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1. Introduction

Infinite matrices over the real field R and the complex field C and algebras of linear
operators are indispensable in mathematics and its applications (see, for example [1–4]
and references therein). In particular, C∗-algebras play a very important role. However,
for infinite matrices and analogs of such algebras over other normed fields, comparatively
little is known. This is caused by their specific features and additional obstacles arising
from the structure of fields [5–12].

A lot of results in the classical case are based on the fact that the real field R has
a linear ordering compatible with its additive and multiplicative structure. Moreover,
the complex field C is algebraically closed, norm complete, locally compact, and is the
quadratic extension of R. Besides R and C, there are not any other commutative fields with
archimedean multiplicative norms and complete relative to their norms.

Notice, that in the ultrametric (non-archimedean) case the algebraic closure of the
field Qp is not locally compact. There is not any ordering on the infinite normed field such
as Qp, Cp or Fp(t) compatible with its algebraic structure.

It is worth to mention that algebras over fields F other than R and C, non-archimedean
analysis, representations theory of groups and their applications develop fast in recent
years [11,13–18]. Studies of matrices and linear algebras over fields with norms satisfying
the strong triangle inequality are motivated not only by mathematical problems, but also
by their applications in other sciences such as physics, quantum mechanics, quantum field
theory, informatics, etc. (see, for example [19–25] and references therein).

This article is devoted to infinite B∗-matrices over normed fields. Their structure is
studied in the paper. Ideals and centers of B∗-algebras are investigated in Theorems 1 and
2. Relations with operator theory and realizations of these algebras by algebras of infinite
matrices are outlined. Theorems 3 and 4 about their embeddings into operator algebras are
proven. This also provides tools for construction of wide families of such normed algebras.
Realizations of elements of these algebras by infinite matrices are considered in Remark 3
and Example 8. Applications of obtained results are discussed in the conclusion.

All main results of this paper are obtained for the first time.

2. Embeddings of Normed*-Algebras

In this article, infinite matrices are considered over an infinite field F supplied with a
multiplicative non-trivial norm denoted by | · |F, where | · |F satisfies the strong triangle
inequality:

|x + y|F ≤ max(|x|F, |y|F)

Inventions 2021, 6, 92. https://doi.org/10.3390/inventions6040092 https://www.mdpi.com/journal/inventions

https://www.mdpi.com/journal/inventions
https://www.mdpi.com
https://doi.org/10.3390/inventions6040092
https://doi.org/10.3390/inventions6040092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/inventions6040092
https://www.mdpi.com/journal/inventions
https://www.mdpi.com/article/10.3390/inventions6040092?type=check_update&version=1


Inventions 2021, 6, 92 2 of 11

for each x and y in F. It is assumed that the field F is non-discrete and ΓF := {|x|F : x ∈
F \ {0}} ⊂ (0, ∞) = {r ∈ R : 0 < r < ∞}.
Henceforth, the field F is supposed to be complete relative to its norm, if some other will
not be specified.

Matrices with matrix elements belonging to F are naturally related with linear op-
erators in normed spaces over the field F. Suppose that V = c0(α, F) is a Banach space
consisting of all vectors x = (xj : ∀j ∈ α, xj ∈ F) subjected to the condition

card{j ∈ α : |xj| > ε} < ℵ0 for each ε > 0,
where V is supplied with the norm

|x| = supj∈α |xj|,
where α is a set. For two normed spaces X and Y over the field F the linear space L(X, Y)
of all linear continuous operators D : X → Y is also normed:

|D| := supx∈X\{0} |Dx|/|x|.
Let X = c0(α, F), Y = c0(β, F), D ∈ L(X, Y), where α and β are sets. Then, to the

operator D, a unique matrix [D] = (di,j : i ∈ β, j ∈ α) corresponds such that Dx = y and
yi = ∑j∈α di,jxj with di,j ∈ F for each j ∈ α, i ∈ β, x ∈ X, y ∈ Y. The matrix [D] is infinite, if
card(α) ≥ ℵ0 or card(β) ≥ ℵ0. Therefore, to any F-bimodule S contained in L(X, Y), there
corresponds a F-bimodule [S] of matrices. In particular, [S] is an algebra of matrices over F,
if S is a subalgebra in L(X, X).

Assume that A is a normed algebra over the field F such that a norm | · |A on A
satisfies the following conditions:

|a|A ∈ (ΓF ∪ {0}) for each a ∈ A, also
|a|A = 0 if and only if a = 0 in A,
|ta|A = |t|F|a|A for each a ∈ A and t ∈ F,
|a + b|A ≤ max(|a|A, |b|A) and
|ab|A ≤ |a|A|b|A for each a and b in A.
Frequently, it is shortly written | · | instead of | · |F or | · |A.
We remind necessary definitions and notations.

Definition 1. Assume that the field F is of the characteristic char(F) 6= 2. Assume also that
B2 = B2(F) is the commutative associative algebra with one generator i1 such that i21 = −1 and
furnished with the involution (vi1)∗ = −vi1 for each v ∈ F. Suppose that A is a subalgebra in
L(X, X) such that A is also a B2-bimodule, where X = c0(α, F) is the Banach space over a field F,
α is a set. Then, A is called a ∗-algebra if there is a continuous bijective (i.e., injective and surjective)
F-linear operator

(1) I : A→ A such that
(2) I(ab) = (Ib)(Ia) and
(3) I(ga) = (Ia)g∗ and I(ag) = g∗(Ia)
(4) IIa = a
(5) (θ(y))(ax) = (θ((Ia)y))(x)

for every a and b in A and g ∈ B2 and x and y in X, where θ : X ↪→ X′ is the canonical embedding
of X into the topological dual space X′ such that θ(y)x = ∑j∈α yjxj. For the sake of brevity, we can
write a∗ instead of Ia. The mapping I is called the involution.

For two normed ∗-algebras A and B over F a map φ : A → B which is a continuous
homomorphism of algebras and φ(a∗) = (φ(a))∗ for each a ∈ A is called a ∗-homomorphism. If
the ∗-homomorphism φ is bijective and φ−1 : B→ A is also a ∗-homomorphism, then φ is called a
∗-isomorphism, and the normed ∗-algebras A and B are called ∗-isomorphic.

For the normed ∗-algebra A and a ∈ A (or U ⊂ A) by alg∗(a) (or alg∗(U), respectively)
will be denoted a minimal normed subalgebra in A containing a (or U, respectively). By alg∗(U)
will be denoted the closure of alg∗(U) in A.

Remark 1. In Definition 1, θ(y)x is a particular case of a bilinear functional (see [11] and Remark
2 in more details).
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Note that for matrices with entries in C corresponding to operators on C-linear spaces, their
block form with entries in R is frequently used, because each complex number can be written as the
2× 2 matrix with real entries. This is utilized for generating a complex ∗-algebra by the doubling
procedure from a corresponding real algebra [1,3,5,26]. Using similar ideas, one can construct
examples of Banach ∗-algebras over the field F other than R and C with char(F) 6= 2. This is
evident for F = Qp with

√
−1 /∈ Qp for primes p such that p 6= 1 (mod 4) by Corollary 6 in Ch.

1, Section 4 in [25].

Example 1. Let X = c0(α, F) be the Banach space such that card(α) ≥ ℵ0. In view of Theorem
5.13 in [11], the direct sum X⊕ X is isomorphic with X. In more details, one can take for the set α
any fixed partition α = α1 ∪ α2 with α1 ∩ α2 = ∅ and card(α1) = card(α), card(α2) = card(α).
Therefore, c0(αj, F) = Xj is isomorphic with X for each j ∈ {1, 2} and X1 ⊕ X2 is isomorphic
with X. This also implies that L(Xj, Xj) is isomorphic with L(X, X) as the Banach algebra for each
j ∈ {1, 2}.

For row vectors x ∈ X and operators a ∈ L(X, X), it is frequently written for convenience
xa instead of x[a] or a(x), where [a] is a matrix corresponding to an operator a. Assume that
char(F) 6= 2. For char(F) 6= 2 the algebra B2 = B2(F) can be embedded into L(X, X) in the
standard way, up to an automorphism of the Banach algebra L(X, X), as induced by the formula
(x1, x2)i1 = (−x2, x1) for each x = (x1, x2) ∈ X, where x1 ∈ X1 and x2 ∈ X2, i21 = −I, I is the
unit operator on X.

Example 2. Let the condition of Example 1 be satisfied. Let B be a Banach subalgebra in L(X, X)
and let ψ : B→ B be any continuous antiautomorphism of B. That is ψ is an F-linear map with
continuous ψ and ψ−1, ψ is a bijection (i.e., injection and surjection), ψ(ab) = ψ(b)ψ(a) for each
a and b in B. Such antiautomorphisms always exist, for example, ψ(ab) = ba for each a and b in
B [1,5,27]. Shortly, we denote ψ(a) by aψ.

There are natural embeddings ηj of L(Xj, Xj) into L(X, X) as the Banach algebras such
that (x1, x2)η1(a) = (x1a, 0) for each a ∈ L(X1, X1), (x1, x2)η2(b) = (0, x2b) for each b ∈
L(X2, X2), for each x = (x1, x2) ∈ X with x1 ∈ X1, x2 ∈ X2, where j ∈ {1, 2}. Then, to each
c ∈ L(X1, X2) or d ∈ L(X2, X1), one can pose operators η3(c) with (x1, x2)η3(c) = (0, x1c) and
η4(d) with (x1, x2)η4(d) = (x2d, 0) for each x1 ∈ X1 and x2 ∈ X2. Shortly, η1(a), η2(b), η3(c),
η4(d) will be denoted by a, b, c, d, respectively.

Let ψ be the antiautomorphism of L(X1, X1). The Banach algebras L(X1, X1) and L(X2, X2)
are isomorphic, hence ψ on L(X1, X1) induces ψ on L(X2, X2). For each a1 ∈ L(X1, X1) let
η5(a1) ∈ L(X, X) be such that (x1, x2)η5(a1) = (x1a1, x2aψ

1 ) for each x1 ∈ X1 and x2 ∈
X2. Notice that, with B2 = B2(F) as in Example 1, evidently AL(X1,X1)

:= η5(L(X1, X1)) +
η5(L(X1, X1))i1 is the B2-bimodule, where U + W = {x = u + w : u ∈ U, w ∈W} for subsets
U and W in a F-linear space Y.

We take the antiautomorphism ψ of L(X1, X1) and extend it on AL(X1,X1)
such that iψ

1 = −i1
and (a1 + b1i1)ψ = aψ

1 + iψ
1 bψ

1 for each a1 and b1 in η5(L(X1, X1)). For any a1 and b1 in AL(X1,X1)
,

we put (a1i1)∗ = i∗1 a∗1 and (a1 + b1i1)∗ = a∗1 − bψ
1 i1. Hence, a∗1 = −i1aψ

1 i1, (a∗1)
ψ = (aψ

1 )
∗ and

(a1b1i1)∗ = −bψ
1 aψ

1 i1, since bψ
1 aψ

1 = (a1b1)
ψ. Therefore, (αβ)∗ = β∗α∗ for each α = a1 + b1i1

and β = a2 + b2i1 with a1, a2, b1, b2 in η5(L(X1, X1)), since (a1 + a2)
ψ = aψ

1 + aψ
2 , (a1a2)

ψ =

aψ
2 aψ

1 , (aψ
1 )

ψ = a1, (a∗1)
∗ = a1. This implies that AL(X1,X1)

is the closed subalgebra in L(X, X)
and AL(X1,X1)

is supplied with the ∗-algebra structure.

Example 3. Let the conditions of Example 2 be satisfied. We take any fixed antiautomorphism ψ
on L(X1, X1) extended on η5(L(X1, X1)) + η5(L(X1, X1))i1 and inducing the involution as in
Example 2. Certainly, for any given subset V in L(X1, X1), there exists a minimal closed subalgebra
AV in (L(X, X), | · |) such that η5(V) ⊂ AV , AV is the B2-bimodule, A∗V = AV . This algebra AV
is the intersection of all closed ∗-subalgebras Wk in (L(X, X), | · |) such that η5(V) ⊂Wk and Wk is
the B2-bimodule, where Wk is with the involution inherited from η5(L(X1, X1)) + η5(L(X1, X1))i1
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and Wk ⊂ η5(L(X1, X1)) + η5(L(X1, X1))i1. Evidently, AV is the closure in (L(X, X), | · |) of a
family FV of all operators of the following form:

a = f1η5(v1) + ... + fnη5(vn) + fn+1η5(vn+1)i1 + ... + fn+mη5(vn+m)
belonging to L(X, X) with f1, ...., fn+m in F, v1,...,vn+m in V ∪Vψ, where Vψ = {vψ : v ∈ V}.

Take X1,1 = c0(α1,1, F), X1,2 = c0(α1,2, F) with α1 = α1,1 ∪ α1,2, α1,1 ∩ α1,2 = ∅,
card(α1,1) = card(α1), card(α1,2) = card(α1), where card(α1) = card(α), card(α) ≥ ℵ0.
Therefore, X1 is isomorphic with X1,1 ⊕ X1,2 and with X1,j for each j ∈ {1, 2}. In particular, V can
be taken contained in L(X1,1, X1,1), since there is the natural embedding η1,1 : L(X1,1, X1,1) ↪→
L(X1, X1) for (X1,1, X1) analogously to η1 for (X1, X) described above. Therefore, there exists
V 6= IF, V 6= L(X1, X1) such that AV 6= AL(X1,X1)

and AV is the nontrivial ∗-algebra.

Example 4. Let the conditions of Examples 1 and 2 be satisfied. For Banach spaces B and Y over F
by B⊗̂FY is denoted the completion relative to the projective tensor product topology (see [11,28])
of the tensor product B⊗F Y over the field F; or shortly B⊗̂Y instead of B⊗̂FY, if F is specified.
Let also V ⊂ X1⊗̂X1, where X1 = c0(α1, F). In view of Theorems 4.33, 4.40, and 4.41 in [11],
X1⊗̂X1 ↪→ Lc(X1, X1) ↪→ L(X1, X1) and X1⊗̂X1 is the closed subalgebra in Lc(X1, X1), where
Lc(X1, X1) denotes the algebra of all compact operators from X1 into X1. Notice that Lc(X1, X1)
is isomorphic with X′1⊗̂X1 by Theorem 4.41 [11], where X′1 is the topological dual space of X1,
X′1 = L(X1, F). We say that X1⊗̂X1 is the algebra of bicompact operators. In this case, it is possible
to take aψ = at for each a ∈ X1⊗̂X1, where [at]k,j = [a]j,k for each j and k in α1. This implies that
AV ⊂ η5(X1⊗̂X1) + η5(X1⊗̂X1)i1 ⊂ X⊗̂X (see Example 3). Hence, AV 6= AL(X1,X1)

.

Example 5. Other examples of ∗-algebras which are proper subalgebras in AL(X1,X1)
can be

provided utilizing combinations of Examples 3 and 4. Note also that finite direct sums of ∗-algebras
are ∗-algebras.

Assume that Λ is an infinite set. For Banach spaces Xj over F for each j ∈ Λ, let c0(Xj :
j ∈ Λ) denote a Banach space over F such that each x ∈ c0(Xj : j ∈ Λ) has the form x =
(xj : ∀j ∈ Λ, xj ∈ Xj) and ∀ε > 0, card{j : |xj| > ε} < ℵ0, |x| = supj∈Λ |xj|, f x =

( f xj : ∀j ∈ Λ, xj ∈ Xj) for each f ∈ F, x + y = (xj + yj : ∀j ∈ Λ, xj ∈ Xj, yj ∈ Xj)
for each x and y in c0(Xj : j ∈ Λ). Assume also that Gj is a Banach ∗-algebra over the field
F for each j ∈ Λ. Then, G := c0(Gj : j ∈ Λ) is the Banach ∗-algebra with multiplication
xy = (xjyj : ∀j ∈ Λ, xj ∈ Gj, yj ∈ Gj) and inversion x∗ = (x∗j : ∀j ∈ Λ, xj ∈ Gj) for each x and
y in G. We call G the c0 direct sum of the Banach ∗-algebras Gj and denote it also by G =

⊕c0
j∈Λ Gj.

Similarly, a l∞ direct sum can be defined.

3. Bilinear Functionals on Algebras

Definition 2. For a topological algebra A over a field F and a subset S of A, the left annihilator
of S is defined by L(A, S) := {x ∈ A : xS = 0} and the right annihilator of S by R(A, S) :=
{x ∈ A : Sx = 0}. Shortly, they also will be denoted by Al(S) := L(A, S) and Ar(S) := R(A, S)
correspondingly.

The algebra A is called an annihilator algebra if it satisfies conditions (6)–(8):
(6) Al(A) = Ar(A) = 0 and
(7) Al(Jr) 6= 0 and
(8) Ar(Jl) 6= 0

for all proper closed right Jr and left Jl ideals in A.

Definition 3. Let A and B be two Banach algebras over the normed field F. Let A⊗̂FB be the
completion relative to the projective tensor product topology (see [11,28]) of the tensor product
A⊗F B over the field F.

Suppose that B is a Banach algebra over the normed field F, and x is an element in B. It will
be said that x has a left core quasi-inverse y if for any complete normed (valued) field extension H of
F an element y ∈ BH exists satisfying the equality x + y + yx = 0, where BH = B⊗̂F H, where H
is such that |b|H = |b|F for each b ∈ F. In particular, if only the field H = F is considered, it is
called a left quasi-inverse.
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Assume that A is a unital Banach algebra over F. Suppose also that an element x ∈ A has the
property: for any complete normed (valued) field extension G of F the left inverse (1 + yx)−1

l exists
in AG for each y ∈ AG, where G is normed such that |b|G = |b|F for each b ∈ F. Then, we call x a
generalized core nil-degree element. The family of all generalized core nil-degree elements of A is
called a core radical and it is denoted by Rc(A). A radical of the algebra A is denoted by R(A).

Remark 2. We recall known necessary facts about bilinear functionals. Let E and Y be Banach
spaces over the field F. A space Bil(E, Y; F) of all continuous bilinear functionals T : E×Y → F
is normed and isomorphic with L(E, L(Y, F)) and with L(Y, L(E, F)) (Ch. 4 in [11]).

Let X = c0(N, F) be a Banach space over the field F (F is complete relative to its multiplicative
norm, as it was supposed above). Let S : X → X be a compact operator. Then, for each x and y in
L(X, X), the trace Tr(xSy) exists and

(9) |Tr(xSy)| ≤ |x||S||y|.
Indeed, let S be a marked compact operator, S ∈ Lc(X, X). A series ∑∞

j=1 bj with bj ∈ F for
each j ∈ N converges in F if and only if limj→∞ bj = 0 by Proposition 23.1 in [16], since the
field F is complete relative to its norm. Notice that the trace Tr(C) = ∑j Cj,j is defined for each
compact operator C ∈ Lc(X, X) by Theorem 4.40 in [11] (see also Definition 2.2 in [9]). By virtue
of Theorems 4.37 and 4.40 in [11] Lc(X, X) is the closed two-sided ideal in L(X, X). This implies
that Tr(xSy) exists for each x, y in L(X, X) (see also Theorem 2 in [9]). Since |Tr(C)| ≤ |C| and
|xSy| ≤ |x||S||y|, then |Tr(xSy)| ≤ |x||S||y| for each x, y in L(X, X).

Notice that for a subalgebra A in the algebra L(X, X) the trace Tr(xSy) exists for each x, y
in A as the restriction of this bilinear continuous functional from L(X, X) on A. In this article
bilinear functionals are considered on Banach spaces.

Lemma 1. Let G be a normed ∗-algebra over F of char(F) 6= 2 such that G ⊂ L(X, X) and
G = G1⊕G1i1 with G1 being a subalgebra in L(X1, X1) (see Example 3). Let also (·, ·)1 : G2

1 → F
be a bilinear functional on G1 such that for each nonzero a1 ∈ G1 \ {0} there exists a2 ∈ G1 with
(a1, a2)1 6= 0. Then, the bilinear functional (·, ·)1 has a bilinear extension (·, ·) : G2 → F such
that for each nonzero a ∈ G \ {0} there exists b ∈ G with (a, b) 6= 0.

Proof. We put
(10) (a, b) = (a1, a2)1 − (b1, b2)1

for each a = a1 + b1i1 and b = a2 + b2i2 in G with a1, a2, b1 and b2 in G1. If a 6= 0, then
either a1 6= 0 or b1 6= 0. For a1 6= 0 one can take a2 in G1 with (a1, a2)1 6= 0 and put b1 = 0.
For b1 6= 0 one can take b2 ∈ G1 with (b1, b2)1 6= 0 and put a2 = 0.

4. B∗-Matrices and Algebras

Definition 4. Let A be an normed algebra over the field F, (see Introduction), satisfying the
following conditions:

(11) A is a Banach ∗-algebra and
(12) there exists a bilinear functional (·, ·) : A2 → F such that |(x, y)| ≤ q|x||y| for all x

and y in A, where 0 < q < ∞ is a constant independent of x and y,
(13) (x, y) = (y, x) and (x, y) = (x∗, y∗) for each x and y in A,
(14) if (x, y) = 0 for each y ∈ A, then x = 0;
(15) (xy, z) = (x, zy∗) for every x, y and z in A,
(16) xx∗ 6= 0 for each nonzero element x ∈ A \ (0).
Then we call A a B∗-algebra. If an operator D belongs to the B∗-algebra A, A ⊂ L(X, X),

X = c0(α, F), then the corresponding matrix [D] is called a B∗-matrix.

Lemma 2. For a ∗-subalgebra A of L(X, X) with X = c0(N, F), a bilinear functional (·, ·)
satisfying conditions (12), (13), and (15) exists.

Proof. We put (x, y) = Tr(x∗Sy), where S is a marked compact operator such that S∗ = S,
S ∈ Lc(X, X), X = c0(N, F) (see Remark 2). From the inequality (9) it follows that
Condition (12) is valid. From Tr(C∗) = (Tr(C))∗ = Tr(C) for each C ∈ Lc(X, X) and



Inventions 2021, 6, 92 6 of 11

(x∗Sy)∗ = y∗Sx property (13) follows, since b∗ = b for each b ∈ F. Then, using the
identity Tr(CD) = Tr(DC) = ∑k,j Ck,jDj,k for each C ∈ Lc(X, X) and D ∈ L(X, X) we
deduce that (xy, z) = Tr(y∗x∗Sz) = Tr(x∗Szy∗) = (x, zy∗) for every x, y and z in A, since
(xy)∗ = y∗x∗.

Lemma 3. Let X = c0(N, F) and let A be a Banach ∗-algebra over F such that A ⊂ L(X, X). Let
also either (1) or (2) be satisfied:

(i) If char(F) 6= 2 and for each a ∈ A \ {0} there exists a normed extension Ka of the field F
such that there exists a ∗-homomorphism φa from Ka⊗̂Falg∗(a) into a ∗-algebra Ba, such that
Ba ⊂ L(XKa , XKa) with XKa = c0(N, Ka) and φa(aa∗) = J−1DJ, where J ∈ L(XKa , XKa)
is an invertible operator and a matrix [D] of an operator D ∈ L(XKa , XKa) is diagonal and
nonzero, [D] 6= 0; or

(ii) if char(F) = 0 and for each a ∈ A \ {0} there exists a ∗-homomorphism ψa : alg∗(a) →
AL(X1,X1)

with nonzero image ψa(a), ψa(a) 6= 0 (see Examples 2 and 3),

then conditions (12)–(16) are also valid. Moreover,

(iii) if Aj is a B∗-algebra over F for each j ∈ N,

then A :=
⊕c0

j∈N Aj and B :=
⊕l∞

j∈N Aj are B∗-algebras.

Proof. In cases (i) and (ii), in view of Lemmas 2, 1, and Formula (10), Conditions (12),
(13) and (15) are satisfied. Indeed, using injective ∗-homomorphism it is possible to choose
S ∈ Lc(X, X) for which the decomposition S = T−1YT is such that T : X → X is an
automorphism of the Banach space X and S∗ = S, also Yej = Yj,jej with Yj,j 6= 0 for each j,
while Yi,j = 0 for each i 6= j, where {ek : k ∈ N} is the standard basis of X, since f ∗ = f for
each f ∈ F. Then, we get property (14), since Tr(x∗Sy) ∈ F.

In case (i), we deduce that φa(a)(φa(a))∗ 6= 0, hence aa∗ 6= 0, since φa is the ∗-
homomorphism and φa(aa∗) = φa(a)(φ(a))∗. This implies (16).

In case (ii), let x = ψa(a). By the imposed conditions in (2) x is nonzero, x 6= 0.
On the other hand, (bx)(bx)∗ = b(xx∗)b∗ and (xx∗)∗ = xx∗ for each b ∈ AL(X1,X1)

. Let
Ej,k = e′ j ⊗ ek, e′ j = θ(ej) for each j and k in α1 (see also Definition 1 and Examples 2, 3).
Therefore, considering b ∈ A of the form b = b1 + b2i1 with bl = ∑k,j fl;j,kEj,k with fl;j,k ∈ F
for every l ∈ {1, 2}, j and k in N, one finds coefficients fl;j,k such that (bx)(bx)∗ 6= 0, since
Ej,k ∈ X1

⊗̂
FX1 ↪→ L(X1, X1) for each j, k in α1, x 6= 0. Note that (bx)(bx)∗ 6= 0 implies

that xx∗ 6= 0 and consequently, aa∗ 6= 0, since the algebra A is associative and ψa is the
∗-homomorphism. Thus, property (16) also is fulfilled.

(iii). For each x ∈ A (or x ∈ B), there is the decomposition
(17) x =

⊕c0
j∈N xj (or x =

⊕l∞
j∈N xj, respectively) with xj ∈ Aj for each j ∈ N.

Therefore, xx∗ =
⊕c0

j∈N xjx∗j (or xx∗ =
⊕l∞

j∈N xjx∗j , respectively). Hence if x 6= 0, then
xx∗ 6= 0.

For each j ∈ N there exists a constant wj > 0 such that |(xj, yj)j| ≤ wj|xj||yj| for each
xj, yj in Aj, where (xj, yj)j denotes the bilinear functional on Aj satisfying the conditions
of Definition 4. We choose π ∈ F such that 0 < |π| < 1, because the field F is infinite
non-discrete. For each j ∈ N there exists l(j) ∈ N such that |π|j < wj|π|l(j) ≤ |π|j−1. Let

(18) (x, y) = ∑∞
j=1(xj, yj)jπ

l(j),
then |(x, y)| ≤ |x||y|/(1− |π|) for each x and y in A (or B, respectively). This implies that
the bilinear functional given by Formula (18) satisfies conditions of Definition 4.

Lemma 4. If Jr and Jl are proper or improper right and left ideals in a B∗-algebra A, then L(A, Jr)
and R(A, Jl) are orthogonal relative to the family of bilinear functionals {(·, ·)a : a ∈ A} comple-
ments of the sets J∗r and J∗l in the Banach space A, where (x, y)a = (ax, ay) for every a, x and y
in A.



Inventions 2021, 6, 92 7 of 11

Proof. If x ∈ L(A, Jr) (see Definition 2), then xJr = (0), hence (axJr, aA) = 0 for each a ∈ A
and consequently, (ax, aAJ∗r ) = 0 by identity (15) and inevitably (ax, aJ∗r ) = 0. This means
that x ∈ A	 J∗r relative to {(·, ·)a : a ∈ A}, that is L(A, Jr) is the orthogonal complement of
J∗r . Similarly, R(A, Jl) is the orthogonal complement of J∗l in A as the Banach space relative
to the family {(·, ·)a : a ∈ A} of bilinear functionals.

Proposition 1. Any B∗-algebra A is dual.

Proof. If Jr and Jl are right and left ideals in A, then by Lemma 4 R(A, L(A, Jr)) = R(A, A	
J∗r ) = A	 (A	 Jr) = Jr and analogously L(A,R(A, Jl)) = Jl , since A∗ = A and (J∗r )∗ =
Jr.

Theorem 1. Any B∗-algebra A over the spherically complete field F with Rc(A) = R(A) is
representable as the direct sum of its two-sided minimal closed ideals, which are simple B∗-algebras
and pairwise orthogonal relative to the family of bilinear functionals {(·, ·)a : a ∈ A}.

Proof. By virtue of Theorem 8 in [9] and Proposition 1, the algebra A is the completion
(relative to the norm) of the direct sum of its minimal closed two-sided ideals which are
simple dual subalgebras (see also Definition 3). Consider a two-sided minimal closed non
null ideal J in A. The involution mapping x 7→ Ix = x∗ provides from it the minimal
closed two-sided ideal J∗ due to Condition (1).

Suppose that J∗ 6= J, then J J∗ = (0), since the ideal J is minimal. From aJ ⊂ J and
Ja ⊂ J for each a ∈ A we deduce that AJJ∗A = (0). Together with condition (16) imposed
on the B∗-algebra, this would imply that x = 0 for each x ∈ J contradicting J 6= (0). Thus,
J∗ = J.

Notice that properties (11)–(13) and (15) for J are inherited from that of A. Then,
condition (16) on A implies that J2 6= (0), since J∗ = J and AJ ⊆ J, also JA ⊆ J. However,
J is minimal, hence J2 = J. Therefore, property (14) on J follows from that of on A
and (15) and J2 = J, since for each u ∈ J there exists x and y in J with u = xy and
(u, z) = (xy, z) = (x, zy∗) for all z ∈ A, also since zy∗ ∈ J. Then, for each y ∈ J \ (0) an
element x ∈ J \ (0) exists such that xy 6= 0, hence u = xy ∈ J \ (0). Then, we have that
uu∗ 6= 0 by (16) on A. Hence, (xy)(xy)∗ 6= 0, consequently, yy∗ 6= 0, since the algebra
A is associative and x(yy∗)x∗ 6= 0. Therefore, property (16) on J is valid. Thus, J is the
B∗-algebra.

If J and S are two distinct minimal closed two-sided ideals in A, then JS = (0). From
Lemma 4, it follows that S ⊂ R(A, J) = A	 J∗ = A	 J. Thus, these ideals J and S are
orthogonal relative to the family {(·, ·)a : a ∈ A} of bilinear functionals.

Using condition (14) and Lemma 4, we infer that A is the direct sum of its two-sided
minimal closed ideals.

Theorem 2. Let A be a simple unital B∗-algebra over the spherically complete field F with Rc(A) =
R(A) and let a division algebra G be provided by Theorem 2 in [10]. Then, the following conditions
are equivalent:

(i) AG is finite dimensional over G;
(ii) AG is unital;
(iii) the center Z(AG) of AG is non-null.

Proof. Let {wj : j ∈ Λ} be a maximal system of irreducible idempotents provided by
Theorem 2 in [10].

(i)⇒ (ii). If AG is finite dimensional over G, then according to Theorem 1, a maximal
system {wj : j ∈ Λ} of irreducible idempotents is finite, that is card(Λ) < ℵ0. Then,
their sum w = ∑j∈Λ wj is the idempotent fulfilling the condition x = ∑j∈Λ xwj = xw and
x = ∑j∈Λ wjx = wx. Thus, w is the unit in AG.
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(ii)⇒ (iii). If AG contains a unit w, then Z(AG) contains w, consequently, Z(AG) is
non-null.

(iii) ⇒ (i). Let Z(AG) 6= (0) and x be a non-zero element of Z(AG), x 6= 0. In
view of Theorem 2 in [10] xwj = (xwj)wj = wjxwj = w2

j xwj, hence xwj = bjwj = wjbjwj,
where bj ∈ G. Thus (bjwj)wj = wj(bjwj). Therefore, x = ∑j xwj = ∑j bjwj and hence
bjwj,k = bjwjwj,k = xwjwj,k = xwj,k = wj,kx = wj,kwkx = wj,kxwk = wj,kbkwk. Similarly,
bkwk,j = wk,jbjwj, consequently, bjwj,kwk,j = bjwj = wj,kbkwkwk,j = wj,kbkwk,j and hence
∑j bjwj = bkwk + ∑j,j 6=k wj,kbkwk,j = ∑j wj,kbkwk,j.

Note that wj AGwj = Gwj for each j, where wj plays the role of the unit in Gwj. Then,
Gwj ⊇ wj(wj,k AGwk,j)wj = wj,k AGwk,j
= wj,k(wk AGwk)wk,j ⊇ wj,k(wk,j AGwj,k)wk,j = wj AGwj = Gwj

for each j and k, hence Gwk 3 b 7→ wj,kbwk,j ∈ Gwj is the isomorphism of normed algebras
Gwj with Gwk for each j and k.

Therefore, the sum ∑j wj,kbkwk,j = ∑j wj,kwkbkwkwk,j may converge only if it is finite.
Thus, the algebra AG is finite dimensional over G.

Remark 3. For a Banach space H over the field F and a set α by c0(α, H) is denoted a c0 direct sum
of α copies of H such that c0(α, H) is a Banach space consisting of all vectors y = (yj ∈ H : j ∈ α)
with |y| = supj∈α |yj| < ∞ and such that for each t > 0 a set {j ∈ α : |yj| > t} is finite. In
particular, for the Banach space X = c0(α, F) over a spherically complete field F, there exists a
topological dual space X′ of all continuous F-linear functionals h : X → F (see Ch. 2 and 5 in [11]
or Ch. 8 in [29]). Each vector x in XH has the following decomposition: x = ∑j∈α ejxj, where
xj ∈ H, ej ∈ XH with ej = (δi,j : i ∈ α), δi,j denotes the Kronecker delta symbol such that
δi,j = 0 for each i 6= j in α, δj,j = 1 for each j ∈ α.

Then, for a division algebra H over the spherically complete field F and a Banach H-bimodule
XH = c0(α, H) we consider a bounded F-linear right H-linear operator C from XH into XH
, that is C(xb) = (Cx)b for each x ∈ XH and b ∈ H. The embedding of F into H as F1H ,
where 1H is a unit element in H, induces a F-linear embedding of X into XH . In this case
to each x ∈ X there corresponds a continuous F-linear right H-linear functional x′ = θ(x)
such that θ(x)y = ∑j∈α xjyj for each x ∈ X and y ∈ XH . This induces a natural embedding
θ : X ↪→ Lr(XH , H), where Lr(XH , H) denotes a space of all bounded F-linear right H-linear
operators from XH into H (see Ch. 3 and 5 in [11], Proposition 23.1 in [16]). Therefore, for the
operator C and for each i and j in α, there exists a matrix element θ(ej)Cei =: Cj,i. Then, by
Lr,d(XH , XH) is denoted the space of all bounded F-linear right H-linear operators C from XH into
XH satisfying the condition:

(i) for each t > 0 a finite subset γ in a set α exists such that |Cj,k| < t for each j and k with either
j ∈ α \ γ or k ∈ α \ γ.

Theorem 3. Let A be a spherically complete simple unital B∗-algebra over a spherically complete
field F with Rc(A) = R(A). Let also G be a division algebra provided by Theorem 2 in [10] such
that s1/2 ∈ G for each s ∈ G, also G ⊂ A and G∗ = G. Then a Banach G-bimodule XG exist such
that A and Lr,d(XG, XG) are isomorphic as the Banach right G-modules and as F-algebras.

Proof. By the conditions of this theorem, a division algebra G is such that wAw ⊂ Gw for
each irreducible idempotent w in A. Put H = G ∩ G∗. From G = G∗, it follows that H = G.
If b ∈ H, then b1/2 ∈ G and (b1/2)∗ = (b∗)1/2 ∈ G, since H∗ = H, consequently, b1/2 ∈ H.

For each irreducible idempotent w such that wAGw = G (see the proof of Theorem 3
in [10]) one gets that ww∗ 6= 0, since A is the B∗-algebra over F. Then, (ww∗)(ww∗)∗ 6= 0,
hence ww∗ww∗ 6= 0 and consequently, w∗ww∗ 6= 0 implying that ww∗w 6= 0, since
(w∗ww∗)∗ = ww∗w and c∗∗ = c for each c ∈ A. Therefore, w∗w 6= 0 also.

Since w is the irreducible idempotent and A∗ = A, then w∗ is the irreducible idempo-
tent in the B∗-algebra A. Then, we deduce that w∗ww∗ ∈ (w∗AGw∗)w∗ ⊆ G∗w∗ = (wG)∗,
since A∗ = A, consequently, an element s ∈ G∗ \ (0) exists such that w∗ww∗ = sw∗, since
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w∗ww∗ 6= 0. The latter implies w∗ww∗w = sw∗w. However, the elements w∗ww∗w and
w∗w are self-adjoint, hence sw∗w = w∗ws∗ and consequently,

w∗w(s∗)−1 = s−1w∗w.
We put v = s−1w∗w, hence
v∗ = w∗w(s∗)−1 = s−1w∗w = v and
v2 = s−1w∗ws−1w∗w = s−1w∗ww∗w(s∗)−1

= (s−1(sw∗w))(s∗)−1 = w∗w(s∗)−1

= s−1w∗w = v.
Thus, v is the self-adjoint idempotent. On the other hand, AGv = AGs−1w∗w ⊆ AGw

and AGv 6= 0 and the idempotent w is irreducible, hence the idempotent v is also irreducible,
since AGw is the non-null minimal left ideal in AG.

Then, from the proof of Theorem 2 in [10] it follows that (vAGv)∗ = v∗A∗Gv∗ = vAGv
is the self-adjoint division algebra for each such irreducible self-adjoint idempotent v,
consequently, vAGv ⊆ Hv. By the conditions of this theorem we have A = AG.

The algebra A is simple, that is by the definition each its two-sided ideal coincides
with either (0) or A.

Next we take a maximal orthogonal system {wj : j ∈ Λ} of self-adjoint idempotents
in A and for them elements wj,k as in Theorem 2 in [10], where Λ is a set. Hence, wj,kw∗j,k ∈
wj Awj and b = bj,k ∈ H exists such that wj,kw∗j,k = bwj. Then, bwj = wjb∗, since w∗j = wj

and (wj,kw∗j,k)
∗ = wj,kw∗j,k. Moreover, b 6= 0, since wj,k is non null and hence wj,kw∗j,k is

non-null. For vj,k = (bj,k)
−1/2 wj,k, we deduce that vj,kv∗j,k = wj, since

b−1/2wj,kw∗j,k(b
−1/2)∗ = b−1/2bwj(b−1/2)∗

= wj(b1/2)∗(b−1/2)∗ = wj(b−1/2b1/2)∗ = wj,
since A is associative and b−1/2 ∈ H for each non null b in H, where b = bj,k.

Thus, it is possible to choose an element wj,k such that wj,kw∗j,k = wj for each k. Taking
a marked element j = j0 and setting wk,j = w∗j,k and wl,k = wl,jwj,k for each l and k one
gets w∗l,k = w∗j,kw∗l,j = wk,jwj,l = wk,l and wk,k = wk, also wk,lwi,h = δl,iwk,h for every h, i, k, l.
Thus, elements wl,k can be chosen such that w∗l,k = wk,l for each l and k.

If the statement of this theorem for the spherical completion H̃ of H is proven, then
it will imply the statement of this theorem for H. So the case of the spherically complete
division algebra H is sufficient. Then, A and H considered as the Banach spaces over
the spherically complete field F are isomorphic with c0(α, F) and H with c0(β, F) due to
Theorems 5.13 and 5.16 in [11], where β ⊂ α.

From the proof of Theorem 3 in [10], it follows that the sum B := ∑j,k wj Awk is
dense in A. Conditions (12), (13), (15) imply that (xy, z) = (y, x∗z), since t∗ = t for each
t ∈ F. Therefore, from properties (12), (13), (15) it follows that if j 6= h or k 6= l, then
(wjxwk, whzwl) = 0 for each x and z in A, since

(wjxwk, whzwl) = (wjx, whzwlw∗k ) = (wjx, whz(wlwk)) = (wjx, 0) = 0 for each k 6= l,
also

(whzwl , wjxwk) = (zwl , w∗hwjxwk) = (zwl , (whwj)xwk) = (zwl , 0) = 0 for each j 6= h.
Thus, the set {wj,k : j, k} is complete and (wj,k H, wh,l H) = (0) for each j 6= h or k 6= l,
where the latter property is interpreted as the orthogonality. Together with property (14),
this implies that each element x ∈ A has the form x = ∑j,k∈Λ wj,kxj,k with limj,k wj,kxj,k = 0,
since AH is the right H-module, also A is isomorphic with AG as the F-algebra and the
right G-module, where the series may be infinite, xj,k ∈ H for each j, k ∈ Λ, where Λ
denotes the corresponding set.

Take the Banach H-bimodule XH = c0(Λ, H) and to each element x ∈ B one can pose
the operator Tx such that e′jTxek = xj,kξ j,k (see Remark 3), where ξ j,k ∈ F and |ξ j,k| = |wj,k|
for each j and k in Λ, since |a| ∈ (ΓF ∪ {0}) for each a ∈ A, where B := ∑j,k wj Awk (see
above). Then, Tx ∈ Lr,d(XH , XH) and the mapping T : B → Lr,d(XH , XH) is the isometry
having the isometrical extension T : A → Lr,d(XH , XH). The property wj,kw∗j,k = wj 6= 0
given above provides |wj,k| 6= 0 for each j and k ∈ Λ, consequently, T is bijective from A
onto Lr,d(XH , XH), since A is simple.
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For each S and V in Lr,d(XH , XH), one has SV(xb) = S(Vx)b = (SVx)b for each
b ∈ H and x ∈ XH . Moreover, |(SV)j,k| ≤ supm |Sj,m||Vm,k|, consequently, SV satisfies
condition (i) in Remark 3, that is SV ∈ Lr,d(XH , XH). Hence, by verifying other properties,
one gets that Lr,d(XH , XH) also has the F-algebra structure. From the construction of AH , it
follows that AH is the F-algebra, since H and A are F-algebras. Notice that, moreover, AH
as the F-algebra is isomorphic with the Banach F-algebra Lr,d(XH , XH). By the conditions
of this theorem, AH is isomorphic with A as the F-algebra and the right H-module.

Theorem 4. Let A be a spherically complete simple unital B∗-algebra over the spherically complete
field F with Rc(A) = R(A) and Z(A) = F. Let also G be a division algebra provided by Theorem
2 in [10] such that s1/2 ∈ G for each s ∈ G. Then a division subalgebra H of G and a Banach H-
bimodule XH exist such that AH and Lr,d(XH , XH) are isomorphic as the Banach right H-modules
and as F-algebras.

Proof. In this case, H = G ∩ G∗ and instead of A we consider AH = A⊗̂F H.
The B∗-algebra A is simple and central, Z(A) = F, hence the right H-module AH is

simple due to Satz 5.9 in [7] and Theorem 2 above. We denote AH shortly by A and the rest
of the proof is similar to that of Theorem 3.

From Theorems 1, 3 and 4, the corollary follows.

Corollary 1. Suppose that A is a spherically complete unital B∗-algebra over the spherically
complete field F with Rc(A) = R(A) and G is the division algebra given by Theorem 2 in [10] so
that s1/2 ∈ G for each s ∈ G such that either

(19) G ⊂ A and G∗ = G or
(20) Z(A) = F.
Then, a division subalgebra H in G with H∗ = H and H-bimodules Xk,H exist such that AH

as the right H-module and the F-algebra is the direct sum of Lr,d(Xk,H , Xk,H).

Example 6. Let A be a B∗-algebra over a spherically complete normed field F (see Definition 4 and
Introduction). Evidently, the algebra A also has the structure of the Banach A-bimodule. Hence,
there exists a Banach space H over F such that A can be embedded into the normed algebra L(H, H)
of all bounded F-linear operators D : H → H. In view of Theorems 5.13 and 5.16 in [11], there
exists a set α such that H is isomorphic with the Banach space c0(α, F) (see Remark 3). Therefore,
each element D of A is characterized by the corresponding to it matrix [D], which is unique relative
to a fixed basis in H. This matrix is infinite, if card(α) ≥ ℵ0.

5. Conclusions

The results obtained in this article can be used for further studies of infinite matrices
structure. Moreover, it provides new tools for investigations of their algebras over normed
fields, linear operator algebras on Banach spaces, spectral theory of linear operators, the
representation theory of groups, algebraic geometry, PDEs, mathematical physics. Then,
studies of relations with symplectic structures may be of some interest [13]. It is important
also for their applications in the sciences, including quantum mechanics, quantum field
theory, informatics, etc. (see [1,4,5,7,8,11,14,15,19,20,23–25] and references therein).
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