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Abstract: Remote monitoring of vital signs in infectious patients minimizes the risks of viral trans-
missions to healthcare professionals. Donning face masks could reduce the risk of viral transmissions
and is currently practiced in medical facilities. An acoustic-sensing device was attached to face masks
to assist medical facilities in remotely monitoring patients’ respiration rate and wheeze occurrence.
Usability and functionality studies of the modified face mask were evaluated on 16 healthy partici-
pants. Participants were blindfolded throughout the data collection process. Respiratory rates of the
participants were evaluated for one minute. The wheeze detection algorithm was assessed by playing
176 wheezes and 176 normal breaths through a foam mannequin. No discomfort was reported from
the participants who used the modified mask. The mean error of respiratory rate was found to be
2.0 ± 1.3 breath per minute. The overall accuracy of the wheeze detection algorithm was 91.9%. The
microphone sensor that was first designed to be chest-worn has been proven versatile to be adopted
as a mask attachment. The current findings support and suggest the use of the proposed mask
attachment in medical facilities. This application can be especially helpful in managing a sudden
influx of patients in the face of a pandemic.

Keywords: acoustic sensor; face mask; respiratory rate; wheeze

1. Introduction

At the time of writing this article, the world is combating a pandemic, Coronavirus
Disease 2019 (COVID-19). New medical sub-industries such as telehealth have been widely
and rapidly adopted as mainstream solutions [1,2]. Many technologies have extended the
applications’ original intentions to help elevate the current situation, such as adopting
wearable devices and mobile applications for patient tracking and remote clinics [3].

Donning face masks has also become a new norm, both in and out of healthcare
facilities. The World Health Organization (WHO) recommends individuals to wear a face
mask in all public places as a mid-term measure in combating the spread of COVID-19 [4].
Consequently, face masks of different varieties came under the spotlight of researchers, busi-
nesses, and consumers alike, scrutinizing their effectiveness in protecting the wearer from
the virus or preventing the wearer from becoming a source of infection if, unfortunately,
infected [5,6].

Recent evidence suggests that face masks are integrals in deterring the spread of
COVID-19 [7–9] when high compliance among the population is achieved [3,10,11]. In
this context, Pan et al. proposed embedding a series of electronic sensors into a face
mask to monitor blood oxygen saturation, heart rate, and temperature [12]. These vital
physiological parameters are helpful to clinicians, especially when dealing with patients
suffering from respiratory diseases. In line with these efforts, this article proposed a
sensor device suitable for attaching on face masks, which listens to the wearer’s breath,
continuously monitors respiratory rate (RR), and detects any wheeze occurrence (WZ).
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Detection of a high RR range (>normal range) or WZ occurrence can indicate respiratory
diseases such as COVID-19 pneumonia, asthma, and COPD exacerbation.

This work extends the recently proposed chest-worn wearable that addresses chronic
respiratory disease care [13] and illustrates the novel applicability of repurposing the
system as a mass patient-management and respiratory monitoring aid. The chest-worn
wearable device was modified and repurposed for this work and is known in this article as
the “mask attachment”. To the authors’ knowledge, this is the first report of integrating an
acoustic-sensing mask attachment to medical face masks for mass patient monitoring. The
contribution of the proposed system is not only limited to the efforts used in the combat of
COVID-19, but it is also applicable for use in other teams’ epidemic and pandemic threats
that affect the respiratory system, such as the severe acute respiratory syndrome (SARS),
Middle East Respiratory Syndrome (MERS), and Influenza A (H1N1). Furthermore, the
proposed system, when compared to other noninvasive remote monitoring of RR methods
such as the infrared (IR) [14] and near-infrared (NIR) [15] thermal sensing, can detect
respiratory anomalies such as wheeze on top of RR monitoring. This proposed system also
does not suffer from shortcomings of the aforementioned alternatives during mask wear,
where important motion and heat signature from the face are covered.

2. Materials and Methods
2.1. Sensing Device

The sensing device is a microphone sensor coupled with an air conduction cavity
formed by and enclosed with an Acrylonitrile Butadiene Styrene (ABS) thermoplastic
enclosure. It weighs only 8 g with a cylindrical form of 10 mm in height and 31 mm in
diameter. The collected breath sound from the sensor was transmitted to a docking station
via a Bluetooth low energy (BLE) module for the computation of RR and WZ detection
algorithms. The sampling rate of the microphone sensor is 4000 Hz. The details of the
sensor design and architecture are available in the references [13,16,17].

2.2. Experimental Setup

KN95 surgical respirators (also known as the face mask in the study) were modified
by substituting the round plastic enclosed air valve with a mask attachment, as shown in
Figure 1. Sixteen participants were recruited for the study. Each participant’s breath sound
was recorded for one minute in an office environment, simulated as a clinic subjected to a
common ambient noise level (averaged 50.5 dB over 1 min). Participants were requested to
breathe normally throughout the data collection.
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 Figure 1. Experimental setup for both the user test and simulated wheeze and normal breath signal
through the mannequin for the wheeze detection test. (a) The unmodified KN95 mask with a
plastic/silicone air valve. (b) The modified KN95 mask with a miniature sensor inserted through a
silicon patch. (c) A speaker was inserted at the bottom of the mannequin to mimic the travel of lung
sound through trachea to the face level.
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All participants underwent the study blindfolded, with the procedure described in
Figure 2. None experienced any respiratory complications during data collection.
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2.3. Human Factor Considerations

For the proposed method to be readily accepted by the intended users, implementation
of the technology should not hinder the user’s range of motion or affect normal activities.
Hence, the mask attachment must be minimally intrusive to encourage compliance. Since
the wearer of the attachment would likely already be required to be wearing a facemask,
this segment of the study focuses on the resulting implication of wearing the attachment
on top of a common facemask. The translation of a series of human factor considerations
in three categories of use environment, user and use interface, into a desired outcome and
iteration of the process is well described by the United States Food Drug Administration’s
Guidance document [18].

2.4. Use Environment

The mask attachment is proposed for the application of mass patient management.
The environment can then be either in a controlled indoor or outdoor medical facility
where a wireless internet connection is available. The temperature and humidity of the
environment are directly related to the comfort of mask wear [19]. Additionally, the mask
attachment should not significantly lower breathability or promote additional condensation
formation within the mask. The inclusion of an additional attachment on a facemask should
also not impede communication capability through speech. Therefore, the mask attachment
must only alter a small area of the facemask.

2.5. User

Medical grade facemasks, such as KN95 or N95 masks, come in various sizes and
shapes to cater to the variant of possible face shapes and sizes. Sizing of these masks
ensures proper fitment to achieve the intended outcome of air filtration for the wearer.
Therefore, any attachment designed to be used with any mask should be physically small
to fit facemasks’ variation.
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2.6. Use Interface

The comfort, safety, and ease of use of the mask attachment are the main concern when
designing the use interface. The modified mask weighs 14 g, while the unmodified mask
weighs around 8 g unaltered and is generally accepted by wearers. However, with the
addition of an attachment, the increase in the mask’s weight can impact the comfort of wear.
In addition, the physical characteristics of the attachment must not result in significant
impedance of respiration for the wearer by obstruction of airflow.

2.7. Participants

The 16 recruited participant profiles are summarized in Table 1. All participants have
been wearing a face mask regularly for at least 6 months due to the COVID-19 pandemic.

Table 1. Participant profiles.

Attributes Population
n = 16

Age (average) 24.5 ± 4.0
Gender

Male 5
Female 11

Mask Size *
S (<100 mm) 1

M (100–110 mm) 11
L (110–125 mm) 4

Pre-existing chronic respiratory conditions 1
* Distance from middle of eyes to bottom of chin.

2.8. Respiratory Rate Estimation and Wheeze Detection Algorithms

The RR estimation algorithm evaluates a 15-s breath segment. Next, a short-time
Fourier-transform (STFT) was performed on the incoming signals, using a Hanning window
size of 128 ms with a 50% overlap size. The frequency bandwidth used for the calculation
of Shannon’s entropy was between 200 Hz and 1000 Hz. Lastly, autocorrelation was
performed on the entropy signal to estimate the RR. More details of the RR estimation
algorithms are available in reference [13].

The WZ algorithm evaluates only two-and-a-half-second of breath segment. The
entropy was calculated using a smaller Hanning window size of 32 ms with a 90% overlap
size. The frequency bandwidth used for the calculation of Shannon’s entropy was between
100 Hz and 2000 Hz. Three features were extracted from the entropy data: (1) time-based
spectral entropy difference (maximum-minimum), (2) time-based spectral entropy ratio
(maximum/minimum), and (3) frequency-based spectral entropy difference (maximum-
minimum). The difference between the frequency-based and time-based spectral entropy
features is that the entropy function was calculated in each row vector (frequency-based).
Column vector (time-based) and the statistics (i.e., entropy difference and entropy ratio)
were calculated across the row vectors (frequency-based) and column vectors (time-based)
of the STFT outputs.

For no wheeze patient was recruited, a simulation using a speaker to play 176 ran-
dom sample tracheal wheezes and 176 random sample normal breaths from an online
database [20], through a foam mannequin, as shown in Figure 1, was employed to evaluate
the WZ detection method. The simulation was repeated three times to account for varying
environmental noise; thus, there were a total of 528 wheeze samples and 528 normal breath
samples included in the data analysis. The mask attachment was worn on the mannequin
to collect wheezes and normal breaths, as shown in Figure 1.

2.9. Validation of Respiratory Rate Estimation and Wheeze Detection Algorithms

The RRs calculated by the system were benchmarked with manual counts of breath
periods within the 15-s evaluation windows. The manual counting method is the common
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practice nurses use to obtain the RR of their patients [21–23]. In the manual counting
procedure, the start of each breath was annotated with a start time so that the duration
of each breath cycle was derived as the interval between two consecutive start times. In
our study, the reference RRs were first cross-validated by visual and audio inspection
to determine each breath’s start and end time within the one-minute recordings. The
mean reference RRs were then computed for the one-minute recordings by that annotator.
The reference RRs were further cross-validated by two medical students through audio
inspection on the same one-minute recordings. Lastly, the final reference RRs used in
the discussion of the results of this work were obtained by averaging all the annotations
aforementioned for each recording of breathing sound. To account for the robustness of the
wheeze detection classification method toward inter-subject variability, only 75% of the
wheeze and normal breath samples were included in the acquisition of the SVM model.
A total of 75% of the data samples were subdivided into 70% of training samples and
30% of testing samples. The performance of the SVM model was cross-validated using
a 10-fold cross-validation method, and the final model was acquired. To further validate
the capability of the wheeze detection algorithm on new data, the remaining 25% of data
that had not been used in the acquisition of the SVM model were included in the final
evaluation of model performance. The sensitivity and specificity of the WZ detection
algorithm were calculated from the percentage of true positive (wheeze) detected and the
percentage of true negative (normal breath) detected, respectively. The dataset used for
the WZ detection test was pre-annotated for the presence and absence of wheeze by the
database [20].

3. Results and Discussion
3.1. Usability

The success of a human-centered product design for any functional mask attachment
can loosely be represented by the inability of the wearer to differentiate between wearing a
mask with and without the attachment or experiencing any hindrance in human perfor-
mance. As a qualitative analysis, 16 participants were asked to describe their experience
according to the study design described in the earlier section, which involved deprived
visual-sensory interaction of the participants with two masks. One of the two was modified
with the mask attachment.

Ten out of 16 participants felt that the two masks were different. One participant
expressed that the “motion of the sensor” was felt for the modified mask, and another
reported that the sensor could be felt on the unmodified mask. As the mask attachment is
a non-moving part and the unmodified mask does not contain the mask attachment, these
two participants’ experiences were inconsistent with the facts. Three participants reported
the unmodified mask was more breathable, while two others reported the opposite. One
of the two who reported the opposite said it may be due to the “tightness of the mask”
worn on the unmodified mask. However, the tightness was not mentioned before the data
collection session.

Five participants correctly reported the modified mask was slightly heavier than
the unmodified mask. Nevertheless, no participant reported any significant discomfort
experienced during or after the study.

3.2. Respiratory Rate Estimation

The normal range of resting RR for adults is 12–20 breath per minute (brpm) [24].
Table 2 shows that the resting RRs of 12 recruited participants were within the normal
range, while the resting RRs of three others were above normal.
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Table 2. Comparison of resting respiratory rate between the mask attachment and manual counting
for spontaneous breathing.

Participant
Respiratory Rate (brpm)

Mean Absolute Error (brpm)
Manual Count Mask Attachment

1 17.2 16.2 1.0
2 18.9 22.0 3.1
3 NA NA NA
4 17.2 17.8 0.6
5 12.5 16.5 4.0
6 18.8 16.2 2.6
7 13.9 17.6 3.7
8 21.2 20.8 0.4
9 23.1 19.8 3.3
10 13.6 15.6 2.0
11 20.0 19.0 1.0
12 18.1 18.6 0.5
13 18.9 15.8 3.1
14 21.7 20.8 0.9
15 20.0 20.7 0.7
16 19.8 23.0 3.2

Average error 2.0 ± 1.3
NA: Not available.

The algorithm could accurately measure RR in all ranges, including the range that is
outside of normal range (i.e., >20 brpm). The RR estimation algorithm’s smallest and largest
mean absolute errors were 0.2 brpm and 4.0 brpm, respectively. Autocorrelation function
has also been proven useful in extracting the periodicity of quasi-periodic physiological
signals [25]. However, the accuracy of such a method decreases with increasing inter-
period variability of RR. The results showed that the RR algorithm achieved an overall
high accuracy (with a mean absolute error of 2.0 ± 1.3 brpm) among the 15 participants.
The reference of participant 3 was not available as the breath sound recording was not
heard by the annotators. Thus, the results of participant 3 were excluded from the study.

The main challenge of the RR estimation algorithm was to accurately identify the
inspiration and expiration of a breath and calculate the number of repeated patterns within
a 15-s window, especially in cases where the duration of inspiration and expiration is equal.

Figure 3 demonstrates the risk of overestimating and underestimating the RR. Figure 3a,c
showed that the actual RR was 12.9 brpm, but the RR algorithm was estimated as 18.4 brpm.
Figure 3b shows a burst split in the exhale between 10.5 s and 12.5 s within the same
breath cycle. This may have contributed to the overestimation of the RR algorithm as
it considered this short period of breath cycle in the evaluation window. Conversely,
Figure 3d,f demonstrate the risk of underestimating the RR. The actual RR was 15.1 brpm,
but the RR algorithm estimated 7.1 brpm. Such error occurred because the breath patterns
were irregular (higher variability in the duration of inspiration and expiration and period
of breath cycles within the evaluation window), and that was challenging for the algorithm
to detect the global peaks in the autocorrelation plot in Figure 3f.

Even though the gold standard of respiratory rate monitoring is capnometry, the most
common method while the most common method used in the clinic is manual counting by
healthcare professionals [26,27]. Nevertheless, manual counting of RR is labor-intensive
and unsuitable for continuous or prolonged RR measurement, especially for healthcare
facilities that had been overwhelmed.

Still, manual counting of a one-minute sample recording is widely practiced in various
evaluation protocols [28–30]. For this reason, only a one-minute sample was recorded for
each subject for the evaluation of the RR algorithm. As the RR algorithm computes a 15-s
segment data, with an update rate of 5-s, there will be 10 RR outputs in every one-minute
recording. This is sufficient to validate the RR algorithm to prove a new application concept.
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3.3. Wheeze Detection

The WZ detection algorithm was originally designed to work on chest sounds, using
two low-complexity time-based spectral entropy features to differentiate wheezes from
normal breaths. In the present study, another feature, frequency-based entropy difference,
was added to the WZ detection algorithm to improve classification accuracy. As listed in
Table 3, the sensitivity, specificity, and accuracy of the simulated tracheal normal breaths
and wheeze classified using a support vector machine (SVM) model with a radial basis
kernel function were 88.8%, 94.9%, and 91.9%, respectively. Thus, the wheeze detection
algorithm shows a balanced trade-off between sensitivity and specificity, which is an im-
portant criterion for a “good classifier”. In addition, the model performance was evaluated
using a 10-fold cross-validation method to show that the model was robust when tested in
10 different scenarios.

Table 3. Performance of wheeze detection algorithm.

Actual Breath Classification
Classification by Wheeze Detection Algorithm

Wheeze Normal Breath

Wheeze 469 59 Sensitivity: 88.8%
Normal breath 27 501 Specificity: 94.9%

Positive predictive value: 94.6% Negative predictive value: 89.5% Accuracy: 91.9%

Even though a mannequin with a speaker does not represent an actual wheezy patient,
it is a reasonable simulation that shows the direction of sound from the chest level through
the airway to the sensor attached to the mask for a proof-of-concept study as simulations
have been used in other studies [31,32]. In future studies, the wheeze detection algorithm
will be validated in a clinical trial with actual wheezing patients.

The current study shows that the acoustic sensor is versatile for a different application,
i.e., a mask attachment. Functionally, the original intended use of the sensor at the chest
level provides a more comprehensive cardiopulmonary monitoring as it also estimates
heart rate together with RR. However, the current proposed application provides an easier
mode of administration and a more comfortable solution (with no direct surface contact
of the sensor with the patient) to remotely monitor RR and detect wheeze. Notably, RR
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has also been recognized as the first indication and the best marker of deterioration in a
patient’s conditions [33]. Therefore, the results from the study support that the proposed
mask attachment can help manage patient conditions in overwhelmed clinics.

4. Conclusions

Encountering the pandemic of COVID-19, donning a face mask becomes essential
and even compulsory in certain countries as part of the effort in curtailing the spread of
the virus among the community. The mask attachment was proposed for mass patient
monitoring. The comfort of using the modified face mask has been evaluated through the
verdicts of 16 participants in the usability study. All participants reported no discomfort
using the modified masks, although about half felt differences between the unmodified
and modified masks. Lastly, the overall performance of RR estimation and WZ detection
algorithms have shown that the sensor system, originally developed for chest-worn sensing,
can be versatilely adopted into this work as mask attachment. Future validation of the
application in a real clinical scenario in a larger sample size may be warranted to increase
confidence, acceptability, and favor among the practitioners in clinics.

5. Patent

A significant portion of the technology presented in this work is patent pending in
Singapore with the application number 10202004626V filed by Aevice Health Pte Ltd.,
18 Howard Rd, #06-11 Novelty BizCenter, Singapore 369585.
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