
Citation: Ryapukhin, A.V.;

Karpukhin, E.O.; Zhuikov, I.O.

Method of Forming Various

Configurations of

Telecommunication System Using

Moving Target Defense. Inventions

2022, 7, 83. https://doi.org/10.3390/

inventions7030083

Academic Editor: Konstantinos

G. Arvanitis

Received: 8 August 2022

Accepted: 12 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inventions

Article

Method of Forming Various Configurations of
Telecommunication System Using Moving Target Defense
Anatoly V. Ryapukhin *, Evgeny O. Karpukhin and Ivan O. Zhuikov

Moscow Aviation Institute (National Research University), Volokolamskoe Highway 4, 125993 Moscow, Russia
* Correspondence: ryapukhin.a.v@mail.ru

Abstract: The purpose of this paper is to improve the effectiveness of the Moving Target Defense
(MTD)-based protection method, which reduces the problem of using traditional network protection
tools due to the static nature of network services and configurations. Options for solving the problems
of choosing an adequate time interval for activating the technology of MTD and its application in
networks are given. A new approach is proposed, which consists in creating a set of system configu-
rations and changing it when an attack is detected and determined. The design implementation was
tested on a network model using software defined networks (SDN). The advantages of the proposed
method are highlighted, among which the most significant are: simple operation scheme, ability to
deploy the system without the use of software-defined networks and absence of violations of security
policies within the system.

Keywords: cybersecurity; moving target defense (MTD); networks; software defined networks
(SDN); HoneyPot

1. Introduction

The main security problem of traditional networks is the fact that the defender always
has to come second to the attacker. An attacker can carefully plan their actions in advance
by conducting network reconnaissance and preparing the necessary tools. To solve this
fundamental problem, MTD was developed, the main idea of which is to make the elements
of the network move, thus reducing the effectiveness of intelligence for an attacker. The
problem with using MTD is updating and maintaining predefined security policies.

The object of study of this work is the process of ensuring security in software-defined
networks using MTD. The subject of the study is the very principles of decision-making
and methods for setting the time interval for their adoption.

The purpose of the study is to improve the effectiveness of the protection system for
telecommunication networks that use MTD, taking into account the problems of managing
security policies.

In accordance with the goal, the following tasks were solved in the work:

1. Review of the technology of MTD and software-defined networks has been carried
out, and current approaches to ensuring information security with their application
have been considered;

2. Model of a software-defined network has been developed for further testing of the
proposed approach;

3. Design implementation of the method for the formation of various configurations of a
telecommunications system using MTD has been developed;

4. Developed design implementation of the method was tested on a previously prepared
model of a software-defined network.

2. Theoretical Basis

This section provides a comprehensive description of the concepts used in this paper.
MTD is considered in depth, and the main strategies and approaches used with it in

Inventions 2022, 7, 83. https://doi.org/10.3390/inventions7030083 https://www.mdpi.com/journal/inventions

https://doi.org/10.3390/inventions7030083
https://doi.org/10.3390/inventions7030083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inventions
https://www.mdpi.com
https://doi.org/10.3390/inventions7030083
https://www.mdpi.com/journal/inventions
https://www.mdpi.com/article/10.3390/inventions7030083?type=check_update&version=2

Inventions 2022, 7, 83 2 of 10

telecommunication systems are described. The architecture of software-defined networks
and how they are related to MTD is also described. The problematic situation of security
policy conflict is considered. A review of existing approaches to the solution is made, and a
hypothesis for an accessible and effective solution to the problem is formulated.

2.1. MTD in Telecommunication Networks

MTD is designed to solve the problem of traditional network defenses that do not
take into account the inherent advantage of attackers due to the static nature of network
services and configurations. Time is good for a cybercriminal: he can conduct network
reconnaissance and then carefully plan his attack. MTD solves this problem with two
approaches: dynamic reconfiguration of the protected system or response to an emerging
threat and taking countermeasures, which leads to an increase in information entropy for
the attacker. The use of this technology significantly reduces the advantage of intelligence
over time, which the attacker has in relation to traditional defense mechanisms [1]. Thus,
the information collected by the attacker in the exploration phase will become obsolete
during the attack if the defender has switched to a new configuration during this time. The
most complete description of this technology can be found in [2,3].

When building a system using MTD, there are three main problems to solve [4]:

1. Choice of system elements that should be given dynamism;
2. Establishing a time interval when it is necessary to take any action;
3. Implementation of decision-making principles in the system.

Strategies using MTD in telecommunications systems can be roughly divided into
three categories:

1. MTD at the network level, which changes the way it operates. For example, using
IP-hopping technique, in which IP address changes periodically, or using random
port numbers, fake hosts, etc.;

2. MTD at the host level is directed to its changes, for example, to periodically change
the configuration or name;

3. MTD at the application level changes their types, versions, randomizes the address
space layout randomization and source code with compilation processes.

Thus, MTD system, ∑, is the ordered set consisting of (σ, G, P), where σ is the
configurable system, G is the set of operational and security goals, and P is the security
policies. Then σ in turn is the set of (S, A, τ), where S = (s1, s2, . . . , sn) is the set of
system states in which it can be, A = (α1,α2, . . . ,αn) is the set of actions to take, and
τ : S ×A → S is the system state transition function. The system state s is the unique
assignment of the value z from the configuration parameter type P to the configuration
parameter π. The type of the configuration parameter P denotes the range of possible
values that the configuration parameter π can take. The configuration parameter π can take
on a value based on its configuration type P to define configuration details. An example
host P configuration is shown in the diagram in Figure 1.

2.2. SDN

SDN is a network architecture that separates the control plane and data plane of a
network device. While the data plane is still on the device, the control plane is transferred
to the centralized controller. The control plane and the data plane interact through software
interfaces, which allows consistent and comprehensive management of the entire network,
regardless of the underlying technology used in the network. Visualization of the network
architecture is shown in Figure 2.

Inventions 2022, 7, 83 3 of 10
Inventions 2022, 7, 83 3 of 11

Figure 1. Host P configuration example.

2.2. SDN
SDN is a network architecture that separates the control plane and data plane of a

network device. While the data plane is still on the device, the control plane is transferred
to the centralized controller. The control plane and the data plane interact through soft-
ware interfaces, which allows consistent and comprehensive management of the entire
network, regardless of the underlying technology used in the network. Visualization of
the network architecture is shown in Figure 2.

Figure 2. SDN architecture (dotted lines mean the separation of planes of different levels; lines
with arrows show the directions of interaction between network components; APP—application).

Figure 1. Host P configuration example.

Inventions 2022, 7, 83 3 of 11

Figure 1. Host P configuration example.

2.2. SDN
SDN is a network architecture that separates the control plane and data plane of a

network device. While the data plane is still on the device, the control plane is transferred
to the centralized controller. The control plane and the data plane interact through soft-
ware interfaces, which allows consistent and comprehensive management of the entire
network, regardless of the underlying technology used in the network. Visualization of
the network architecture is shown in Figure 2.

Figure 2. SDN architecture (dotted lines mean the separation of planes of different levels; lines
with arrows show the directions of interaction between network components; APP—application).

Figure 2. SDN architecture (dotted lines mean the separation of planes of different levels; lines with
arrows show the directions of interaction between network components; APP—application).

2.3. Security Policy Conflict

For clarity and subsequent detailing of the proposed solution to the problem posed,
we describe the scenario for applying the technology of MTD.

In the network shown schematically in Figure 3, upon detecting an attack directed from
host A to host P, MTD technology takes retaliatory measures, which consist of performing
the following actions:

1. New web server (host SP) is created that handles the load of host P;
2. IP address of host P is transferred to the controlled Honeypot network [5,6] and

assigned to host H.

Inventions 2022, 7, 83 4 of 10

Inventions 2022, 7, 83 4 of 11

2.3. Security Policy Conflict
For clarity and subsequent detailing of the proposed solution to the problem posed,

we describe the scenario for applying the technology of MTD.
In the network shown schematically in Figure 3, upon detecting an attack directed

from host A to host P, MTD technology takes retaliatory measures, which consist of per-
forming the following actions:
1. New web server (host SP) is created that handles the load of host P;
2. IP address of host P is transferred to the controlled Honeypot network [5,6] and as-

signed to host H.

Figure 3. Security policy conflict model (A, P, SP, H) are names of hosts; numbers show the se-
quence of actions).

To analyze and minimize possible damage from an attacker, the HoneyPot network
allows all incoming traffic but does not allow outgoing traffic to other sections of the net-
work. As a result of the performed actions, new rules are entered into the forwarding
table:
1. Allow all incoming traffic to IP addresses that originally belonged to host P but now

belong to host H;
2. Change address for incoming packets from host P to host SP;
3. Stop all outgoing traffic from IP address that previously belonged to host P, but now

belongs to host H, to the rest of the data center;
4. Allow traffic from port 443 to host SP.

This creates a conflict between the original policy allowing only port 443 to IP address
of host P and the new set of rules that allow all incoming traffic to the IP address of host
H [7].

In addition, in [4], researchers come to similar conclusions, that is, the problem of
conflict resolution exists, and it needs special attention.

Figure 3. Security policy conflict model (A, P, SP, H) are names of hosts; numbers show the sequence
of actions).

To analyze and minimize possible damage from an attacker, the HoneyPot network al-
lows all incoming traffic but does not allow outgoing traffic to other sections of the network.
As a result of the performed actions, new rules are entered into the forwarding table:

1. Allow all incoming traffic to IP addresses that originally belonged to host P but now
belong to host H;

2. Change address for incoming packets from host P to host SP;
3. Stop all outgoing traffic from IP address that previously belonged to host P, but now

belongs to host H, to the rest of the data center;
4. Allow traffic from port 443 to host SP.

This creates a conflict between the original policy allowing only port 443 to IP address
of host P and the new set of rules that allow all incoming traffic to the IP address of host
H [7].

In addition, in [4], researchers come to similar conclusions, that is, the problem of
conflict resolution exists, and it needs special attention.

2.4. Problem Area

To solve the problem of setting a time interval when it is necessary to take any action,
there are two approaches: to constantly switch between different states of the system or to
use a certain feature to move between configurations (variable approach). When constantly
switching between system states, the constant t is used, which determines the time interval
when it is necessary to take any action. One example of the practical implementation
of this approach would be the use of a virtual IP that changes at a fixed time interval
in a predefined or randomized manner [8]. With a variable approach, protection can be
implemented in three ways:

1. The first way is to react to events. An example of such an event could be the detec-
tion of an attack, the unavailability of a server or a channel. An example of work
using this approach is [9], where the authors take action after they detect suspicious
incoming packets;

Inventions 2022, 7, 83 5 of 10

2. The second way is more intellectual. With it, a predetermined time constant t is not
known, but instead a time interval from 0 to tmax is determined, and the defenders
need to determine the time value from the interval 0 ≤ t ≤ tmax. For example,
in [10], the idea of the state of the system is used to find the optimal value of time
t, which determines when the administrator should take active steps to change the
system configuration;

3. The third way is a hybrid of constant and variable approaches. The combination of
these methods at the time of writing is poorly understood, but the example of [11],
where the authors used constant randomization of IP addresses in conjunction with
the creation of false nodes in the network when an attack was detected, and their
positive result suggests that this concept is worth studying further.

To solve the problem of implementing the principles of decision making in the system,
defenders have two approaches:

1. To think through actions based only on the current state of the system. For example,
in [12], M. Thompson et al. propose a method that consists in rotating operating
systems and thereby improves system security;

2. To take into account the future development of events, predicting the actions of the
attacker and the defender many steps ahead. R. Colbaugh and K. Glass [13] use the
co-evolutionary relation between attackers and defenders to develop methods for
predicting and countering attacks, as well as to limit the extent to which adversaries
can learn about defense strategies.

Due to the new realities in the Russian Federation, all the above approaches cannot be
used before passing the analysis and certification. With the current increased demand for
import substitution of smart information security systems, it is necessary to develop new
promising approaches to improve the effectiveness of the security process in telecommuni-
cation networks. When developing such approaches, it is necessary to take into account
the problem of emerging security policy conflicts.

3. Methodology

In this section, the hypothesis is formed, and the tool is considered, which will be
further used to test the design implementation. A network model of a complex with
software-defined networks is being built.

3.1. Various System State Configurations

The hypothesis on which further work is based on the fact that it is possible to think
over a set of optimal system states S for each class of attacks. For example, in the case of a
direct attack on a host, it is beneficial to perform the actions described in “Attack Scenarios”
or otherwise to keep the security inside the system and neutralize the attack. Thus, the
system will apply actions from some pre-designed set of decisions A in a form randomized
for the attacker but predetermined for the defenders. Accordingly, for each set of solutions,
their own sets of rules for the internal functioning of the system P will be prescribed in
order to avoid violation of security policies and all the negative consequences that come
from this, which include the loss of legal traffic within the system and the emergence of
new vulnerabilities.

Returning to the previously described model of the attacker, when implementing the
approach described earlier, from the point of view of the defender, the situation will look
like this:

1. The system was in its standard configuration S0;
2. The operator or intrusion detection system detected an attack on one of the hosts;
3. Depending on the class of a certain attack, MTD decided to perform one of the options

for pre-defined optimal actions α1;
4. Along with the actions taken, the policy of the internal functioning of P system has

also changed;

Inventions 2022, 7, 83 6 of 10

5. Attack is neutralized. The system is now operating with the new configuration s1.

As a result, all incoming traffic was allowed, but outgoing traffic to the address of the
host now located in HoneyPot network was denied; the address of the attacked host was
changed to a new one, and traffic from port 443 was allowed for it. There are no violations
of security policies; the load from the host is processed on another web server, and the
attacker’s actions are neutralized and can be analyzed.

3.2. Graphical Network Simulator-3 (GNS3)

The approach proposed earlier will be tested using GNS3 tool [14]. The choice in favor
of this network emulator was made, guided by the following principles:

1. The tool should demonstrate realistic network behavior;
2. To conduct security tests, it is necessary to be able to use real network security or

introduce testing tools into the network;
3. It is necessary to be able to flexibly configure all the necessary parameters and net-

work elements.

Network simulators OMNET++ [15] or ns-3 [16] cannot be taken into account due
to inconsistency with the second point. GNS3, which is widely used to create, design
and test a network in a virtual environment, offers an easy way to design and create
networks of any size without the need for hardware and meets all the requirements put
forward. GNS3 is highly flexible and can handle most network tasks. It supports various
types of virtualized devices and can be easily administered using a graphical interface.
A graphical user interface (GUI) may be installed remotely from the real environment,
which may run on a different computing platform and thus may use, for example, cloud
computing resources.

The above properties allow creating a network topology model without resorting to
hardware implementation in order to test the proposed approach.

3.3. Network Model of a Complex with Software-Defined Networks

In the previously described GNS3, a software-defined network model was built.
Hosts actively participating in the trial were installed with ParrotOs [17], which is a
Linux distribution based on Debian with a focus on computer security. It is designed for
introduction testing, vulnerability assessment, mitigation and anonymous web browsing.
This choice was made due to the many built-in introduction tools, system and network
monitoring tools. To further test the previously proposed method, we need to consider
three states of this model.

In the first state, shown in Figure 4, the system is at rest. There is one working host:
Host_P and HoneyPot, necessary for the initial confrontation with a potential attacker.
They are located on different subnets and are connected to a single SDN controller using
switches as intermediate devices. It is worth noting that on this and following images of the
model there are designations e0, e1, f0/0, f1/0 and f0/1, indicating the connection interface
numbers; they are added to simplify the configuration and work with the model and not
important in the context of this work.

The next step is the appearance of an attacker. The mechanism for the appearance of
a malicious participant in the network process is beyond the scope of this work. At the
current moment, the MTD system has not reacted to this change in any way. The state of
the model is shown in Figure 5. The attacker launches an attack on host P, for example by
performing DoS attack. The attack class is not important in this trial, since it does not affect
the demonstration of the general concept presented.

Inventions 2022, 7, 83 7 of 10

Inventions 2022, 7, 83 7 of 11

the model there are designations e0, e1, f0/0, f1/0 and f0/1, indicating the connection inter-
face numbers; they are added to simplify the configuration and work with the model and
not important in the context of this work.

Figure 4. Network model in normal state.

The next step is the appearance of an attacker. The mechanism for the appearance of
a malicious participant in the network process is beyond the scope of this work. At the
current moment, the MTD system has not reacted to this change in any way. The state of
the model is shown in Figure 5. The attacker launches an attack on host P, for example by
performing DoS attack. The attack class is not important in this trial, since it does not affect
the demonstration of the general concept presented.

Figure 5. Network model with attacker.

As a result of the attack, the resources of the host P become overloaded, and it cannot
continue to work. The third and final stage is the system’s predetermined response to an
attack. These actions are described in detail earlier and in our model will look as it is
shown in the Figure 6.

Figure 4. Network model in normal state.

Inventions 2022, 7, 83 7 of 11

the model there are designations e0, e1, f0/0, f1/0 and f0/1, indicating the connection inter-
face numbers; they are added to simplify the configuration and work with the model and
not important in the context of this work.

Figure 4. Network model in normal state.

The next step is the appearance of an attacker. The mechanism for the appearance of
a malicious participant in the network process is beyond the scope of this work. At the
current moment, the MTD system has not reacted to this change in any way. The state of
the model is shown in Figure 5. The attacker launches an attack on host P, for example by
performing DoS attack. The attack class is not important in this trial, since it does not affect
the demonstration of the general concept presented.

Figure 5. Network model with attacker.

As a result of the attack, the resources of the host P become overloaded, and it cannot
continue to work. The third and final stage is the system’s predetermined response to an
attack. These actions are described in detail earlier and in our model will look as it is
shown in the Figure 6.

Figure 5. Network model with attacker.

As a result of the attack, the resources of the host P become overloaded, and it cannot
continue to work. The third and final stage is the system’s predetermined response to an
attack. These actions are described in detail earlier and in our model will look as it is shown
in the Figure 6.

Inventions 2022, 7, 83 8 of 11

Figure 6. Network model after attack response.

As we can see from the Figure 6; MTD responded in a predetermined format by cre-
ating an additional host on the network to take over the load of the attacked host; and the
IP address of the attacked host was assigned to HoneyPot for further analysis of the at-
tacker’s actions. At the same time, since this set of actions was thought out in advance, the
new rules were automatically applied, and the legitimate participants in the network pro-
cess did not lose anything

4. Results and Discussion
This section summarizes the testing of the proposed approach. Conclusions are for-

mulated about the applicability of software-defined networks. Prospects for the develop-
ment of the proposal disclosed above are noted.

4.1. Result of Testing the Design Implementation
After the attack began, the host stopped performing its tasks; however, when imple-

menting the method of various configurations and executing a predetermined response
to such a threat, the system was reconfigured and continued to operate in normal mode,
and the attacker’s actions were neutralized using HoneyPot.

To assess the attacker’s impact on the host, hping3 utility [18] was used to create and
send custom ICMP/UDP/TCP packets. Using the limited resources of the device on which
the model was launched in the emulator, it turned out to create an average load of ≈ 1950
Kb/s. After performing the described actions and transferring the payload to another host,
the effect of the attack on it was naturally absent. Only legitimate network members con-
tinued to interact with it and, accordingly, the traffic was not zero. The result of this ex-
periment is shown in Figure 7.

Figure 6. Network model after attack response.

As we can see from the Figure 6; MTD responded in a predetermined format by
creating an additional host on the network to take over the load of the attacked host; and

Inventions 2022, 7, 83 8 of 10

the IP address of the attacked host was assigned to HoneyPot for further analysis of the
attacker’s actions. At the same time, since this set of actions was thought out in advance,
the new rules were automatically applied, and the legitimate participants in the network
process did not lose anything.

4. Results and Discussion

This section summarizes the testing of the proposed approach. Conclusions are formu-
lated about the applicability of software-defined networks. Prospects for the development
of the proposal disclosed above are noted.

4.1. Result of Testing the Design Implementation

After the attack began, the host stopped performing its tasks; however, when imple-
menting the method of various configurations and executing a predetermined response to
such a threat, the system was reconfigured and continued to operate in normal mode, and
the attacker’s actions were neutralized using HoneyPot.

To assess the attacker’s impact on the host, hping3 utility [18] was used to create
and send custom ICMP/UDP/TCP packets. Using the limited resources of the device on
which the model was launched in the emulator, it turned out to create an average load
of ≈ 1950 Kb/s. After performing the described actions and transferring the payload to
another host, the effect of the attack on it was naturally absent. Only legitimate network
members continued to interact with it and, accordingly, the traffic was not zero. The result
of this experiment is shown in Figure 7.

Inventions 2022, 7, 83 9 of 11

Figure 7. Result of testing the load on the attacked host (red color means there is a significant load
on the attacked host; green color means no load on the attacked host).

4.2. Assessment of Applicability and Development Prospects
Software-defined networks are excellent for implementing the ideas of MTD [19–21]

due to their flexibility, the ability to control the flow of data in the network [22] and the
availability of open programmable interfaces such as OpenFlow [23]. It is on this environ-
ment that the main emphasis will be placed in the further study of the effectiveness of the
proposed approach.

An alternative approach, which consists in using middleboxes [24], i.e., devices for
performing network functions, also has a number of advantages, including ease of imple-
mentation, use and management. At the time of writing, much less attention was paid to
it in research in the context of using it to implement MTD systems due to its disad-
vantages: high probability of misconfiguration and overloads, leading to an increase in
the cost of using and maintaining these devices [25]. The described model of pre-created
system states in theory solves the problem of middlebox configuration and, therefore,
eliminates the main negative feature of this approach.

Thus, at the time of writing, it is not clear which environment will be optimally suited
for implementation, and therefore, in the future, research should be directed to identifying
the most appropriate implementation options.

5. Conclusions
This work is devoted to the study of existing approaches to solving two of the three

main problems in creating a network structure using MTD. Some of the most appropriate
solutions to these problems have been described. An attacker model was built, which was
subsequently used to test the design implementation of the proposed solution.

A method is proposed that consists in creating a set of solutions for each class of
attacks. When detecting and determining the type of attack, MTD selects one of the pre-
pared options and executes it, while it also contains new security policies within the sys-
tem to avoid violating them. The advantages of this method are its simple scheme of work,
the potential for deployment of the system without the use of software-defined networks
and the absence of violations of security policies within the system. The hypothetical ap-
plication of this method in ensuring information security in other areas, for example, in
protecting web resources is also described.

The approach described above was implemented on a network model using a GNS3
emulator with software-defined networks. In addition, an alternative approach using
middleboxes was considered, which had not received much attention previously due to a
number of shortcomings, which the described approach can level.

Further research will be aimed at developing the proposed approach, compiling re-
sponses to the main classes of attacks and analyzing their effectiveness. It will also be

Figure 7. Result of testing the load on the attacked host (red color means there is a significant load on
the attacked host; green color means no load on the attacked host).

4.2. Assessment of Applicability and Development Prospects

Software-defined networks are excellent for implementing the ideas of MTD [19–21]
due to their flexibility, the ability to control the flow of data in the network [22] and
the availability of open programmable interfaces such as OpenFlow [23]. It is on this
environment that the main emphasis will be placed in the further study of the effectiveness
of the proposed approach.

An alternative approach, which consists in using middleboxes [24], i.e., devices for
performing network functions, also has a number of advantages, including ease of imple-
mentation, use and management. At the time of writing, much less attention was paid to it
in research in the context of using it to implement MTD systems due to its disadvantages:
high probability of misconfiguration and overloads, leading to an increase in the cost of
using and maintaining these devices [25]. The described model of pre-created system states
in theory solves the problem of middlebox configuration and, therefore, eliminates the
main negative feature of this approach.

Inventions 2022, 7, 83 9 of 10

Thus, at the time of writing, it is not clear which environment will be optimally suited
for implementation, and therefore, in the future, research should be directed to identifying
the most appropriate implementation options.

5. Conclusions

This work is devoted to the study of existing approaches to solving two of the three
main problems in creating a network structure using MTD. Some of the most appropriate
solutions to these problems have been described. An attacker model was built, which was
subsequently used to test the design implementation of the proposed solution.

A method is proposed that consists in creating a set of solutions for each class of attacks.
When detecting and determining the type of attack, MTD selects one of the prepared options
and executes it, while it also contains new security policies within the system to avoid
violating them. The advantages of this method are its simple scheme of work, the potential
for deployment of the system without the use of software-defined networks and the absence
of violations of security policies within the system. The hypothetical application of this
method in ensuring information security in other areas, for example, in protecting web
resources is also described.

The approach described above was implemented on a network model using a GNS3
emulator with software-defined networks. In addition, an alternative approach using
middleboxes was considered, which had not received much attention previously due to a
number of shortcomings, which the described approach can level.

Further research will be aimed at developing the proposed approach, compiling
responses to the main classes of attacks and analyzing their effectiveness. It will also be
analyzed to improve it with the addition of a hybrid system for changing the state of the
system, in which mobility is applied to several elements of the system at once.

Author Contributions: Conceptualization, A.V.R., E.O.K. and I.O.Z.; methodology, A.V.R.; soft-
ware, I.O.Z.; validation, E.O.K.; formal analysis, E.O.K.; investigation, A.V.R.; resources, E.O.K.
and I.O.Z.; data curation, A.V.R. and E.O.K.; writing—original draft preparation E.O.K. and I.O.Z.;
writing—review and editing, A.V.R., E.O.K. and I.O.Z.; visualization, E.O.K.; supervision, A.V.R.;
project administration, A.V.R.; funding acquisition, I.O.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lei, C.; Zhang, H.Q.; Tan, J.L.; Zhang, Y.C.; Liu, X.H. Moving Target Defense Techniques: A Survey. Sec. Commun. Netw. 2018,

2018, 1–25. [CrossRef]
2. Jajodia, S.; Ghosh, A.K.; Swarup, V.; Wang, C.; Wang, X.S. Moving Target. Defense. Creating Asymmetric Uncertainty for Cyber Threats;

Springer: London, UK, 2011.
3. Jajodia, S.; Ghosh, A.K.; Subrahmanian, V.S.; Swarup, V.; Wang, C.; Wang, X.S. Moving Target. Defense II. Application of Game Theory

and Adversarial Modeling; Springer: London, UK, 2013.
4. Sengupta, S.; Chowdhary, A.; Sabur, A.; Alshamrani, A.; Huang, D.; Kambhampati, S. A survey of moving target defenses for

network security. IEEE Commun. Surv. Tutor. 2020, 22, 1909–1941. [CrossRef]
5. Pouget, F.; Dacier, M. Honeypot-based forensics. In Proceedings of the AusCERT Asia Pacific Information Technology Security

Conference, Brisbane, Australia, 23–27 May 2004.
6. Oosterhof, M. Cowrie Honeypot. 2014. Available online: https://github.com/micheloosterhof/cowrie (accessed on

1 August 2022).
7. Chowdhary, A.; Pisharody, S.; Huang, D. SDN based scalable MTD solution in cloud network. In Proceedings of the 2016 ACM

Workshop on Moving Target Defense, Vienna, Austria, 24 October 2016; pp. 27–36.

http://doi.org/10.1155/2018/3759626
http://doi.org/10.1109/COMST.2020.2982955
https://github.com/micheloosterhof/cowrie

Inventions 2022, 7, 83 10 of 10

8. Al-Shaer, E.; Duan, Q.; Jafarian, J.H. Random host mutation for moving target defense. In Proceedings of the International
Conference on Security and Privacy in Communication Systems, Berlin, Germany, 3 September 2012; pp. 310–327.

9. Zhao, Z.; Liu, F.; Gong, D. An SDN-based fingerprint hopping method to prevent fingerprinting attacks. Sec. Commun. Netw.
2017, 2017, 1–12. [CrossRef]

10. Lei, C.; Ma, D.H.; Zhang, H.Q. Optimal strategy selection for moving target defense based on Markov game. IEEE Access 2017, 5,
156–169. [CrossRef]

11. Clark, A.; Sun, K.; Bushnell, L.; Poovendran, R. A game-theoretic approach to IP address randomization in decoy-based cyber
defense. In Proceedings of the International Conference on Decision and Game Theory for Security, London, UK, 4 November
2015; pp. 3–21.

12. Thompson, M.; Evans, N.; Kisekka, V. Multiple OS rotational environment an implemented moving target defense. In Proceedings
of the 2014 7th International Symposium on Resilient Control Systems (ISRCS), Denver, CO, USA, 19–21 August 2014; pp. 1–6.

13. Colbaugh, R.; Glass, K. Predictability-oriented defense against adaptive adversaries. In Proceedings of the 2012 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 2721–2727.

14. The Software that Empowers Network Professionals. Available online: https://gns3.com (accessed on 1 August 2022).
15. OMNeT++ 6.0. Available online: https://omnetpp.org (accessed on 1 August 2022).
16. NS-3 Network Simulator. Available online: https://www.nsnam.org (accessed on 1 August 2022).
17. Parrot Security Os. Available online: https://www.parrotsec.org (accessed on 1 August 2022).
18. Hping3. Available online: https://www.kali.org/tools/hping3 (accessed on 1 August 2022).
19. Jafarian, J.H.; Al-Shaer, E.; Duan, Q. Openflow random host mutation: Transparent moving target defense using software defined

networking. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13 August
2012; pp. 127–132.

20. Chowdhary, A.; Pisharody, S.; Alshamrani, A.; Huang, D. Dynamic game based security framework in SDN-enabled cloud
networking environments. In Proceedings of the ACM International Workshop on Security in Software Defined Networks &
Network Function Virtualization, Scottsdale, AZ, USA, 24 March 2017; pp. 53–58.

21. Debroy, S.; Calyam, P.; Nguyen, M.; Stage, A.; Georgiev, V. Frequency-minimal moving target defense using software-defined
networking. In Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC),
Kauai, HI, USA, 15–18 February 2016; pp. 1–6.

22. Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A compre-
hensive survey. Proc. IEEE 2014, 103, 14–76. [CrossRef]

23. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comp. Commun. Rev. 2008, 38, 69–74. [CrossRef]

24. Carpenter, B. Middleboxes: Taxonomy and Issues. Available online: https://datatracker.ietf.org/doc/html/rfc3234 (accessed on
1 August 2022).

25. Sherry, J.; Ratnasamy, S. A Survey of Enterprise Middlebox Deployments. Technical Report No. UCB/EECS-2012-24. 2012.
Available online: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.html (accessed on 1 August 2022).

http://doi.org/10.1155/2017/1560594
http://doi.org/10.1109/ACCESS.2016.2633983
https://gns3.com
https://omnetpp.org
https://www.nsnam.org
https://www.parrotsec.org
https://www.kali.org/tools/hping3
http://doi.org/10.1109/JPROC.2014.2371999
http://doi.org/10.1145/1355734.1355746
https://datatracker.ietf.org/doc/html/rfc3234
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.html

	Introduction
	Theoretical Basis
	MTD in Telecommunication Networks
	SDN
	Security Policy Conflict
	Problem Area

	Methodology
	Various System State Configurations
	Graphical Network Simulator-3 (GNS3)
	Network Model of a Complex with Software-Defined Networks

	Results and Discussion
	Result of Testing the Design Implementation
	Assessment of Applicability and Development Prospects

	Conclusions
	References

