Equation (3).

J(k, x(k), U(k)) =
H−1

∑
i=k

L(i, x(i), u(i)) + TP(x(H)), k = 0, 1, · · · , H − 1 (3)

U(k) D
= < u(k), u(k + 1), . . . , u(H − 1) > (4)

Equation (3) refers to the prediction horizon [k, H] and the state trajectory that starts
with x(k). The system evolution is generated by a control sequence U(k) having the
structure presented in Equation (4). The resulting state trajectory can be denoted by

X(k) D
= < x(k), x(k + 1), . . . , x(H) >; k = 0, 1, · · · , H − 1. (5)

The first part of the sum presented in Equation (3) is a Lagrange-type term that
measures quality along the trajectory of the dynamic system. The scalar value L(i, x(i), u(i))
is the contribution of the interval [i, i + 1] to the quality measure J. The second part is a
Mayer-type term that measures the quality of the trajectory in its final extremity. This term
will be called the terminal penalty in the upcoming sections. The function TP(x) penalizes
the final state x.
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The performance index I0 of an optimal solution over the control horizon minimizes
the objective function J as below:

I0 = min
U0

J(0, x0, U0); x0 = x(0) (6)

Obviously, J’s minimization (or maximization) can be subjected to constraints regard-
ing the control inputs and the state variables.

3. Controller Implementation Using Evolutionary Algorithms
3.1. RHC Using Metaheuristic Algorithms

If problem solving requires an important computational effort, a metaheuristic algo-
rithm can be a useful approach. An MA is conceived to solve a specific OCP having a
characteristic objective function. However, the desideratum to have a closed-loop imple-
mentation can be fulfilled through a supplementary “tool”: the RHC structure.

Figure 1 recalls the principle of the RHC and suggests how it is able to implement the
predictive control technique in a particular case when a metaheuristic algorithm is used.

1 
 

 

               

 
 
I hope this drawing is good. 
 
 
 
 
 
 

pcs pss x(k) 

x(k) 

u(k) 

Process Model 

Metaheuristic 
Algorithm 

Receding Horizon 
Controller 

Process 

Figure 1. The principle of Receding Horizon Control using MA.

The objective of RHC is to implement closed-loop control systems under circumstances
involving optimal evolution. The RHC is among the very few control strategies supporting
a closed-loop implementation using an MA. The Receding Horizon Controller uses the MA
to accomplish the prediction technique: it calculates the optimal control sequences (ocs)
that optimize the performance index on the current prediction horizon [k, H].

At moment k, the MA calculates the optimal solution, which is represented by a series
of control inputs, as in Equation (4). We can consider the MA as a generic function that
returns the following optimal solution:

U∗(k) = arg min
U(k)

J(k, x(k), U(k)), k = 0, 1, · · · , H − 1. (7)

The process state x(k) is acquired from the dynamic environment and represents the
initial state for the control horizon [k, H].

We may suppose that the MA is based on a population of solutions because we shall
use an EA in this work. Hence, the MA generates and evolves a population of individuals
within an iterative process for each sampling period. An individual of the population is
represented by a predicted control sequence (pcs). A numerical integration function can use
the process model, the pcs and the current initial state x(k), and return the predicted state
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sequence (denoted by pss). The MA will make an optimal prediction for the interval [k, H]
that becomes the prediction horizon (briefly denoted as Phz) and has H-k sampling periods.
The objective function J over the Phz is optimized and subject to certain constraints through
an optimal control sequence (7).

Finally, the Controller sends to the process the control input u(k), the first element of
the sequence U∗(k). The Controller calls the MA that yields the vector U∗(k) to the first
time at k = 0.

A systematic procedure to implement the control structure depicted in Figure 1 is
presented in [8].

3.2. Controller Using an Evolutionary Algorithm

In the upcoming sections, we shall consider the EA as an MA able to solve this kind
of problem. We will refer to the EA with a large abstraction degree, such that we do not
need to give, for the moment, all of the details concerning its implementation. In this
way, the implementation aspects described below maintain generality. In one way or
another, a particular EA calculates the optimal solution for the considered OCP meeting
the initial conditions.

The considerations made up until now are valid whatever the EA’s implementation
would be (except Equation (7), where the min operator can be replaced by max). We shall
consider a particular implementation called EAv1 (EA version 1), which adopts a natural
solution encoding in the upcoming sections. The control input u(t) is a step function whose
discretization step equals the sampling period. A candidate solution is a sequence (pcs)
that covers the Phz and has the following structure:

pcs =< u(k|k), · · · , u(k + i|k), · · · , u(H − 1|k) >, (8)

where u(k + i|k), i = 0, . . . , H − k− 1 is the predicted value for the control input u(k + i)
based on knowledge up until moment k. The control input u(k + i|k) is kept constant
within the sampling period [k + i, k + i + 1), such that a pcs represents a step function.

Note that:
u(k + i|k) 6= u(k + i).

The value u(k + i|k) is a future control input predicted at the present moment, whereas
the value u(k + i) is the future real control input that is unknown at the present moment.
We can assert the same thing for the state variables. Using Equations (1) and (8), the process
model returns the predicted state sequence (pss) as below:

pss =< x(k + 1|k), . . . , x(H |k) >, (9)

where x(k + i|k), i = 0, . . . , H − k is the predicted value of the state x(k + i) based on
knowledge up until moment k.

The EAv1 has now the necessary data to compute the objective function J over the
prediction horizon. At the end of the iterative process, the EAv1 returns to the optimal
control sequence (ocs):

ocs =< u∗(k|k), . . . , u∗(H − 1|k) > . (10)

After that, the Controller will send the first element of ocs sequence, namely u(k) = u∗(k|k) ,
to the process as a real control input for the current sampling period. The Controller then
shifts the beginning of the Phz by one sample and restarts the optimization for the next
interval [k + 1, H].

Table 1 presents an outline of the Controller’s actions for every sampling period. The
execution of the EAv1 is presented in Line #2 as a function call, whose input parameters
are the current sampling period and the process state vector. It returns the ocs over the
interval [k, H] according to Equation (10). Line #3 sets the output of the Controller u(k) at
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the value u∗(k|k) . In Line #2, the function EAv1(k, x(k)) can be replaced by a new version,
EAv2(k, x(k)), developed in the next section.

Table 1. Outline of Receding Horizon Controller using an EAv1.

1 Get the current value of the state vector, x(k).

2 ocs← EAv1(k, x(k))

3 u(k)← u∗(k|k)
4 Send u(k) towards the dynamic system

5 Shift the prediction horizon and wait for the next sampling period

Remarks:

1. This work addresses OCPs whose objective function (3) includes a terminal penalty.
The Phz has to be [k, H] even if the integral term is missing. The Phz “recedes” at
each sampling period but keeps the final extremity. Hence, its length decreases by
one unit at each sampling period;

2. For the current sampling period, [k, k + 1), the Phz is [k, H], and its length is H − k.
Consequently, the computational complexity of the EAv1 is variable and depends
on this value: H − k. Let us note that the discretization step used by the EAv1 for
encoding a pcs is equal to the sampling period T. Therefore, the length of the ocs is
variable along the control horizon and decreases at each sampling period;

3. The most restrictive time constraint for the algorithm presented in Table 1 is that the
execution time has to be smaller than the sampling period. The length of the Phz
could be very large at the beginning of the control horizon, especially in the first
sampling period. If the time constraint is met initially, it will also be fulfilled in the
next sampling period because the length of the Phz decreases;

4. The choice of T is related to control engineering aspects, such as continuous signal
discretization and time constants of the considered dynamic system. Therefore, the
increase of T is not an option for solving constraint #3. Before implementation, the
control system designer must verify the fulfilment of this constraint using simulations.
Generally speaking, RHC using an MA is suitable for processes having relatively
large time constants.

4. Controller Implementation with Improved Computational Complexity

The Controller improvement can be done using a new version of the EA. The latter
keeps its general structure and the most parameter values, but it will consider fewer gene
encoding predicted control sequences.

4.1. EA with Variable Discretization Step

This section proposes a version of the EA called EAv2 (version 2), which can reduce the
Controller’s computational complexity compared to the first version. The aforementioned
Remark #2 underlines that EAv1 uses a constant discretization step equal to the sampling
period T.

In the proposed new version, inside the EAv2, the number of discretization steps is
constant and independent of the length of the Phz. Consequently, the discretization step is
variable and, as we shall see, greater than or equal to T.

With h, let us denote the number of the discretization steps. As we already saw, for
the current sampling period [k, k + 1), the Phz is [k, H]. Expressed in time units, the Phz is

[tk, tH ] = [k · T, H · T]

This interval will be discretized using h steps. Figure 2 shows the new discretization
of the Phz in contrast with the old one involved in the sampling period.
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Figure 2. The new prediction horizon’s discretization versus the discretization involved in the
sampling period.

Hence, the EAv2 will use pcs having the form

pcs =< u(τ0|k), u(τ1|k), · · · , u
(
τj
∣∣k), · · · , u(τh−1|k) > . (11)

If the discretization step is denoted by ∆, the discretization moments τj are defined below:

τj = tk + j · ∆; j = 0, · · · , h− 1;τ0 = tk; τh = tH

We recall here that the predicted value for the control input u
(
τj
)

based on knowledge
up until the moment tk is the value

u
(
τj
∣∣k), j = 0, . . . , h− 1.

Because our goal is to reduce the computational complexity of EAv2 in contrast with
EAv1, the following constraint has to be met:

h ≤ H − k. (12)

If the constraint introduced by Equation (12) is met, a smaller number of predicted
values will cover the prediction horizon. A possibility, which also simplifies the implemen-
tation, is to set the number of discretization steps using the rule below:

h =

{
h0, for k = 0, 1, · · · , H − h0
H − k for k = H − h0 + 1, · · · , H − 1

(13)

The value of the constant integer h0 is chosen such that

h0 < H.

4.2. Computational Complexity

This section makes a comparison between the computational complexity of the two
EAs. Usually, an effective way to compare two MAs is to evaluate the calls number of
the objective function. In our work, all the EAs have the structure corresponding to Lines
#9—#19 of the pseudo-code described in Table 2. Hence, the structure of the two algorithms,
EAv1 and EAv2, will basically be the same and only differ by few initializing instructions.
One can count the call number of the objective function:

• µ calls within Line #11: Calculation of the performance indexes for the initial popula-
tion having µ individuals;

• λ calls within Line #14: offspring generation (λ individuals);
• p · λ calls within Line #15: p is the offspring’s probability of undergoing mutation.
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Table 2. Outline of the EAv2 with improved computational complexity.

start EA(k, x(k))

1 /* Initialize the parameters of EA*/

2 if k ≤ H − h0

3 h← h0 ;

4 ∆← T · (H − k)/h0 ;

5 else

6 h← H − k ;

7 ∆← T ;

8 end

9 Generation of the initial population

10 Calculation of the performance indexes

11 g← 1 /* g: current generation number */

12 while (g ≤ NGen) /* optimization iterative process */

13 parent selection;

14 offspring generation; /*calculate the performance indexes*/

15 self-adaptive mutation; /*update the performance indexes*/

16 replacement;

17 population sorting

18 g← g + 1

19 end /*while*/

20 return ocs (the best of the population)

If the iterative optimization process evolves on NGen generations, then the average
call number for J is

Ncalls = µ + NGen · λ · (1 + p). (14)

As such, the call number for J will actually be the same, as we shall confirm using
simulations in Section 6.

The most time-consuming part of the objective function execution is the process model
integration determining the state evolution. The question that one can raise is whether the
integration time is significantly different for the new version. The integration time interval
is [k, H] in both cases. As such, the process model’s integration has the same initial state
and time interval and similar input functions u(t), which are step functions. The different
number of genes involves different step numbers for the two input functions. This fact
has a small influence on the integration time. Simulation tests show that the integration of
input functions takes a similar amount of time while in these conditions.

In conclusion, the computation effort to calculate the objective function is similar for
the two versions of the EA.

On the other side, pcs encoding is decisive for the algorithm’s complexity. EAv1
encodes pcs using H − k real values (genes), while EAv2 only uses h0 values. Since it
holds h0 < H, the EAv2 obviously has a smaller computational complexity for all genetic
operators (selection, crossover, mutation, replacement) and initializations.

Finally, one can say that EAv2 is better than EAv1 from the point of view of computa-
tional complexity. The number of discretization steps is h0, while k ≤ H− h0 and decreases
from h0 − 1 toward 1, for k > H − h0.

NB: If Equation (13) is fulfilled, the implementation issue stated by Remark #3
can be avoided. On the other hand, this value must be a trade-off between the
computational complexity and the ocs accuracy.
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4.3. General Implementation of the EAv2

Equation (13) allows the calculation of the discretization step ∆. Because h has a
constant value for the initial segment, the ∆ value will be variable in return. From (11) and
(13), it holds that:

∆ =

{
T · H−k

h0
>T for k = 0, 1, · · · , H − h0 − 1

T for k = H − h0, · · · , H − 1
. (15)

According to Equation (11), a pss will have the form

pss =< x(τ1|k), . . . , x(τh |k) >

The main output of the EAv2 is the ocs for the current Phz, which has the follow-
ing structure:

ocs =< u∗(τ0|k), · · · , u∗
(
τj
∣∣k), · · · , u∗(τh−1|k) > (16)

Table 2 schematically describes the EAv2 included in a controller with improved
computational complexity. EAv2 has specific parts that cannot be detailed here. Therefore,
the following sketch describes them with a large degree of extraction. The outline only
presents the details allowing the management of the length of the pcs.

The iterative optimization process evolves on NGen generations counted by the vari-
able g. Lines #13–#17 call for functions implementing well-known genetic operators. We
recall here that the offspring generation also calculates the performance indexes of the new
pcs (solutions). The self-adaptive mutation also updates the performance indexes of the
solutions that are subjected to mutation.

Remarks:

5. The encoding of the pcs and ocs according to (11) and (16) can obviously diminish
the computational complexity when generating ocs. However, on the other hand,
the discretization with fewer intermediary points affects the ocs accuracy, that is, its
capacity to represent the optimal solution to our problem. The question is, to what
extent this accuracy is affected? Using simulations, the control system designer must
verify that the ocs representation is not degraded and the quasi-optimality is still kept
before implementation.

6. Equation (15) shows that, for each sampling period, it holds:

∆ ≥ T. (17)

Considering the inequality of Equation (17), the first element of the ocs covers the
sampling period:

[τ0, τ1] = [tk, tk + ∆] ⊇ [tk, tk + T].

Hence, the first ocs value, i.e., u∗(τ0|k), will be sent to the process as the optimal
control input for the current sampling period (as in Line #4 from Table 1).

5. Case Study

This section will present an example of implementing a metaheuristic-based controller
that integrates an RHC structure.

We have considered a well-known problem that has been described in many articles,
among which we recall [16,17]. This problem is known as the optimal control of a fed-batch
reactor for ethanol production (OCEP) and concerns a nonlinear dynamic system. Different
sub-cases are presented in these papers, which differ in control horizon and control bounds.
We have considered the OCEP problem stated in Appendix A, which presents all of the
basic elements. Because our main objective is to construct the Controller using an AE, we
have considered a fixed final time in contrast with other versions of the problem. Keeping
notations, it holds:

n = 4; m = 1; t f = H · T = 54h
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The process model has n state variables x1, x2, x3, x4 representing the cell mass, sub-
strate, product concentration (g/L), and volume (L). The control variable is the feed rate
(L/h) that meets the following constraint:

0 ≤ u(t) ≤ 12

The state variable x4 has to meet the following constraint:

x4(t f ) ≤ 200 (18)

The objective function given below has to be maximized:

J
(

x(t f )
)
= x3(t f ) · x4(t f )

Although this one is a terminal penalty and the integral component is missing, the
implementation maintains its difficulty: the process evolution of the entire control horizon
must be determined when a pcs is adopted.

5.1. Open-Loop Solution Using an Evolutionary Algorithm

In this section, we present preliminary work before constructing the Controller for
the closed-loop control structure. We have implemented and conducted an evolutionary
algorithm (see [1–3]) that solves the OCEP problem. It will be denoted by EAv0 (EA ver-
sion 0) in the upcoming sections. The implementation of the EAv0 and the simulations were
conducted using the MATLAB language and system. We have employed special functions
devoted to integrating the differential equations for the simulation of the process evolution.

Let us recall that EAv0 determines the following quasi-optimal control input because
our problem looks for the maximum value of J:

U∗(0) = arg max
U(0)

J(0, x0, U(0))

This means that the control horizon is [0, H], and the initial state is x0.
This algorithm is the basis for the two versions of EA used inside the Controller. EAv0

is modified and adapted to become part of the optimal Controller.
As mentioned previously, EAv0 uses direct encoding and has the usual characteristics

listed below:

• For each generation, the population has µ individuals;
• The children population has λ individuals (λ < µ);
• The population evolves over NGen generations;
• The selection strategy uses stochastic universal sampling and the rank of individuals.

The latter is scaled linearly using selection pressure (s); see [3] (pp. 205–221);
• A BLX-α crossover operator;
• Inside the mutation operator, the mutation step is subjected to a global variance adap-

tation. This one is conducted according to the “1/5 success rule”; see [1] (pp. 245–274);
• The replacement strategy involves that the children replace the λ worst individuals of

the generation.

The most important parameters are given in Table 3.

Table 3. The main parameters of EAv0.

EAv0
λ µ NGen H s α

20 30 70 20 1.8 0.4

This algorithm yields a solution that is actually a quasi-optimal sequence of control
inputs. It can be only used within an open-loop control structure. For the reasons mentioned
before, this sequence is useless for a closed-loop control structure. Nevertheless, this phase
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is mandatory because it can validate the aptitude of the EA to solve the problem and
evaluate the computational complexity.

The resulting simulation program has a stochastic character; therefore, we cannot
conclude after a single execution. We must repeat the execution more times to confer
consistency to statistical parameters. That is why we have conducted a simulation series
that has repeated times the execution of EAv0 30 times. The results, namely a performance
index statistic, the quasi-optimal control input u(t), and state evolution, are presented in
Table 4 and Figure 3.

Table 4. Results of the open-loop simulation series using EAv0.

Jmin Javg Jmax Sdev Jtypical

18,973.0 19,906.4 20,395.2 312.5 19,885.7

Figure 3. The typical solution given by the EA. (a) The quasi-optimal solution. (b) State evolution in
open loop.

Table 4 shows some statistical parameters characterizing the 30 executions of EAv0.
The minimum, average, and maximum values and standard deviation are indicated for the
performance index. We consider typical execution as the particular simulation among the
30 that produce the values that are the closest to the average performance index. In our
simulation series, there is an execution that yields Jtypical = 19885.7. The quasi-optimal
control input for the typical execution is depicted in Figure 3a, and its state evolution in
Figure 3b.

Further details concerning EAv0 are given in Appendix B.

5.2. Closed-Loop Solution Using an EA with Constant Discretization Step

This section aims to achieve the closed-loop control of the dynamic system involved
in the OCEP problem using the Controller based on EAv1. We have implemented the
Controller and a program that simulates how the closed loop works. The process model
has been used to predict the ocs. We have also considered the same model to simulate the
real process.

The Controller has the same structure as the one presented in Table 1, except that
it includes EAv1 (does not call a function). It is organized as a function called for each
sampling period (see Appendix B).

The Controller has the following characteristics:

• Input parameters: k and x(k);
• Output parameter: u(k) (the first element of the best solution, i.e., u∗(k|k) );
• Control horizon: [k, H], with k = 0, 1, · · · , H − 1; H = 20;
• Number of genes: H − k (see (8));
• Discretization step: T;
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• Other parameters such as those in Table 3.

EAv1—which is included not called by the Controller—has the same structure and
characteristics as EAv0 (given in Section 5.1).

The program that simulates the closed-loop optimal control has the outline presented
in Table 5. Essentially, the closed loop is achieved by a loop that simulates the Controller’s
call for each sampling period and the feedback from the real process.

Table 5. Outline of the closed-loop optimal control using EAv1.

1 Initializations /* for OCEP problem, controller and simulation*/

2 for k = 0, 1, · · · , H − 1

3 u(k)← Controller_EA(k)

4 Compute the state vector x(k + 1) of the process model using u(k);

5 x0 ← x(k + 1)

6 end

7 display J∗ and u∗(k) ; k = 0, 1, · · · , H − 1

The Controller’s call is done in Line #3. It uses as an input parameter, which is the
initial state that is stored in the global variable x0. The numerical integration of the process
model is accomplished in Line #4. This algorithm is implemented as a MATLAB script.

We conducted a simulation series that executed the script “Closed-loop.m” 30 times.
In our simulation series, there was an execution that yielded Jtypical = 20,153.5. The
performance index statistic, the quasi-optimal control input u(t), and the state evolution
are presented for typical execution in Table 6, Figure 4a,b, respectively.

Table 6. Results of the closed-loop simulation series using the Controller with EAv1.

Jmin Javg Jmax Sdev Jtypical

19,127.7 20,136.7 21,014.9 449.5 20,153.5

Figure 4. The typical solution given by the Controller using EAv1. (a) The quasi-optimal solution
given by the Controller using EA. (b) State evolution in closed loop.

5.3. Closed-Loop Solution Using an EA with Improved Computational Complexity

This section aims to implement the closed-loop control of the dynamic system under
consideration using the Controller based on EAv2. We have implemented the Controller
and a program that simulates the closed-loop working (see “Closed-loop2.m”, inside the
folder “EA_Etanol_loop2”). The latter is basically the same as that described in Table 5,
except for a few initializations.
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The new Controller has the structure that was presented in Table 1, except that it
includes EAv2. It is also organized as a function called for each sampling period (see the
script “Controller_EA2.m”). It has the following characteristics:

• Input parameters: k and x(k);
• Output parameter: u(k) (the first element of the best solution, i.e., u∗(k|k) );
• Control horizon: [k, H], with k = 0, 1, · · · , H − 1; H = 20;
• Number of genes: h0, for the first H − h0 sampling periods, and h0 − 1, · · · , 2, 1 for

the last sampling periods (see (13)); h0 = 10;
• Discretization step: ∆ ≥ T variable (see (15));
• Other parameters such as those in Table 3.

The EAv2 algorithm —which is included and not called by the Controller—has the
same structure and characteristics as EAv0 (given in Section 5.1)

Because OCEP maximizes the objective function, the best solution is as below:

U∗(k) = arg max
U(k)

J(k, x(k), U(k)), k = 0, 1, · · · , H − 1.

We conducted a simulation series that executes the script “Closed-loop2.m” 30 times.
In our simulation series, there was an execution that yielded Jtypical = 20319.0. A statistic
of the performance index achieved by the closed loop is presented in Table 7. The quasi-
optimal control input calculated by the Controller for typical execution is depicted in
Figure 5a, and its state evolution is depicted in Figure 5b.

Table 7. Results of the closed-loop simulation series using the Controller with EAv2.

Jmin Javg Jmax Sdev Jtypical

19,497.0 20,323.0 20,982.0 353.0 20,319.0

Figure 5. The typical solution given by the Controller using an evolutionary algorithm with improved
computational complexity. (a) The quasi-optimal solution given by the Controller using EA with a
variable discretization step. (b) State evolution in closed loop.

6. Discussion

We can now verify the statement made in Section 4.2, which was that the Controller
based on EAv2 has a smaller computational complexity than the one based on EAv1.

Table 8 shows the call number of the objective function recorded at the time of the
closed-loop simulations. This number refers to the call of only one Controller, determining
the optimal control input for the current sampling period. Its value is independent of the
prediction horizon’s length. The first three columns represent the minimum, average, and
maximum recorded values. The last column presents the theoretical value calculated with
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Equation (14) and Table 3. The adopted offspring’s probability of undergoing mutation is
p = 0.9.

Table 8. The call number of the objective function.

Nmin Navg Nmax Ncalls

EAv1 2674 2691 2719
2690

EAv2 2666 2690.8 2711

Hence the call number is the same for the two Controller versions.
For the same prediction horizon [k, H], the process model’s integration works over

the same time interval and has similar input functions u(t), which are step functions.
The step number of u(t) is not so important for the integration time. Hence, under these
circumstances, the integration durations are similar.

Considering the two aspects mentioned above, we can conclude that the computational
complexity regarding the objective function evaluation is similar for the two Controllers.

The aspect that makes the difference between the two controllers is related to encoding
a pcs, namely the gene number. The Controller based on EAv1 uses a variable number
of genes: H, H − 1, · · · , 2, 1. Constraint #3 can be prohibitive, especially in the first
sampling period.

The Controller based on EAv2 only has h0 genes and h0 < H. Hence, EAv2 obviously
has a smaller computational complexity for all genetic operators (selection, crossover,
mutation, replacement) and initializations. The confirmation of this statement is given by
Table 9, which gives the execution time for the two controllers. These durations have been
recorded at the time of the closed-loop simulations for each sampling period. The columns
labelled by k give the sampling period rank within the control horizon. The columns
labelled by tv1 and tv2 give the execution times (in seconds) for the Controller based on
EAv1 and EAv2, respectively.

Table 9. Execution time for the two controllers.

k tv1[s] tv2[s] k tv1[s] tv2[s] k tv1[s] tv2[s] k tv1[s] tv2[s]

1 84.4 60.7 6 62.9 36.0 11 53.9 35.2 16 43.1 18.9

2 78.8 51.3 7 62.2 41.3 12 51.8 41.1 17 37.1 20.4

3 91.3 49.0 8 62.0 50.4 13 46.1 25.8 18 26.6 11.9

4 84.6 49.8 9 62.4 38.8 14 44.8 22.7 19 23.1 7.9

5 70.7 55.7 10 59.0 33.8 15 44.8 19.0 20 13.0 7.0

The durations indicated in the two columns show that the Controller based on EAv2
has undoubtedly smaller computational complexity than EAv1.

In our case, because the durations tv1 are less than T, even the first Controller can be
used in a closed-loop control structure. Generally speaking, constraint #3 can be prohibitive
for other OCPs, and the Controller based on EAv2 could be the solution. The price to pay for
this Controller’s computational complexity is underlined by Remark #5. The simulations
should prove that the optimal accuracy of the control sequence is not seriously affected.
In our case, the values of the performance indexes shown in Table 7 prove that the best
solution accuracy is more than acceptable.

The third line of Table 10 proves that EAv2 works very well in a closed loop with only
ten genes.
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Table 10. Performance indexes recorded within the simulation series.

Jmin Javg Jmax Sdev Jtypical

Open-loop
EAv0 18,973.0 19,906.4 20,395.2 312.5 19,885.7

Closed-loop
EAv1 19,127.7 20,136.7 21,014.9 449.5 20,153.5

Closed-loop
EAv2 19,497.0 20,323.0 20,982.0 353.0 20,319.0

The curves depicted in Figures 3–5 have similar aspects. Moreover, Figures 4 and 5
show that the control action is present and the closed-loops work. To facilitate the compari-
son among the performance indexes for the three situations, Table 9 unites Tables 4–6. We
recall that each simulation series has 30 program executions. Some explanations concerning
the differences among the three lines are necessary.

One can remark that the values of J from in the first line are less than those accom-
plished by the two controllers. This explanation is related to the extent of the search
operation. EAv0 searches for the best solution using only 2690 calls (Ncalls) of the objective
function, while the controllers use 20 times more calls (2690 calls for each sampling period).
In other words, the execution of EAv0 is equivalent to the Controller’s call for the first
sampling period.

EAv1 finds the best performance index in the closed loop J = 21,014.9, which is greater
than the corresponding value of EAv2, J = 20,982. This time, the explanation is related to
the bigger number of genes that involve a finer representation of the pcs. From this point of
view, EAv1 is superior to EAv2. More accurate representation leads to better optimization.

At the same time, the bigger number of genes involves a greater explorative character
and a greater representation power for u(t). That is why EAv1 has a standard deviation
greater than the corresponding value of EAv2. In comparison with EAv0, EAv1 has 20 times
more chances to strengthen its explorative character. This fact explains the smaller value of
the standard deviation in the open loop.

Our closed-loop simulations had two entities: the Controller based on EA and the
controlled process. The Controller already uses a process model to implement the RHC
structure (to make predictions). In this work, the real process is also simulated using the
process model. That is a simplification because the real process is almost always affected
by unmodeled dynamics and noises. One may ask: at what extent could the real process
degrade the closed-loop functioning? The answer can always be found through simulation
using a real process model. For example, a real process model could be obtained from
the process model to which a simulated “noise” is added. We have simulated closed-loop
functioning using this technique, but quantitative results are not included in this paper to
avoid a presentation that is too complex.

We can notice a degradation of quasi-optimal behaviour according to the amplitude
of the noise. The increase of the noise implies the decrease of the performance index. The
closed loop does or does not work well depending on whether the performance index
value is acceptable.

Generally speaking, it is relatively easy to deal with the constraints regarding the
control input u(k), k = 0, · · · , H − 1. This can be done when generating new pcs. Finally,
each component belongs to a certain domain, u(k) ∈ Uk, and the construction of a new
pcs could meet this constraint. What is more difficult is the handling of the constraints
regarding the state variables x(k), k = 0, · · · , H − 1. A valid pcs will yield the resulting
state trajectory X(k) defined by Equation (5). For a specific OCP, state path constraints
involving a trajectory that is a pss could be imposed. The most general constraint could
have a form that involves an admissible domain for each k: x(k) ∈ Dk, k = 0, · · · , H. In
our case study, Constraint (18) limits the produced ethanol’s volume in the final state to
the reactor’s volume.
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The pss is calculated through the integration procedure. A good strategy is to verify
if the component of the pss meet the path constraints just after the calculation of the pss
within the objective function. If at least one constraint is not fulfilled, the cause associated
with this effect, namely the pcs, must be moved away. A correct approach is to assign
an infinite value (for minimization) to its performance index. In this way, the MA will
replace the considered pcs, and the stochastic character of the population evolution will
not be corrupted.

At successive time moments, the pcs values are randomly set. Thus, the difference
between two successive values could be quite big in one sense or another. This fact does
not fit with the certain and desired smoothness of the control profile. Actually, this is the
price to pay for the stochastic nature of the EA. The latter can integrate the so-called step
control technique, which implements the following differential constraint:∣∣∣∣du(t)

dt

∣∣∣∣ ≤ ∆smax

The value ∆smax is the maximal accepted slope. If the step control technique is imple-
mented, it will involve a certain smoothness at the level of the state trajectory. Starting from
this remark and assimilating gradient-based optimization with evolutionary optimization,
in principle, we could facilitate the state evolution toward the optimal pcs. Within a future
work, this idea could help to make the control action of the proposed receding horizon
controller more effective.

Besides the EA, other metaheuristic algorithms have been used by the authors to
implement receding horizon controllers. Both population-based metaheuristic methods
(firefly algorithm, harmony search, Gaussian adaptation, memetic algorithm, etc.) and
Swarm algorithms (Ant Colony Optimization, the Artificial Bee Colony Algorithm, the
Bees Algorithm, Cuckoo search, Lévy flights for global optimization, particle swarm
optimization, etc.) have been used to solve OCPs. The communication skills among
agents are not making swarm algorithms always more effective than the population-based
algorithms. Our first perception is that the effectiveness of the Controller mainly depends
on the dynamic process nature. A systematic comparison can be made within a future
investigation, and more implementation aspects could be revealed.

7. Conclusions

This paper presented some implementation aspects regarding the optimal control
of a process using a Controller based on an evolutionary algorithm. This solution is
addressed when other analytical or numerical solutions are not available and when using a
metaheuristic algorithm yields a flexible and robust solution.

Using a metaheuristic algorithm involves a control structure that can use such an
algorithm. The RHC structure is adequate from this point of view because the prediction
technique can fit with an evolutionary algorithm.

We have presented some implementation aspects concerning the harmonization be-
tween the prediction technique and the evolutionary algorithm. Metaheuristic algorithms
are known to have a large computational complexity. This paper has addressed a method
to thwart this drawback and fulfil the time constraint for an evolutionary algorithm.

For the case study presented in this work, we have illustrated the proposed algorithm
using simulation programs. The material attached to this work includes the simulation
programs that show how the RHC structure, Controller, and prediction with an EA can be
implemented with good results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/inventions6030053/s1, the archive file “CLoop_EA.zip” contains all folders and files described
in Appendix B.

https://www.mdpi.com/article/10.3390/inventions6030053/s1
https://www.mdpi.com/article/10.3390/inventions6030053/s1
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Appendix A

The Elements of the Optimal Control Problem

Process Model:

dx1
dt = g1(t) · x1(t)− u(t) · x1(t)

x4(t)
dx2
dt = −10 · g1(t) · x1(t) + u(t) · 150−x2(t)

x4(t)
dx3
dt = g2(t) · x1(t)− u(t) · x3(t)

x4(t)
dx4
dt = u(t)

g1(t) =
(

0.408
1+x3(t)/16

)(
x2(t)

0.22+x2(t)

)
g2(t) =

(
1

1+x3(t)/71.5

)(
x2(t)

0.44+x2(t)

)
Control horizon:

0 ≤ t ≤ 54; t0 = 0; t f = 54h

Initial conditions:
x00 = [1. 150. 0. 10.]T

Bound constraints:
0 ≤ u(t) ≤ 12
0 ≤ x4(t f ) ≤ 200

Performance index:

max
u(t)

J
(

x(t f )
)

, with J
(

x(t f )
)
= x3(t f ) · x4(t f )

Appendix B

Appendix B.1. Implementation Details for the Algorithm EAv0

The OCEP problem described in Appendix A has been solved using the evolutionary
algorithm EAv0. The optimal solution can only be used in an open loop. Every chro-
mosome for the solutions population encodes a control profile that is a series of values
u0, u1, · · · , uH−1. We chose H = 20 and T = 2.7 h (the control horizon is 54 h). The
EAv0 was implemented by the script “EA_EtanolP_single.m”. This program was executed
30 times using the script “cycle30single.m” in order to calculate some statistical parameters,

http://www.cssd-udjg.ugal.ro/
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which are presented in Table 4. The computation of the statistical parameters and the
drawing of Figure 3 was conducted using the script “MEDIERE30single20.m”. All of the
scripts are included in the folder “EA_Etanol_single”, which is attached to this work.

Appendix B.2. Implementation Details for the Controller Using EAv1

The OCEP problem described in Appendix A was solved using the Controller based
on EAv1. It is about a closed-loop solution. The function “Controller_EA.m” implements
a Controller that is called for each sampling period. Every chromosome encodes the
control profile, which is a series of values uk, uk+1, · · · , uH−1. It also holds H = 20 and
T = 2.7 h. The EAv1 is not a distinct function, but it is a part of the Controller. The script
“Closed_loop.m” simulates the control action over the entire horizon control.

In order to calculate the statistical parameters presented in Table 6, the script “Closed_
loop.m” was executed 30 times using the script “ciclu30_loop.m”, which saves the workspace.
After that, the computation of the statistical parameters and the drawing of Figure 4 could
be conducted using the script “MEDIERE30loop.m”. All of the scripts are included in the
folder “EA_Etanol_loop”, which is attached to this work.

Appendix B.3. Implementation Details for the Controller Using EAv2

The OCEP problem described in Appendix A was also solved using the Controller
based on EAv2. The function “Controller_EA2.m” implemented the Controller having a
better computational complexity. This one called for each sampling period. The number
of genes was h0 = 10. Every chromosome of the solution population encoded the control
profile, which was a series of values uτ0 , uτ1 , · · · , uh0−1. The EAv2 is not a distinct function,
but it is a part of the Controller. The script “Closed_loop2.m” simulates the control action
over the entire horizon control.

In order to calculate the statistical parameters presented in Table 7, the script “Closed_
loop2.m” was executed 30 times using the script “ciclu30_loop2.m”, which saves the
workspace. After that, the computation of the statistical parameters and the drawing of
Figure 5 could be carried out using the script “MEDIERE30loop2.m”. All of the scripts are
included in the folder “EA_Etanol_loop2“, which is attached to this work.

The supplementary material “CLoop_EA.zip” includes all of the folders and files
mentioned above.
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