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Abstract: This manuscript describes the application of a fixed-length ultrasonic spectrometer to
determine the kinetics of heat- and photo-induced damage to biological membranes and protein
complexes and provides examples of the test measurements. We implemented a measurement
scheme using the digital analysis of harmonic signals. To conduct the research, the fixed-length
ultrasonic spectrometer was modernized: the speed was increased; lighting was supplied to the
sample cells; the possibility of changing the gas atmosphere and mixing the sample was given.
Using solutions containing natural concentrations of deuterium oxide, a high sensitivity of the
spectrometer was shown. The spectrometer performed well in the measurement of phase state of
dimyristoylphosphatidylcholine liposomes, both in the absence and in the presence of additions,
which are capable of changing the lipid properties (sodium dodecyl sulfate, palmitic acid, and
calcium ions). The heat- and photo-induced changes in the state of photosystem II core complexes
were demonstrated using a fixed-length ultrasonic spectrometer. Transitions at 35.5 ◦C, 43.5 ◦C,
56.5 ◦C, and 66.7 ◦C were revealed. It is proposed that the transitions reflect the disassembly of
the complexes and protein denaturation. Thus, the present study demonstrates that a fixed-length
ultrasonic spectrometer can be applied to determine the kinetics of heat- and photo-induced damage
to biological membranes and protein complexes.

Keywords: ultrasound; fixed-length ultrasonic spectrometer; biological membranes; protein complexes;
phase states; phase transitions; photosystem II

1. Introduction

Biological membranes are unique heterogeneous three-dimensional structures, con-
sisting of proteins embedded in a lipid matrix, the architecture and stability of which are
strongly related to their functions. One of the most important characteristics of biolog-
ical membranes is their phase state, including the state of protein molecules integrated
into the membrane. It is known that lipids, the main structural components of biological
membranes, may have three phase states: liquid (liquid crystal), ripple and solid (gel) [1].
The phase transition point depends on many factors: the structure and packing of lipid
molecules, hydrostatic pressure, salt concentration, and so on. Phase transitions of lipid
membranes are the basis of important biological processes: the fusion of cells, osmosis, the
transport of substances, etc. [2–7]. Proteins can also exist in several thermodynamically
stable states, for example the native state, denatured state, and compact state of the molten
globule with a loss of unique side chain packaging. The transitions between these states in
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proteins also resemble the phase ones: with a smooth change in conditions (temperature,
pH, or ionic strength), there are drastic changes in the structure of the protein molecule,
the cause of which is also a large amount of weak interactions that determine the tertiary
structure [8–13].

Despite the fact that the structure of the lipid bilayer is quite stable, individual phos-
pholipid molecules have some freedom of motion. The structure and stability of the lipid
bilayer depend on the lipid composition and change with temperature. Lipids form a semi-
solid phase (gel, liquid crystal state) in the bilayer at temperatures below physiological. In
this state, all motions of individual lipid molecules are strictly limited, phospholipids are
arranged in a strictly ordered manner, and the hydrophobic hydrocarbon tails of phospho-
lipid molecules are completely extended parallel to each other. As a result, the surface area
of the membrane is greatly reduced. At temperatures above physiological, the hydrocarbon
chains of fatty acids are in constant motion, due to the rotation of the hydrocarbon bonds
of long acyl chains. In this liquid-crystalline (or liquid-disordered) state, the inner region
of the bilayer resembles a sea of lipids in constant motion. In the liquid state, structural
transitions are possible due to thermal motion: the molecules are bent; their parallelism is
broken in some places. As a result, the surface area of the membrane significantly increases.
At intermediate temperatures, biomembrane components, including proteins, exist in a
liquid-ordered state [14]: the thermal motion is reduced in the acyl chains of the lipid
bilayer, but lateral movement still occurs. These differences in the state of the bilayer are
easily observed in monolipid liposomes. For example, the solid-to-liquid phase transition
of the synthetic phospholipid dipalmitoylphosphatidyl choline occurs over a very narrow
temperature range, down to as little as one degree Celsius (43 ◦C). At the same time, bio-
logical membranes, which contain many lipids with a variety of acyl chains, do not show
fast phase transitions with temperature changes.

The thermal phase transition is the most-studied phase transition. At the same time,
a number of compounds can affect the packing and ordering of phospholipids in a lipid
bilayer membrane: local anesthetics, short alcohols, and hydrocarbons make the membrane
more liquid (including the decrease in the phase transition temperature); at the same
time, calcium ions, long alcohols, and hydrocarbons structure the membrane (including
the increase in the phase transition temperature) [15,16]. In this case, it is correct to say
that a chemotropic phase transition occurs. One of the important membrane modifiers is
cholesterol [17,18]. Cholesterol molecules are located between phospholipid molecules.
They order the bilayer in the liquid state and disorder it in the solid state, thus reducing the
differences between the liquid crystal and solid crystal structures.

Currently, the main approaches for studying the state and phase transitions are differ-
ential scanning calorimetry, NMR spectroscopy, Fourier transform-infrared spectroscopy,
quartz crystal microbalance with dissipation monitoring, etc. [19–33]. However, most of
these approaches require expensive equipment and expendable materials. It is a good
alternative to assess the state and phase transitions of membranes and protein molecules
using an ultrasonic spectrometer [34–38]. The method of ultrasonic differential spectrom-
etry combines high sensitivity, accuracy, and a small volume of the test sample [39]. The
principle of measurement is to study the resonant properties of a composite resonator that
includes a sample [40,41]. The method allows investigating the properties of solutions,
colloids, suspensions, and emulsions. Measurement of the speed of sound in a sample
allows one to automatically measure the compressibility of samples. The measurement of
the compressibility of suspensions and emulsions is an approach that allows estimating the
amount of water in the hydration shell of hydrophobic particles or the change in the number
and state of these particles. In addition, the method makes it possible to measure acoustic
impedance, excess enthalpy, miscibility, and the compatibility of mixtures. Compressibility,
the derivative of volume with respect to pressure, is a physical parameter that characterizes
the potentials of intermolecular interactions in a condensed medium and the response
of the molecular structure to pressure. These two factors determine the instantaneous
(high-frequency) and relaxation parts of the compressibility, respectively. The value of the
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compressibility determines the phase velocity of sound in the medium, and its relaxation
part determines the value of sound absorption. Therefore, simultaneous measurements of
the velocity and absorption of ultrasound, as well as the density of the medium make it
possible to determine the compressibility of the medium and its relaxation part with very
high accuracy. In addition, the compressibility of an aqueous solution is highly dependent
on the hydration of the solute. Almost all molecular processes (including phase transition)
in solution are accompanied by a change in hydration, which can be recorded and char-
acterized by the measurement of compressibility [42]. On the one hand, compressibility
is a sensitive characteristic of the state of aggregation of a substance. On the other hand,
a protein molecule and a lipid membrane are systems with a large number of internal
degrees of freedom, being delimited from the medium. Therefore, they can be considered
as a phase of small size, and their properties can be described in “macroscopic” terms [43].

One of the most accurate methods is the assessment of the state and phase transitions
of biomolecules by changing the compressibility and absorption of ultrasound using a setup
containing a fixed-length ultrasonic. To do this, we previously used a phase-locked loop
(PLL) [41], which was later replaced by an alternative measurement scheme based on the
methods of digital analysis of harmonic signals [44–46]. In the present work, the installation
was further modernized, which made it possible to increase the speed, as well as to
perform studies to determine the kinetics of heat- and photo-induced damage to biological
membranes and protein complexes. The approach proposed in this work can be the basis
for obtaining such important characteristics of a phase transition as the type of melting and
denaturation of proteins, interfacial tension, and the rate constant of the elementary act of
the growth and decomposition of a new phase, providing information about the physical
properties of lipid membranes and protein molecules and on intermolecular interactions in
aqueous solutions. This method combines high sensitivity, accuracy (10–4%), and a small
volume (100 Ml–1000 µL) of the test sample [39].

2. Materials and Methods

The dependence of the relative velocity of ultrasound in water on temperature at
various concentrations of deuterium oxide were analyzed using different ratios of light
water (“Legkaja voda, Standart”, Komponent-Reactiv, Moscow, Russia) (without deuterium
oxide) and ordinary water. The ordinary water was obtained by distillation and subsequent
deionization of tap water.

Dimyristoylphosphatidylcholine liposomes were prepared by fifteen times of extrusion
through a 200 nm membrane at room temperature [45]. Prior to this, the dimyristoylphos-
phatidylcholine (Sigma Aldrich, Merck Group, Darmstadt, Germany) was hydrated for
several hours, followed by five freezing/thawing cycles. This procedure led to the for-
mation of unilamellar vesicles [45,47–49]. Ultrasonic measurements were performed in
the medium containing 50 mM KCl (Sigma Aldrich, Merck Group, Darmstadt, Germany),
20 µM EGTA (Sigma Aldrich, Merck Group, Darmstadt, Germany), 10 mM Tris-HCl (pH 8.5)
(Sigma Aldrich, Merck Group, Darmstadt, Germany), and 1% ethanol (Chimmed Group,
Moscow, Russia) (added with palmitic acid (Sigma Aldrich, Merck Group, Darmstadt,
Germany)). The concentration of lipids used in the measurements was 1 mg/mL.

The isolation of photosystem II (PSII) core complexes was performed according to [50]
with some modification [51]. The PSII membrane preparations used for the isolation of PSII
core complexes were obtained in accordance with [52]. Removal of the water-oxidizing
complex (WOC) from PSII core complexes was performed by 1 h of incubation in the
presence of 5 mM NH2OH (Sigma Aldrich, Merck Group, Darmstadt, Germany) and
subsequent purification on a Q-Sepharose column (GE Healthcare Bio Sciences, Uppsala,
Sweden) [51]. Photoinhibition of “native” PSII core complexes was achieved by contin-
uous illumination (λ = 400–800 nm, 1500 µmol photon s−1 m−2) provided by LED (JH-
5WBVG14G24-Y6C, Ledguhon, Guangzhou Juhong Optoelectronics Co., Ltd., Guangzhou,
Guǎngdōng, China) in a medium containing 50 mM MES (pH 6.5) (PanReac AppliChem,
ITW Reagents, Glenview, IL, USA), 35 mM NaCl (PanReac AppliChem, ITW Reagents,
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Glenview, IL, USA), and 0.003% (w/v) n-dodecyl-β-D-maltoside (PanReac AppliChem,
ITW Reagents, Glenview, IL, USA) at a chlorophyll concentration of 18 µg/mL. The pho-
toinhibition procedure was performed in the ultrasonic spectrometer cell. The ultrasound
study of heat- and photo-induced damage to photosystem II core complexes was performed
in the presence of 50 mM MES (pH 6.5), 35 mM NaCl, and 0.003% (w/v) n-dodecyl-β-
D-maltoside at a chlorophyll concentration of 18 µg/mL (for heat-induced processes) or
7 µg/mL (for light-induced processes).

The Chl concentration was determined in 80% acetone (Chimmed Group, Moscow,
Russia) [53]. The manganese content in the PSII preparations was controlled using the
atomic absorption spectrometer KVANT-2A (Cortec, Moscow, Russia).

During the ultrasonic measurement, the samples in both the reference and experi-
mental cells were mixed with a magnetic stirrer. All measurements were repeated at least
three times.

3. Results
3.1. Setup

Figure 1 shows the structure of the measuring scheme of a fixed-length digital com-
puter ultrasonic spectrometer. In comparison with the previous version [44], in order to
overcome the limitations of the method associated with the speed of measuring the phase-
frequency characteristic, the measurement channel of the experimental cell was upgraded.
The directions of modernization were as follows:

1. Acceleration of the operation of the controller that tunes the DDS generator: an 8-bit
ATMega family (Atmel, Microchip Technology Inc., Chandler, AZ, USA) with a clock
frequency of 16 MHz was replaced with a 32-bit SAM3 controller (Atmel, Microchip
Technology Inc., Chandler, AZ, USA), that is replacing the Arduino Uno controller
with the Arduino DUE controller.

2. Transition from a circuit with one oscillator and one oscilloscope serving two channels
and a switch to a circuit with one 125 MHz master oscillator and two DDS generators.

3. Replacement of the digital oscilloscope in the channel of the experimental cell with
a high-speed recorder with 32 MB of RAM and a USB3.0 interface. The recorder is
started by an external trigger. The trigger signal is generated by the Arduino DUE.

4. The measurement procedure in the channel of the experimental cell was changed. The
Arduino DUE controller independently forms a grid of 15 frequencies and the 16th
interval with the generator turned off. The entire frequency grid is automatically fed
to the input of the experimental cell without the participation of a personal computer.
The measurement result (in the form of a continuous recording with a sampling
frequency of 50 MHz and eight million samples long) is transferred to a computer
and analyzed. Thus, the procedure for measuring the characteristics of one resonant
peak takes 160 ms, rather than 4 s as in the previous version.

In addition, the measuring cells were additionally equipped with magnetic stirrers
(2 in Figure 2), LEDs (JH-5WBVG14G24-Y6C Ledguhon, Guangzhou Juhong Optoelectron-
ics Co., Ltd., Guangzhou, Guǎngdōng, China), and capillaries for supplying or evacuating
gases mounted in the covers (5 in Figure 2).

The program used to implement the algorithm for signal analysis (using digital signal
processing) and control of the experimental conditions was developed with C++. The
program performs the following tasks in real-time: (i) obtains raw digitized sinusoidal
signals at the input and output of each cell, (ii) sets the frequency of the DDS genera-
tor, (iii) calculates the phase frequency dependence and amplitude transmission coeffi-
cient (AFC) and determines the position of the maximum of the resonant peak in the
frequency range, (iv) visualizes the data, and (v) scans the temperature in the cells and
controls the thermostat.
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In comparison to the method described earlier [44], in the present work, the principle
of determining the position of the resonance peak was changed (Figure 3). If the algorithm
did not change much for the sample cell, then a simplified procedure was used for the
reference cell. The phase frequency dependence near the resonant frequency was measured
to perform steady-state measurement of the frequency and width of a resonant peak
in a cell with a sample. The estimation of the position of the resonant peak was made
by determining the position of the zero of the second derivative of the phase frequency
dependence (Equation (1)). To obtain one point of the second derivative of the PFC, it is
necessary to perform three dimensions of phase frequency dependence. This was repeated
five times at small, regular frequency intervals. After that, the dependence of the second
derivative of the phase frequency dependence was approximated by a straight line, which
intersects the zero of the ordinate at the position of the resonant peak. In parallel, the
first derivative was calculated (Equation (2)) for the calculation of the fork pitch at the
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next determination of the position of the resonance peak (Equation (3)). The width of the
resonance peak was calculated using Equation (4).

φ′′ ( f ) =
φ( f + ∆ f[yellow]φ) + φ( f − ∆ fφ)− 2φ( f )

∆ fφ
2 (1)

φ′( f ) =
φ( f + ∆ fφ)− φ( f − ∆ fφ)

2∆ fφ
(2)

∆ fφ = aφ
π

4φ′( f )
(3)

∆ f =
π

2φ′( f )
(4)

where ∆fφ is the fork pitch and aφ is the trimming factor. We used ∆f to determine the
Q-factor for the energy losses in our resonant system (Equation (5)):

Q =
f

∆ f
(5)
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Figure 3. Comparison of the method for the determination of the position of the resonant peak in the
cell with the test sample (left) and in the control cell with water (right).

As the Q-factor rises with losses falling, we used the 1/Q parameter to characterize
the losses in the system due to scattering and viscosity.

As mentioned above, a simplified procedure was used for the reference cell, in which
the phase was determined once for a frequency close to the frequency of the resonant peak.
The current position of the resonant peak was determined by linear regression of the phase
frequency dependence with a known slope. As a reference substance, it is better to use a
known substance, for example pure water.

3.2. Measurements

Figure 4 presents the results of the measurement of the relative velocity of ultrasound
in water. Line 1 indicates that the ultrasonic spectrometer had a good stability in all
temperature ranges. Replacement of 50% (line 2) or 100% (line 3) light water in the
experimental cell with ordinary water led to a decrease in the relative velocity of ultrasound.
Moreover, this difference increased with increasing temperature. If we take into account the
content of deuterium oxide in ordinary water (about 0.015%), the presented data confirm
the high sensitivity of the ultrasound spectrometer.
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Figure 4. Dependence of the relative velocity of ultrasound in water on temperature at various
concentrations of deuterium oxide. (1) Light water (without deuterium oxide), (2) 50% light water
and 50% ordinary water (with a natural amount of deuterium oxide), and (3) ordinary water. There
was light water in the reference cell. The ordinary water is deionized distilled tap water. c is the
velocity of ultrasound in the reference cell; d(c) is the difference of the velocity of ultrasound in the
sample cell and in the reference cell.

Figure 5 shows the influence of the addition of sodium dodecyl sulfate (SDS), palmitic
acid, and Ca2+ on the phase state of dimyristoylphosphatidylcholine (DMPC), a kind of
phospholipid, which can be used to prepare liposomes. A sharp decrease of the ultrasound
velocity at 23.85 ◦C reflects a change of the phase state of the liposomes. The addition of
20 µM SDS (a known agent, which destabilizes the membrane structure [54–61]) led to a
slight decrease in the temperature of the phase transition (to 23.25 ◦C). Palmitic acid (20 µM),
in contrast to the effect of SDS, increased the phase transition temperature and decreased
the cooperativity of the transition (two phase transitions were observed: at 26.10 ◦C and
28.90 ◦C). These data are consistent with the previous data [62–66], including those obtained
using ultrasonic measurements [67]. The addition of 200 mM Ca2+ eliminates the SDS- and
palmitic acid-induced changes, probably due to the binding of Ca2+ to palmitic acid [46].

It is known that photosystem II is the pigment–protein complex, which consists of
20 protein subunits and about 20 lipid molecules [68–71]. The study of the state and
phase transitions in such large complexes is a very difficult task, since the contribution
of each component of the complex will overlap with the others. Figure 6A shows the
kinetics of the ultrasonic velocity in the suspension containing untreated photosystem II
(PSII) core complexes (black curve). The relative ultrasonic velocity gradually decreased
with increasing temperature. The decrease in velocity with the temperature increase
was nearly linear. However, in some parts of the kinetics, a decrease in the slope angle
was observed, which may indicate changes in the protein complexes. The calculation of
the derivative of the kinetics makes it possible to visualize the changes in the kinetics
(Figure 6B). There are several regions of sharp growth on the derivative curve, which may
indicate the decomposition of protein complexes into small components or a change in
the structure of the peptides themselves. Several regions of this kind can be distinguished
on the curve. The first starts at 43.5 ◦C, the second at 56.5 ◦C, and the third at 66.7 ◦C.
Preliminary photoinhibition of the samples somewhat changed the character of the curves
(Figure 6A,B, red curves). The relative ultrasonic velocity increased, which can indicate
light-induced damage to the complexes (Figure 6A). The first shoulder on the derivative
(observed at 43.5 ◦C) decreased greatly, which may indicate that those PSII components
that undergo changes at this temperature were damaged by light prior to the ultrasonic
measurement (Figure 6B). The curve shows a significant increase in the amplitude of the
second shoulder (observed at 56.5 ◦C). Further, the character of both the changes in the
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ultrasound velocity and their derivatives was practically the same in both types of samples
(native and photoinhibited).
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Figure 5. Effect of sodium dodecyl sulfate (SDS), palmitic acid (PA), and Ca2+ on the phase state
of dimyristoylphosphatidylcholine liposomes. Dependence of the relative velocity of ultrasound
(A), its derivative (B), and the 1/Q-factor (C) on temperature. Measurements were performed
in the medium containing 50 mM KCl, 20 µM EGTA, 10 mM Tris-HCl (pH 8.5), and 1% ethanol
(added with palmitic acid).

Figure 6C describes the dependence of the Q-factor (which can describe the change in
the shape or size of particles) on temperature. The figure shows that the initial value of the
Q-factor for samples pre-treated with high-intensity light was higher than for untreated
samples. This may indicate that PSII core complexes were damaged as a result of pre-
illumination. When the temperature reached 33.5 ◦C, the Q-factor significantly increased
in both types of samples and then did not change. At the same time, its value became
the same for untreated and pre-illuminated preparations. It is important to note that the
presented curves were the result of filtering the original curves (shown in the insert in
Figure 6D). The original curves showed that the signal-to-noise ratio also changed with
increasing temperature, which is reflected in Figure 6D. It is shown that the value of the
Q-factor RMS began to increase with increasing temperature, which correlates well with
the data presented in Figure 6A–C. The Q-factor RMS returned to the initial values when
all the main processes, reflected in Figure 6B, ended.

It is known that photosystem II complexes depriving the water-oxidizing complex
are very sensitive to photoinhibition [72–76]. Therefore, we decided to perform a study
of the kinetics of photoinhibition using preparations with the WOC removed. In order to
avoid additional thermal inactivation of the preparations, it was decided to conduct the
experiments at a low temperature (≈6.4 ◦C). Figure 7 shows the photoinduced changes
of the relative velocity of ultrasound in the suspension containing photosystem II core
complexes with the removal of the WOC. Before illumination, the ultrasonic velocity
remained stable.
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was used), and A2 (33.5 ◦C) (the nomenclature accepted in [28] was used).
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Figure 7. Photoinduced changes of the relative velocity of ultrasound in the suspension containing
photosystem II core complexes with the removal of the water-oxidizing complex. The kinetics are
presented before (1) and after (2) temperature compensation. The panel at the top of the figure shows
the change of temperature in the cells induced by illumination. ↑ and ↓ represent the steady-state
actinic light (λ = 400–800 nm, 1500 µmol photon s−1 m−2) being on and off, respectively.
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The kinetics of the photoinduced changes of the relative velocity of ultrasound can
be divided into two parts: a fast phase, associated with sample heating, and a slow phase,
reflecting photoinduced changes occurring in PSII complexes. The fast phase is a completely
reversible decrease in the relative speed of ultrasound immediately after turning on the light,
which is completely dependent on the heating of the sample (∆t = 0.04 ◦C). The slow phase
is a gradual irreversible increase in the speed of sound as a result of the photoinhibition
of the samples, which was not detected upon repeated illumination. Note that the rate
of the light-induced increase of the ultrasound velocity after the second illumination was
three-times lower that after the first one. These data correlate well with those presented in
Figure 6A (increase in the speed of sound in the photoinhibited sample).

Thus, it was shown that the fixed-length ultrasonic spectrometer can be used to
determine the kinetics of the light-/heat-induced damage to biological membranes and
protein complexes.

4. Discussion

The development of technologies for the study of the phase state of biological samples
concentrates on the increase of the resolution and on the decrease of the noise in comparison
to the signal. Ultrasonic technologies are also constantly being developed [77–87]. How-
ever, the majority of the attention is paid either to fairly simple or model objects or to the
assessment of the quality or readiness of food products, as well as research for medical pur-
poses [34–40,45,46,84,85,88–93]. In our work, we tested the potential possibility of studying
the state and phase transitions of a large and complex multiprotein, the photosystem II of
higher plants (containing peptides, lipids, photosynthetic pigments, and electron transport
cofactors). Photosystem II (PSII) is the pigment–protein complex located in the thylakoid
membrane of chloroplasts and cyanobacteria. PSII catalyzes the transformation of light
energy into electrochemical energy with separate charges [94]. A by-product of PSII’s
operation is molecular oxygen. A minimal molecular structure capable of water oxidizing
is PSII core complexes. X-ray analysis of PS2 core complexes isolated from cyanobacte-
ria showed that each PSII monomer consists of 20 protein subunits, 20 lipid molecules,
as well as 35 chlorophyll and 12 carotenoid molecules [68,69,95,96]. Modernization of a
fixed-length ultrasonic spectrometer, the acceleration of the speed, changes in the algorithm
of determining the position of the resonance peak, and mixing the sample allowed per-
forming measurements of heat-induced damage to PSII. In addition, such measurements
became possible in the direction from low to high temperature without degassing of the
measuring medium. Before the modernization, such measurements were not possible.
Figure 6 indicates that heating of PSII core complexes led to changes in the state of the
preparations, which led to the destruction of the complex. The first one started at 33.5 ◦C
(Figure 6C), the second at 43.5 ◦C, the third at 56.5 ◦C, and the fourth at 66.7 ◦C (Figure 6B).
To simplify the discussion, we call these transitions A (43.5 ◦C), B1 (56.5 ◦C), C (66.7 ◦C)
(the nomenclature accepted in [26] was used), and A2 (33.5 ◦C) (the nomenclature accepted
in [28] was used). A sharp increase in the Q-factor value at 33.5 ◦C indicated changes in
the size or shape of the particles in the suspension. Indeed, using differential scanning
calorimetry and gel electrophoresis separation, the dissociation of the proteins of the PSII
water-oxidizing complex (without protein denaturation) was previously demonstrated [28].
Transition A observed in Figure 6B may be due to the degradation of the WOC [26,28,97],
PSII core monomerization [98], and damage to the PSII acceptor side with denaturation of
43 kDa, 28 kDa, and 22 kDa proteins [27,28]. Moreover, lipid phase transitions may occur
at this temperature, but in PSII core complexes, its contribution should be minimal [99].
Practically the full disappearance of transition A in pre-illuminated particles may be due
to photodamage to the corresponding components of PSII [100,101]. As has been shown
earlier, transition B1 reflects denaturation of the proteins of the PSII core (47 kDa, D1 and
D2) [26,28,102]. Surprisingly, the amplitude of transition B1 in pre-illuminated samples was
several times higher than in untreated PSII core complexes. Now, it is difficult to explain
what this is connected with. It is likely that 10 min of illumination of the samples in an
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environment containing oxygen caused significant damage to PSII’s components. These
damages can lead to a change in the properties of polypeptides due to their oxidation by
reactive oxygen species [51,75,103–117], as well as the formation of cross-links between
them [118–123]. On the one hand, the damages can reduce the thermal stability of the
peptides, and on the other hand, cross-links can increase it. It is likely that during pho-
toinhibition, additional covalent cross-links of the protein complex appear, leading to an
increase in thermal stability. As a result of photoinhibition, the process of the destruction
of the complex observed in the control samples at 44–52 ◦C may be shifted to the region
of 57–60 ◦C and occurs in a much narrower temperature range. Note that the properties
of untreated and pre-illuminated particles became similar after ≈60 ◦C. It is believed that
transition C (identical in both types of preparations) reflects the degradation of minor
light-harvesting complexes [20]. However, the PSII core complexes used in the present
work did not contain these components. We assumed that transition C may reflect the
denaturation of the PsbO protein of the water-oxidizing complex. Phase transitions of PsbO
were observed at temperatures from 68 ◦C to 76 ◦C, depending on the presence of calcium
and manganese ions and the pH of the medium [124].

Our data show that a fixed-length ultrasonic interferometry can be used not only to
analyze simple compounds, but also complex ones, such as photosynthetic complexes
isolated from the thylakoid membranes of higher plants, as well as the kinetics of heat- and
photo-induced processes in them.

5. Conclusions

The present study showed the high sensitivity of the ultrasonic spectrometer we devel-
oped. The spectrometer proved itself in studies of both relatively simple compounds (for
example, solutions of deuterium oxide and liposomes) and extremely complex multicom-
ponent enzymes (for example, the core complexes of photosystem II of higher plants). Thus,
the present study demonstrates that a fixed-length ultrasonic spectrometer can be applied
in further investigations to determine the kinetics of heat- and photo-induced damage to
biological objects.
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