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Abstract: The aim of this study is the aerodynamic degradation of a three-bladed Horizontal Axis
Wind Turbine (HAWT) under the influence of a hailstorm. The importance and originality of this
study are that it explores the aerodynamic performance of an optimum wind turbine blade during
a hailstorm, when hailstones and raindrops are present. The commercial Computational Fluid
Dynamics (CFD) code ANSYS Fluent 16.0 was utilized for the simulation. The first step was the
calculation of the optimum blade geometry characteristics for a three-bladed rotor, i.e., twist and
chord length along the blade, by a user-friendly application. Afterwards, the three-dimensional
blade and the flow field domain were designed and meshed appropriately. The rotary motion of
the blades was accomplished by the application of the Moving Reference Frame Model and the
simulation of hailstorm conditions by the Discrete Phase Model. The SST k–ω turbulence model
was also added. The produced power of the wind turbine, operating in various environmental
conditions, was estimated and discussed. Contours of pressure, hailstone and raindrop concentration
and erosion rate, on both sides of the blade, are presented. Moreover, contours of velocity at various
cross sections parallel to the rotor are demonstrated, to understand the effect of hailstorms on the
wake behavior. The results suggest that the aerodynamic performance of a HAWT degrades due to
impact and breakup of the particles on the blade.

Keywords: aerodynamic performance; computational fluid dynamics; discrete phase model; erosion
rate; hailstorm; horizontal axis wind turbine; wake behavior

1. Introduction

In present times, global energy demand is affected by the COVID-19 pandemic and it
is predicted to increase by 4.6% in 2021, mainly in developing economies and emerging
markets [1]. The contribution of Renewable Energy Sources (RES) on the electricity gener-
ation is expected to grow by 8% in 2021 and at least by 6% in 2022 [2]. Wind power and
solar energy are going to contribute most to electricity generation among the others RES,
since they are expected to increase 20 times until 2050.

Wind turbines are used in order to harvest wind energy. Among numerous types of
wind turbines, Horizontal Axis Wind Turbines (HAWTs) are prevalent, as they achieve
higher power coefficients. Despite the COVID-19 pandemic, a new record in new wind
power installation was reached, equal to 93 GW [3].

The most critical components of a wind turbine are the blades, since their geometry
is responsible for the aerodynamic performance of the wind turbine. The operation of
wind turbines in open environments can cause aerodynamic performance degradation
and increased need for maintenance during service life, since they are regularly subjected
either to hazardous weather conditions, such as rainfalls and hailstorms, or to atmospheric
particles and sand [4,5].

Currently, the advances in computing power have a positive effect on the wind energy
industry, since parametric computational studies aiming on performance improvement can
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be accomplished in a shorter period of time and with lower cost than experimental studies.
The obtained results from Computational Fluid Dynamic (CFD) codes have the advantage
that they provide information in the whole flow field. A major part of these investigations
is focusing on the flow field over complex terrain, in order to select the optimal location for
wind turbine installation in a wind farm [6–9]. The flow field is more complicated when
the wake development downwind of the wind turbines is considered. Several studies
have investigated computationally the flow field into a wind farm, by simulating the wake
effects [10–12].

A series of recent studies have indicated that coupling various numerical methods in
the wind energy sector results in improved accuracy [13–16]. The actual flow field over
a complex terrain, extending from several m to several km, can be estimated accurately
by the RIAM-COMPACT numerical model, which is based on the large-eddy simulation
(LES) [17]. The wind turbine wake flow can be estimated by a particle tracking model,
which shows enhanced accuracy compared to the previous proposed linear model and,
at the same time, the optimum wind turbines layout in a wind park can be attained [18].

Much of the current literature on the wind turbine industry pays particular attention
to the numerical estimation of wind turbine performance, according to its blade geometry.
Thumthae and Chitsomboon [19] studied, numerically, the dependency of angle of attack
on HAWT power output for untwisted blades and found out that the most advantageous
angles of attack are the angles that produce the highest lift. In a follow-up study, Rajaku-
mar and Ravindran [20] reached the same conclusion after they examined the optimum
geometry of a twisted blade, constructed by NACA 4410 and NACA 2415 airfoils. A year
later, Kim et al. [21] developed an application which optimized the shape of the blades and
investigated the aerodynamic efficiency of large scale HAWTs. They concluded that after
the optimization the performance of the HAWT was increased.

In general, HAWT aerodynamic performance depends on the airfoil profile that is
used for the construction of the blades, which means that assumptions about the aerody-
namic performance of a HAWT operating in dusty or rainy environments can be made if
the aerodynamic performance of an airfoil in such environments is examined. Much of
the literature since the mid-1980s emphasizes the aerodynamic behavior of airplanes in
rain [22–25]. Advances in computational fluid dynamics as well as the renewable energy
transition have led to a renewed interest in the aerodynamic performance of wind turbine
airfoils under the presence of particles [26–28] or raindrops [29,30]. A more detailed study
about the aerodynamic degradation of a three-bladed HAWT with an optimized blade
constructed by NACA 4418 airfoil was published recently [31]. It was found that the rainfall
adversely effects the aerodynamic performance of a HAWT and the degradation increases
with heavier rain and larger raindrops.

The annual energy output from a wind turbine can be reduced by between 2 and 25%—
depending on environmental conditions, extent of erosion and operation costs of the wind
park [32,33]—due to erosion resulting from particle impact on the wind turbine blades. The
erosion results in greater surface roughness and studies about the role of surface roughness
on the HAWT power output were reviewed [34]. Moreover, published studies describing
the role in energy loss of blade erosion due to raindrops were also reviewed [35] and it was
concluded that the challenge now is to analyze in detail the blade surface in the wind park,
in order to monitor the degradation rates in real time and in real environment conditions.

In addition to rainy and dusty environments, HAWTs operate in hailstorms as well.
The aerodynamic behavior of NACA 0012 [36] and S809 [37] airfoils operating under hail-
storm conditions was studied computationally. This study provides an exciting opportunity
to advance our knowledge of the flow field over a three-bladed HAWT rotor, as well as the
flow characteristics on an optimized blade, constructed by S809 airfoil and operating under
hailstorm conditions at two different air velocities, equal to 10 m·s−1 and 15 m·s−1.

The present research explores, for the first time, the effects of hailstorm conditions
on the flow field over a wind turbine rotor. Most studies in the field of wind energy have
only focused on power degradation and erosion of blades due to rain or hailstones. Such



Inventions 2022, 7, 2 3 of 14

approaches, however, have failed to address information about the entire flow field over
the HAWT rotor. Previous studies of multiphase flows have focused on two-phase flows
over a HAWT blade, such as dust and rain, and have not dealt with the computational
study of hailstorm conditions, which is a three-phase flow.

The importance and originality of this study are that it explores not only the power
output of a HAWT operating under these conditions, but it also gives information about the
entire flow field, i.e., regions on the blade which are subjected to erosion, as well as infor-
mation about the wake development downwind of the HAWT rotor. The findings should
make an important contribution to the field of HAWT rotor aerodynamics under hazardous
conditions. The numerical work presented here provides one of the first investigations into
the entire flow field over a HAWT, when raindrops and hailstones prevail.

This study provides an exciting opportunity to advance our knowledge of the flow
field over a three-bladed HAWT rotor, as well as the flow characteristics on an optimized
blade, constructed by S809 airfoil and operating in hailstorm conditions and at two different
air velocities. The findings from the present study contribute in several ways to our
understanding of the effects of hailstorm on aerodynamic behavior of a three-bladed
HAWT and provide a basis for recommendations for wind turbine blade designs, for
HAWTs placed in regions with frequent hailstorms.

2. Computational Methodology
2.1. Blade Geometry, Computational Mesh and Boundary Conditions

The first step in the construction of three-dimensional geometry is to determine the
optimal geometry of the three-bladed wind turbine blade using the NREL S809 airfoil,
which is widely used in the construction of HAWTs blades. The S809 airfoil is a 21%
thickness at 39.5% chord airfoil, which is specially designed for HAWT applications, stud-
ied theoretically and validated experimentally in the Delft University of Technology by
Somers [38]. The main characteristics of S809 airfoil are that it achieves relative lower
maximum lift and lower drag than other airfoils, and at the same time it is insensitive to
leading-edge roughness. Figure 1 shows the S809 airfoil and its coordinates in graphical
representation [39].
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Figure 1. The S809 airfoil and its coordinates in graphical representation [39].

In order to find the optimal geometry, the TTBEM application [40] was used, in which
the desired characteristics of the wind turbine rotor were introduced, such as the length of
the blade, which was chosen to be equal to 40 m, the number of blades and the airfoil from
which they are constructed, the Tip Speed Ratio (TSR) which was set equal to 6, and the air
velocity and density.

Subsequently, the Qblade [41] application was used to construct the blade, which was
eventually introduced into the ANSYS 16.0 DesignModeler [42], where the appropriate
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computational domain around the blade was designed. Only one of the blades was
designed and analyzed, while the remaining two blades were included to the simulation
by using periodic boundary conditions, with a periodicity of 120◦ (Figure 2). HAWT
tower, as well as hub are not included in the simulation procedure since their effect on the
aerodynamic performance of the rotor is negligible.
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Figure 2. (a) Optimum blade constructed with the NREL S809 airfoil; (b) Computational domain
over the blade.

The computational domain, in other words, the region around the blade geometry
where the solution of the flow field is essential, is horizontally positioned and is one third
of a truncated cone, with its front size positioned 0.75 times the blade length upstream and
two times the blade length downstream of the blade. The radius of the front side of the
truncated cone is set equal to the blade length and the radius of the lateral side is two times
the blade length.

The grid created in three dimensions is hybrid, specifically structured near the surface
of the blade and unstructured in the domain around it and it is demonstrated in Figure 3.
The grid thickens near the blade for better approximation of the flow field, where more
intense changes in flow occur due to the twist and the curvature of the blade. A grid
independence study was then conducted, and it was found that the most suitable grid
consists of approximately 1,400,000 tetrahedral and hexahedral cells, since the calculated
power output of the HAWT with this grid was found to have the smallest difference with
the power calculated by the TTBEM application [40]. The boundary conditions of the
problem were then defined. In particular, the front and the upper side of the computational
domain are set as velocity inlet and the lateral side as pressure outlet (Figure 4).
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2.2. Simulation Procedure

The simulated air velocities were set equal to 10 m·s−1 and 15 m·s−1, which are typical
air velocities for HAWTs’ operation. Two different air velocities were studied in order
to show the dependence of air velocity on the performance of HAWTs under hailstorm
conditions. Firstly, simulations of airflow over the blade were conducted and then of
hailstorm conditions, so as to be able to compare not only the power output but the whole
flow field as well.

The SST k-ω turbulence model [43] was selected for the simulations, as it is the most
suitable for such problems due to its ability to precisely predict adverse pressure gradient
flows. The solution of the flow equations governing the rotation of the HAWT rotor in
ANSYS Fluent 16.0 [42] is performed on a moving reference system, in relation to which
the flow is considered stable over time. This is achieved by defining specific air zones as
moving parts, while activating the Moving Reference Frame Model (MRF). The terms of
acceleration, resulting from the conversion of the inertial reference system to rotating, are
included in the equations of motion.

Hailstorm simulation was accomplished by the Discrete Phase Model (DPM). Usually,
hailstorms occur simultaneously with rainfall; thus, hailstones and raindrops, considered
spherical particles, are dispersed in the air, which is the continuous medium. For the
computational study, the diameter of both particles was considered 0.5 mm, with average
mass flow rates Wrain = 2.16 g·m−3 and Whail = 1.24 g·m−3, respectively, as obtained
from the experimental measurements by Federer and Waldvogel [44]. The raindrops are
considered to be water and the hailstones ice, since the majority of them are ice, so their
density was set equal to the ice density, i.e., 0.9 kg·m−3. The orbit of each particle is
calculated by integrating the equation of its inertia with the forces that affect it.

In an effort to decrease both computational time and memory, the hailstones and
raindrops are injected in the flow from a rectangular area, placed in the minimum distance
upstream from the blade, where the flow is still undisturbed. The particles are introduced
with initial velocity in the horizontal axis equal to the air velocity and in the vertical axis
equal to the free fall velocity, which is calculated by Markowitz’s [45] empirical equation
for raindrops:

Wwater = 9.58
[

1− exp
(
−d1.147

1.77

)]
, (1)

and by Douglas [46] equation for hailstones:

Whail = 5.12
√

d, (2)
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where d is the diameter of raindrops and hailstones in mm, respectively. It is worth noting
that the raindrops are broken down into smaller ones as they impact the blade by the help
of the Taylor Analogy Breakup (TAB) model [47].

3. Results

The operation of the HAWT blade was studied initially under airflow and then under
hailstorm conditions, in order to estimate the power output degradation under these
conditions. Since the validation of the current model is unfeasible due to the lack of
corresponding experimental data, the obtained results about power output were compared
with the power output of commercial HAWTs of the same rotor dimensions and at air
velocity equal to 10 m·s−1 [48] (Table 1).

Table 1. Power output of present HAWT and commercial HAWTs of same rotor dimensions and at
air velocity equal to 10 m·s−1 [48].

HAWT Model HAWT Power Output in MW

Present model
TTBEM [40] 1.660

ANSYS Fluent 16.0 [42] 1.632

AMSC, wt1650df [48] 1.650

NEG Micon, NM 82/1650 [48] 1.650

United Energies, UE 1.65 [48] 1.650

Vestas, V82-1.65 [48] 1.650

GE General Electric, GE 1.6-82.5 [48] 1.600

Table 2 shows the calculated power of the three-bladed HAWT in MW, as estimated
by the TTBEM application [40] and ANSYS Fluent 16.0 [42] for airflow. This shows that the
estimated value deviation for each air velocity is negligible and that, with increasing air
velocity, the power increases rapidly. Table 3 demonstrates the calculated power output
of the three-bladed HAWT under hailstorm conditions and its percentage degradation.
This shows that as the air velocity increases, the percentage change in power decreases,
as hailstones and droplets are more easily carried away by the air.

Table 2. Power output of a three-bladed HAWT with blades constructed by NREL S809 airfoil in
airflow, calculated by TTBEM application [40] and ANSYS Fluent 16.0 [42].

Air Velocity (m·s−1)
HAWT Power Output in MW

TTBEM [40] ANSYS Fluent 16.0 [42] Error (%)

10 1.660 1.632 1.7
15 5.603 5.519 1.5

Table 3. Power output of a three-bladed HAWT with blades constructed by NREL S809 airfoil in air-
flow and hailstorm conditions, calculated by ANSYS Fluent 16.0 [42] and its percentage degradation.

Air velocity (m·s−1)
HAWT Power Output in MW

Airflow Hailstorm Conditions Degradation (%)

10 1.632 1.530 −6.40
15 5.519 3.860 −3.00

3.1. Results of Airflow over HAWT Blade

The visualized results of the airflow over the three-bladed HAWT blade are presented
in this section. More specifically, the contours of velocity at various cross sections near
the blade for air velocities of 10 m·s−1 and 15 m·s−1 are presented in Figures 5 and 6,
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respectively. It is observed that as the air approaches the rotor, its speed decreases. When
air impacts the rotor, its speed increases in the areas around the blades, and especially in the
areas close to the rotor hub, while between the blades the air velocity appears to decrease.
Rings of different velocities are created in the areas of the wake, the diameter of which
increases with the distance from the rotor, and the wake weakens with the increase of the
distance from the rotor. As the air velocity increases (Figure 6), the minimum and maximum
values obtained by the velocity are higher, while the shape of the velocity distribution
remains the same. In addition, the wake appears to weaken at a faster rate as the air
velocity increases.
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Figures 7 and 8 show the static pressure distribution on the blade of the HAWT for
airflow and air velocity equal to 10 m·s−1 and 15 m·s−1, respectively. For both air velocities
the pressure distribution exhibits similar behavior, with the only difference being the range
of values received by the pressure with increasing air velocity. More specifically, the highest
values of pressure are located on the lower surface of the blade, i.e., the pressure side,
and near the leading edge, and the maximum value appears close to the tip and decreases
towards the hub. At the upper surface of the blade, i.e., the suction side, the static pressure
receives lower values than at the pressure side, thus lift is generated.
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3.2. Results of Hailstorm Conditions over HAWT Blade

The results of hailstorm conditions over the three-bladed HAWT blade are demon-
strated in this section. Figures 9 and 10 show the contours of velocity at various posi-
tions near the wind turbine rotor for hailstorm conditions, for air velocities of 10 m·s−1

and 15 m·s−1, respectively. From these figures it is observed that for hailstorm conditions,
the velocity distributions are similar to those of the airflow, although the velocity values
are increased.
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Figure 10. Contours of velocity at (a) −15 m; (b) 0 m; (c) 15 m; (d) 30 m from the three-bladed HAWT
rotor for hailstorm conditions and air velocity equal to 15 m·s−1.

On Figures 11 and 12 the contours of static pressure on both sides of the HAWT
blade are demonstrated, for hailstorms and for air velocities of 10 m·s−1 and 15 m·s−1,

respectively. The static pressure distribution on the blade is similar to the corresponding
results for airflow, with the only difference being the range of values, which is limited
compared to the airflow results, but the range increases with increasing air velocity.
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roughness, which leads to a reduced efficiency of the wind turbine. Figure 15 shows the 
erosion rate on the blade surface, and it reveals that areas with a higher particle concen-
tration are more exposed to erosion. Therefore, the utilization is recommended of either a 
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Figure 12. Contours of pressure on (a) the pressure; (b) the suction side of the blade for hailstorm
conditions and air velocity equal to 15 m·s−1.

Figure 13 illustrates the concentration of hailstones and raindrops on the blade, and it
is apparent that the concentration of the particles is increased on the pressure side of the
blade, mainly on the midsection of the blade, closer to the hub. As the air velocity and the
distance from the hub increases (Figure 14), the relative velocity on the blade increases as
well and, as a result, the raindrops and hailstones are carried away from the flow more
easily from these regions. They are concentrated nearer to the hub and on the suction side
of the blade, where the relative velocity is lower. In addition, at higher air velocity a greater
amount of particles appears to adhere to the blade. The particle concentration on the HAWT
blade results in an increase in the weight of the blade and an increase in its roughness,
which leads to a reduced efficiency of the wind turbine. Figure 15 shows the erosion rate
on the blade surface, and it reveals that areas with a higher particle concentration are more
exposed to erosion. Therefore, the utilization is recommended of either a more durable
material or of special coatings during the blade construction in these areas for HAWTs that
are designed to operate in areas with frequent hailstorms and high wind speeds.
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4. Conclusions

This project is the first comprehensive investigation of the aerodynamic behavior of
a three-bladed HAWT with blades constructed with NREL S809 airfoil, operating during
a hailstorm. This study has found that, generally, hailstorm conditions have a negative
effect on aerodynamic behavior, which leads to less power produced by a wind turbine.
The power of the wind turbine was found to decrease by 6.4% and 3.0% for air velocity of
10 m·s−1 and 15 m·s−1, respectively.

Rings of different speeds and diameters formed in the areas of the wake, and the wake
seemed to weaken more rapidly (i) in hailstorm conditions, (ii) as the air velocity increased
and (iii) as it moved away from the rotor. Moreover, from the presentation of static pressure
distributions in hailstorm conditions, it was found that the range of the obtained values
was limited, which, however, increased with the increase of the air velocity. Furthermore, it
came out that the particles were more concentrated on the pressure side of the blade and
mainly on 50% of the blade, close to the hub. As the air velocity increased, the particles
moved closer to the hub, and began to appear on the upper surface of the blade due to their
forced movement from the increased rotational speed. Finally, the areas on the blade where
particles are concentrated appeared to be more exposed to erosion.

These findings contribute in several ways to our understanding of the effects of
hailstorms on aerodynamic behavior of a three-bladed HAWT and provide a basis for
recommendations for wind turbine blade designs for HAWTs placed in regions with
frequent hailstorms.
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