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Abstract: This research paper aims to design and implement an intelligent least short time memory
(LSTM) deep learning classification technique to detect possible anomalies in measurements dataset
within a particular Li-ion battery type. For the state of charge (SOC) and battery faults estimation, a
Joint State and Parameter Extended Kalman Filter (JEKF) estimator is developed. The SOC accuracy
performance is excellent, with less than 0.5% error during steady-state, compared to the 2% error
reported in the literature. For the design and implementation of JEKF SOC and parameter estimation
is chosen a preset Li-ion battery Simulink Simscape generic model. It is also helpful to generate
the healthy and faulty measurement dataset to design and implement the proposed intelligent
LSTM classifier deep learning technique. The generic Li-ion battery model is wisely selected for the
“proof concept” purpose, model validation, and algorithms’ robustness, accuracy, and effectiveness.
Compared to the traditional EKF fault diagnosis and isolation (FDI), a model-based estimation
strategy, the proposed classification LSTM technique is an intelligent data-driven-based deep learning
algorithm of high accuracy (around 80%) and loss performance close to zero. Therefore, this feature
makes data collection of dataset measurements directly from Li-ion battery sensors possible, which
is beneficial for generating online fault scenarios. Additionally, the LSTM deep learning technique
can remarkably classify all detected anomalies with high accuracy, independent of battery model
accuracy, uncertainties, and unmodeled dynamics. Also, high-performance accuracy root mean
square error (RMSE) of 0.0588 (voltage fault), approximately 5.5× 10−7 (healthy) and 8.87 × 10−6

(current fault) for deep learning shallow neural network (DLSNN) reveals an obvious superiority of
both compared to the traditional FDI estimation strategies.

Keywords: lithium-ion battery; Simulink Simscape generic model; joint extended Kalman filter
estimator; fault diagnosis and isolation; deep learning shallow neural network; LSTM deep learning
network; artificial intelligence; anomalies detection and diagnosis

1. Introduction

Today, more than ever, the energy crisis that is deepening increasingly imposes the
need to inject into the interconnected national and international energy network alternative
sources of clean, green energy, which in the shortest possible time will completely replace
the sources of polluting energy [1]. Transportation is among our planet’s most widespread
sources of climate pollution, especially in crowded cities [2]. Recent years have seen
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remarkable progress in urban transport, with the impressive growth of a wide range of
electric vehicles (EVs)/hybrid electric vehicles (HEVs) on public roads [3]. However, to
finally reduce the share of toxic gases in the atmosphere, in other words, “zero” emissions
and transport as clean as possible, the share of electric vehicles on public roads will have to
increase to 100%.

This goal must be achieved in the shortest possible time so that changing the attitude
in which the planet’s population uses energy will significantly impact avoiding the worst
effects of climate change. Furthermore, emissions from cars and trucks are not only harmful
to our planet but also to our health, causing high-risk diseases and possibly premature
death. A significant advantage of EVs is that they are more efficient in converting energy
to power cars and trucks. Also, electricity, across the board, is cleaner and cheaper than
vehicle fuel [3,4]. Another advantage of electric vehicles is that most can be recharged,
a good solution for truck and bus fleets that regularly return to a central depot or end
station. In addition, new charging solutions are possible by adding more public charging
locations in shopping malls, parking lots and workplaces [4]. Electric utility infrastructure,
therefore, has a vital role in making it easier for people to buy electric cars on a large
scale. The lithium-ion (LiB) battery is the core of an EV and is one of the most suitable
sources of electrical energy storage (EESS). It is recommended for its top features: low
self-discharge, high energy and high-power density, tiny memory effect, lightweight,
long lifespan, and environmental approachability [5,6]. It is worth remarking that the
performance of an EV relies on the battery pack it runs on. The battery pack consists
of multiple modules of cells connected in series, parallel or combination series-parallel,
constituting the whole grid of a power source. As a vital component of the integrated
Battery Management Systems (BMS) structure of EV, the battery pack must be managed
appropriately through the hardware components (electronics circuitry of high complexity
such as charger, controllers, switches, current, voltage, temperature sensors, data acquisition
equipment, etc.), as well as the software components (i.e., battery and thermal models,
state and parameters estimators, fault detection, diagnosis and isolation (FDDI) in battery
sensors and actuators, artificial intelligence learning models (machine learning and deep
learning) used for anomaly detection, cell balancing, PI current-constant voltage (CC-CV)
modes control algorithms, battery fast charging algorithms, etc.) [5–12]. Since each battery
cell has a different operational state in the module, it is essential to monitor every battery
cell in the module, such as the temperature, discharging or charging current, terminal
battery voltage, state of charge (SOC), state of health (SOH), state of energy (SOE), as
well as anomalies detection in the sensor’s functionality [7–13]. Summarizing, a Battery
Management System (BMS) is an “intelligent component of a battery pack responsible for
advanced monitoring and management”, as mentioned in [12]. Besides, “it is the brain
behind the battery and plays a critical role in its levels of safety, performance, charge rates,
and longevity” [12]. This produces reliable, safe, and secure products [10–13].

The flow of this paper is organized into four broad sections, as follows. The last
two subsections of Section 1 present some preliminaries on data acquisition equipment
and Li-ion BMS architectures and a literature review of several traditional model-based
and data-driven-based learning estimation and classification techniques. Section 2 details
some aspects related to selecting a predefined Li-ion Cobalt battery type, developing
a generic Simulink Simscape Rint model based on parameter values extracted directly
from battery curves that match the manufacturers’ specifications, and its thermal. Model,
MATLAB simulation results of the AEKF SOC estimator and terminal voltage prediction,
and statistical criteria for performance evaluation. Section 3.1 developed a general model to
generate the healthy, additive current, voltage, and temperature fault models and injection
mechanisms for current and voltage faults. Estimating the battery SOC and the faults uses
an accurate and robust JEKF state and parameter estimator. A residual-based procedure is
integrated into the fault detection and diagnosis scheme to detect the time instances for the
injection and removal of each fault. Finally, based on the fault signature matrix, the fault is
diagnosed (classified). Section 3.2 is applied a driven-data-based deep learning shallow
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neural network (DLSNN) technique for anomaly detection into sensors’ measurement
datasets. Section 3.3 introduces a Deep Learning Neural LSTM to classify anomalies in
the sensor measurement dataset. Section 4 contains detailed discussions of the MATLAB
simulation results obtained by comparing the traditional EKF estimator and the accuracy
performance of DLSNN and LSTM, the conclusion of this work, and future work.

1.1. Preliminaries—Data Acquisition Equipment and BMS Architectures

Among the promising LIBs in the battery market, the most suitable and widespread
for HEV/EV energy-storage applications are lithium-ion phosphate (LiFeO4), lithium
polymer (LiPo) and lithium cobalt (LiCoO2) batteries [5]. An accurate SOC estimation of
the battery in a BMS can improve its performance and reliability. Furthermore, to provide
higher power density, the safety of the BMS power system in a LIB pack is crucial, as the
battery could be damaged if used beyond the battery’s specifications [5]. An interesting
simplified global system architecture of a smart battery power system is proposed in [5],
which we reproduce in Figure 1 because it is well documented and provides enough detail
to gain insight into the complexity of a LIB’s BMS. It integrates appropriate data acquisition
(DAQ) equipment (sensors, analogue-to-digital converters (ADC)) to collect the values of
charging/discharging voltages, currents, and temperatures for each battery cell, as well
as for the entire particular battery pack consisting of 12-series cells. An appropriate LIB
SOC estimator and real-time FDDI algorithms can be implemented based on these values.
The specific values of LIB parameters such as “battery cell material, battery cell capacity,
battery cell maximum discharge current, and battery topology” are provided by a touch
LCD screen. Also, the LIB SOC estimated values and fault diagnosis results are displayed
on the same LCD screen and sent further to a host computer via a Universal Asynchronous
Receiver-Transmitter (UART) to be processed. For a battery pack larger than 12 cells, a
controller area network (CAN bus) is required for communication with “other peer systems
or the master system” [5].
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Figure 1. The overall system architecture of a smart LIB power system (LCD: liquid-crystal display,
SOC: state-of-charge, CAN BUS: controller area network bus, UART: universal asynchronous receiver-
transmitter (reproduced from [5]).

A look inside a typical BMS architecture showing the main functional blocks such
as field effect transmitters (FETs), fuel gauge, cells voltages, battery pack voltage and
temperature monitors, cells voltage balance, real-time clock (RTC), and a state machine is
depicted in Figure 2 reproduced from [14]. Some details about these functional blocks can
be found on the Electronic Design website [14]. The research paper is focused only on the
functional blocks related to battery SOC estimators and FDDI algorithms implemented in
real-time and model-based, as well as anomaly detection algorithms in the functionality
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of the sensors based on input-output dataset measurements. Battery SOC is a critical
internal state of the battery carefully monitored by the BMS as long as it seriously affects
the health and life of the battery. It is well-defined as the battery’s remaining capacity
at any service moment under different operating conditions, environments, and ambient
temperatures [11]. It is well-known that during several charging and discharging cycles,
the LIBs generate a significant amount of heat, which leads to an excessive increase in
temperature inside the battery.
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Temperature changes within the battery “not only damage the performance of the
internal materials of the battery and reduce the service life of the battery, but also easily
lead to overheating, expansion, electric leakage, fire, explosion, and other thermal runaway
phenomena which pose a great threat to the safety of automobiles and passengers” [15,16].

A cooling and heating system must be installed to prevent the dangerous effects of
temperature changes inside the battery and extend its life [11,15–17].

Since the SOC of the battery is significantly affected by the ambient environment
and the temperature inside the battery, hysteresis effects, self-discharging, battery ageing
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effects during its service life, and sensitivity to the noise, it cannot be easily and accurately
measured, and therefore the need to be estimated becomes a priority to prevent dangerous
situations and improve battery performance [7,11,15–17]. In [18], accurate run-time SOC
estimation techniques are used in BMS for “cell balancing of battery packs in vehicles with
electrified powertrains”. Additionally, the battery SOC estimation “must be accurate under
all vehicle operating conditions, and account for changes in temperature, different rates of
current, and cell aging” [18].

1.2. Traditional Model-Based and Deep Learning Data-Driven-Based Models Estimation
Techniques—Literature Review

The most used battery SOC estimation methods can be separated into three main
categories, such as the Coulomb counting direct measurement method [18], model-based
methods which simulate the battery internal structure, materials and chemical reactions
of a battery by building a linear equivalent electric circuit model (ECM) and methods
based on input-output data set measurements, well-known as data-driven methods, which
analyze the historical data collected through laboratory measurements [9]. A simple SOC
estimation method reported in the literature is the Coulomb counting method, an open-loop
method with a time integrator (i.e., time accumulation effect) of the battery current during
a charging/discharging cycle. The main flaw of the Coulomb counting SOC estimation
method is that it “does not account for self-discharge currents or parasitic reactions in the
cell” [18], and thus to prevent the accumulation in time of current measurement errors,
“it should be corrected by periodic recalibration” [18]. A significant improvement of the
Coulomb counting SOC estimation method is achieved in [19], an attractive feedback
closed-loop SOC estimation approach, which uses a Li-ion battery cell model whose param-
eters are temperature dependent. A PI controller and the battery cell model (i.e., chosen
as a plant) are connected in series in the forward path of a closed–loop feedback control
system structure. The controller output is a voltage that “follows the measured battery cell
voltage, which acts as the reference input of the closed–loop system” [19]. In this approach,
the combined SOC estimation algorithm “requires less computational resources than other
model-based approaches, such as Kalman filtering” [19]. Also, the model–based component
of the integrated combined SOC estimation algorithm “basically corrects low–frequency
errors induced to the Coulomb counting SoC estimation by offset temperature drifting
of the current sensor” [19]. Furthermore, the combined SOC estimation algorithm gains
robustness against an incorrect SoC guess compared to a simplified Coulomb counting
method [19]. A similar combined Coulomb counting SOC approach in an adaptive estima-
tion scheme connecting the battery cell dynamic model with an adjusted gain is developed
in [20]. The field literature is awash with different approaches to improve the accuracy
of SOC estimators, which remains a true challenge due to the “uncertainties involved,
such as temperature, varying power requests, aging effects”, and so on, as mentioned
in [21]. It is worth noting the three research papers [22–24] that reveal the first results
of a high scientific value research in the field of Li-ion polymer (LiPo) batteries. These
three fundamental research works develop model-based SOC estimation algorithms, the
state-of-the-art Kalman filter (KF) SOC estimators, noting the two well-known versions
spread in the literature, linear KF (LKF) and extended KF (EKF). Then similar approaches
are extended to the nonlinear models developed to capture the entire dynamics of these
models, such as the fundamental research work unscented KF (UKF) [25], as well as its
new version, the square root UKF (SRUKF) [26], particle filter KF (PKF) SOC estimator [27].
It is worth noting that to design an accurate, robust, and optimal SOC estimator using a
Kalman filter. It is necessary to possess in advance accurate information about the process
and the measurement noise; otherwise, it would lead to a poor filter convergence rate, but a
rather tricky task [28]. To overcome this drawback, a genetic algorithm for SOC estimation
is developed in [28] based on a particle swarm optimization (PSO); a great advantage of
this approach is that the requirement to linearize the non-linear battery model, as well
as prior knowledge on measurement and process noise is no longer required. The main
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purpose of the genetic PSO SOC estimator is to determine the unknown parameters to
obtain the battery open circuit voltage (OCV), which depends on the SOC of the battery
and, therefore, using a lookup table, the SOC can be estimated. Finally, artificial intelligence
(AI) data-driven based methods, using fuzzy logic, adaptive neural networks fuzzy infer-
ence system (ANFIS) models, machine learning (ML) and deep learning (DL) estimation
methods adapted to li-ion batteries SOC estimation and prediction are reported in the
literature [29–31]. Also, these SOC estimation techniques are adapted for fault detection
and isolation or anomaly detection algorithms in the sensors and actuators functionality
monitored in BMS [5,32–43]. Anomaly detection is a technique that uses AI to identify
abnormal behavior compared to an established pattern. Anything that deviates from an es-
tablished baseline pattern is considered an anomaly. Although the AI algorithms eliminate
the impact of the nonlinearity of the battery model on the overall battery performance, the
computational cost is still high, and significantly large training data are required to ensure
the accuracy of state and parameter estimation.

2. Materials and Methods
2.1. Li-Ion Model Selection and Simulink Simscape Block Setup

As a case study for implementing the design, models and methods of possible anoma-
lies detection in the functionality of measurement sensors, for “proof concept” and sim-
ulation purposes, is adopted a simple Rint generic Simulink Simscape model of a preset
7.4 V nominal voltage and 5.4 Ah rated capacity Li-ion cobalt battery (LiCoO2) for possible
integration in a Battery Management System of an HEV/EV [11].

As is shown in Figure 3, the battery model parameters can be extracted from the
data specifications of a collection of generic SIMULINK Simscape battery models without
temperature effects that match the manufacturers’ specifications. Therefore, the validation
of the model is not necessary as long as the parameter values match the manufacturers’
specifications. However, calibration of the parameter values is required when is not a
perfect match between the battery model SOC and the SOC generated by the Simulink
Simscape block.
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Figure 3. The LiCoO2 Battery Simulink Simscape block setup for a preset Li-Ion battery generic
5.4 Ah rated capacity and 7.4 V nominal voltage without Temperature effects [11].

The ambient temperature for the battery is set to 20 ◦C. Figure 4a is presented the
voltage discharge curve for a constant current (CC) discharge of 0.2037 C-rate, i.e., 1.1 A
during an interval of 5.241 h discharging time. In Figure 4b are specified the generic battery
model parameters (E0, R, K, A, B) that represent a constant voltage source (E0), the internal
resistance of the battery cell (R), the polarization constant (K) and the last two parameters
(A and B) define the exponential area (blue surface in Figure 4a). Also, in the same figure
are represented three discharging voltage curves for 1C, 2C and 5C (CC) discharging rates,
i.e., for constant discharging currents of 5.4 A, 10.8 A, and 27 A, respectively.
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The generic Simulink Simscape Li-ion preset battery model type and its parameters,
discharging current rates and temperatures setup are also specified in Figure 5a–c.

2.1.1. Li-Ion Cobalt Battery Type Model Performance with and without
Temperature Effects

For particular settings of the Simulink Simscape battery block for a preset Li-ion
battery selection shown in Figure 3, both batteries performance A and B can be visualized
in Figure 6, namely the OCV = f(SOC) discharging curve (a), battery terminal cells voltages
(b), CC battery discharging values within the cells (c), the SOCs battery cells (d), and the
ambient and temperatures cells (e), provided through several simulations conducted in
MATLAB Simulink R2019b software (MathWorks, Natick, MA, USA) environment.
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2.1.2. Li-Ion Cobalt Type Battery -Analytical Model

Based on the generic Simulink Simscape battery model parameters extracted from the
nominal current discharge characteristic at CC 0.2037C rate, i.e., CC at 1.1 A, represented in
Figure 4a,b, an accurate and simplified analytical battery model can fit a similar discrete-
time unidimensional state space representation as the models developed in [10,11] given
by the following two equations:

x1(k + 1) = x1(k)− Ts

(
η

Qnom

)
× u(k) (1)

y(k) = E0 −
KbatTs

x1(k)
× u(k) + Abatexp(−BbatQnom

η
(1− x1(k)))− Rinu(k) (2)

where x1(k) , x1(kTs) = SOC(kTs), u(k), y(k), Qnom, η and Ts designate the discrete-time
battery SOC, input current cell, output battery terminal voltage, nominal battery capacity,



Inventions 2023, 8, 74 9 of 30

a constant Coulomb charging and discharging efficiency value of 0.75, and sampling
time, respectively.
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The model parameters value suited to fit well is recalibrated and set to the following
values: E0 = 8.0259 [V], Rin = 0.0133 [Ω] (internal cell resistance), Kbat = 0.001834

[
V
As

]
(polarization constant), Abat = 0.35903[V], Bbat = 3[1/(Ah)], Ts = 1 [s],Qnom = 5.4 [Ah]
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(nominal cell capacity), η = 0.75, (Coulomb efficiency). It is essential to emphasize a great
advantage of the adopted Simulink Simscape model, presented in Equations (1) and (2),
consisting of a considerable model simplification and dependence only on SOC. Also, the
dynamics of this model are described by the first Equation (1), which is linear, and the
second Equation (2) is a highly nonlinear static representation. The Simulink Simscape
diagram of the analytical Li-ion battery model that implements Equations (1) and (2) is
shown in Figure 7 [11].
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2.2. Anomaly Detection and Diagnosis Techniques for Li-Ion Battery—Additive Bias Faults within
Voltage and Current Measurement Sensors
2.2.1. Joint State and Parameter EKF Estimation for Fault Detection and Diagnosis of
Anomalies in LIB’s Sensors

Few state estimation strategies reported in the literature field refine online the model
parametric uncertainties to improve the accuracy of state estimation. Such methodology
is called joint state and parameter estimation, enabling simultaneous estimation of both
states and model parameters [24]. For simplicity and “proof concept” and simulation
purposes, in the case study, we present only two bias current and voltage sensor faults
as the most spread in Li-ion battery (LIB) of an HEV’s BMS. However, for a complete
description that delivers valuable information to the readers and implementers interested
in new investigations, the Li-ion battery model is combined with the thermal battery model.
Thus, it is helpful to study also the fault detection and diagnosis of a temperature sensor
fault if the battery is not equipped with a control system of the battery temperature for
kiping constant and uniform the temperature in each cell of the battery pack. All two faults
are denoted by f I , fV respectively, attached to Equations (1) and (2), and also to the battery
thermal model for an overall battery model, by addition or multiplication operations, and
whose dynamics are described by the following discrete-time equations.

x1(k + 1) = x1(k)− Ts

(
η

Qnom

)
× (u(k) + f I(k)) + w1(k) (3)

x2(k + 1) =
(

1− Ts

Tc

)
(x2(k)) +

Ts

Tc
× Tre f (k) +

TsRthRin(k)
Tc

(u(k) + f I(k))
2 + w2(k) (4)

f I(k + 1) = f I(k) + wI(k) (5)

fV(k + 1) = fV(k) + wV(k) (6)

(k) = E0 −
KbatTs

x1(k)
× (u(k) + f I(k)) + Abatexp

(
−BbatQnom

η
(1− x1(k))

)
− Rin(k)(u(k) + f I(k)) + fV(k) + v1(k) (7)
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and Rin(k) is temperature dependent according to Equation (5). The absence of the fault
will be sensed when f I , fV will be equal to zero, and their presence when the value is equal
to 1 or greater than zero for fV .

In all the Equations (5)–(10), the variables w1(k), w2(k), wI(k), wV(k) and v1(k) repre-
sent the Gaussian process noises and measurement noise, respectively, assumed that all
are uncorrelated. In this development, the faults appear as joint parameters attached to
both states SOC and Temperature, whose values will be estimated using the same previous
AEKF algorithm, whose steps are summarized in Annex A of [37].

2.2.2. Data-Driven-Based Deep Learning Shallow Neural Network for Anomaly Prediction
into Sensors’ Measurement Dataset

To predict the sequence of health, voltage, and current anomalies (faults) based only on
the input-output data set of measurements collected from the voltage and current sensors,
an exciting alternative to the traditional model-based EKF SOC estimator is to use a simple
Deep Learning Shallow Neural Network (DLSNN) with an input layer with two inputs,
current (FTP-75 driving profile) and battery SOC (Predictors, P), a hidden layer consisting
of 25 neurons and an activation log sigmoid function, as well as a purelin output layer
that predicts the LIB terminal voltage (target/response, T), similar as those documented
in [36,37].

Scenario 1. Healthy LIB-Terminal voltage prediction
The NN structure includes the following input predictors (P) and output target(T):
Predictors (P): uFTP-battery current, SOCh-battery SOC
Target: Terminal voltage, Yh.
The NN structure, training phase and performance are shown in Figure 8a–d. In

Figure 8a is shown the DL SNN structure, (b) illustrates the training phase progress,
(c) reveals the output regression performance, (d) it can be visualized the DLSNN error
histogram, (e) shows the best validation performance of DLSNN.

Scenario 2. Faulty LIB -Voltage Sensor anomaly detected in the input-output measure-
ment dataset.

The input-output layers of the DLSNN structure include the following input predictors
(P) and output target (T):

Predictors (P): uFTP-battery current, SOCfv-battery faulty SOC due to the anomaly
detected in the Voltage sensor measurement dataset.

Target (T): Faulty Terminal voltage, Yfv.
Similar to healthy conditions, the NN structure, training phase and performance are

shown in Figure 9a–d, with the following signification: (a) Training phase progress, (b)
State performance (Gradient, mu and validation check), (c) DLSNN the best performance
validation, (d) DLSNN Error Histogram.

Scenario 3. Faulty LIB—Anomaly detected in FTP-driving cycle current profile.
The DLSNN input output layers are assigned as follows:
Predictors (P): uFTPcr- faulty battery current, SOCfc-battery faulty SOC due to the

anomaly detected in the battery current sensor measurement dataset.
Target (T): Faulty Terminal voltage, Yfc.
For this fault scenario, the NN structure, training phase and performance are shown

in Figure 10a–d. In addition, in Figure 10a is shown the DL SNN best validation perfor-
mance, Figure 10b illustrates the regression performance, Figure 10c shows the training
phase progress, and Figure 10d presents the DLSNN error histogram.
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2.2.3. LSTM Li-Ion Battery SOC Estimation and Fault Detection using LSTM Deep
Learning Neural Network

A long short-term memory (LSTM) neural network is a type of recurrent neural
network (RNN) which is used to learn, process, and classify sequential data [39–41]. These
networks can have the ability to learn long-term dependencies between time steps of input-
output dataset measurements. An LSTM network processes input data by looping over
time steps and updating the network state [39–41]. The network state contains information
remembered over previous time steps. The LSTM is a Deep Learning Neural Network
technique adapted in this research to detect the anomalies (faults) in Li-ion batteries,
as a viable alternative to Joint EKF state and parameter estimation for Fault Detection
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and Diagnosis presented in Section 3.1. The LSTM is a data-based learning technique
compared to EKF, a model-based estimation technique, and thus more suitable for online
learning applications. Two of the LSTM neural network architectures are adapted to our
case study that differs in the number of layers depending on the type of application if
it is a classification or a regression. Two of these layers represent the core of the entire
structure, namely a sequence input layer, and the second is an LSTM layer. The role of the
sequence input layer is to input a sequence or time series data into the neural network,
while the LSTM layer learns long-term dependencies between time steps of input sequence
data [41]. Two simplified diagrams of an LSTM neural network (LSTMNN) and another
two that illustrate a detailed LSTMNN architecture and the flow of data at current time t
are presented in Figure 11, as shown in [41].
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Figure 11. LSTM Neural Network diagrams for classification and regression applications: (a) LSTM
for classification; (b) LSTM for Regression; (c) LSTM layer flow detailed for a time series X with C
features (channels) of length S; (d) LSTM architecture detailed at layers level. (Reproduced from the
reference [41]).

This diagram from Figure 11a shows an LSTM neural network architecture of classifi-
cation type. It starts with a sequence input layer followed by an LSTM layer. To predict
class labels, the LSTM layer is followed by three other layers connected in series: a fully
connected layer, a SoftMax layer, and a classification output layer. Similarly, the second
diagram from Figure 11b is a simplified LSTM neural network architecture obtained from
the first diagram by removing the last two layers (SoftMax and Classification) and then
replacing them with a Regression layer. The LSTM neural network architecture diagram
shown in Figure 11c details the flow of a time series X with C features (channels) of length
S through an LSTM layer. The first LSTM block uses the initial state of the RNN and the
first-time step of the sequence to compute the first output and the updated cell state. At
time step t, the first block of this diagram uses the current state of the RNN (ct−1, ht−1)
and the next time step of the sequence to compute the output and the updated cell state ct.
Thus, each layer of the diagram has its internal dynamics, described by the evolution of the
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cell state ct at time step t and of its output ht, known as the hidden state [41]. The hidden
state at time step t contains the output of the LSTM layer for this time step. The cell state
“contains information learned from the previous time steps” [41]. At each time step, the
layer is updated by adding information to the cell state or resetting the content of the cell
state by removing information from it. The layer controls these updates using gates. The
following diagram shown in Figure 11d illustrates how a layer’s cell state is controlled by
four components [41]:

• Input gate (i) controls the level of cell state update
• Forget gate (f ) controls the level of cell state reset (forget)
• Cell candidate (g) adds information to the cell state.
• Output gate (o) controls the level of cell state added to the hidden state.

In the same, Figure 11d is explained how the gates forget, update, and output the cell
and hidden states, using four blocks designated by i, f, g, and o to denote the input gate,
forget gate, cell candidate, and output gate, respectively [41].

The overall dynamics of the cell and hidden states at time step t are described by
following two equations [41]:

ct = ft � ct−1 + it � gt (8)

ht = ot � σc(ct), σc(ct) =
1

1 + e−ct
(9)

where � symbolizes the Hadamard product, an element-wise multiplication operation of
vectors, and σc designates the state activation function. The lstmLayer function uses, by
default, the sigmoid function, i.e., a hyperbolic tangent function (tanh), to compute the
state activation function, as in Equation (9).

The four blocks of the diagram shown in Figure 11d and denoted by it as input gate,
ft—forget gate, gt—cell candiadate, and ot− output gate is described at step time t as a
sigmoidal nonlinear activation function:

• Input gate: it = σg(Wixt + Riht−1 + bi)

• Forget gate: ft = σg

(
W f xt + R f ht−1 + b f

)
• Cell candidate: gt = σc

(
Wgxt + Rght−1 + bg

)
• Output gate: ot = σg(Woxt + Roht−1 + bo)

where (Wi, W f , Wg, Wo), (Ri, R f , Rc, Ro) and (bi, b f , bg, bo) represent the input weight
matrices, recurrent weight matrices and bias vector that concatenate the input weights, the
recurrent weights, and the bias of each component, respectively.

The LSTM neural network deep learning classification allows inputting sequence
dataset input-output measurements into a network. It makes predictions based on the
individual time steps of the sequence dataset. In the case study for the proposed Li-ion
battery model that generates the healthy and faulty data measurements is trained an LSTM
neural network deep learning (more than a hidden layer structure) is to recognize the
combination (Vbat, SOC) of dataset measurements as time series data corresponding to
health, voltage fault, current fault, and false alarm (misclassification) class (0, 1, 2 and 3).
The training data contains time series data for the same LIB SOC and Terminal voltage
adopted in the previous section. Each sequence has four features and doesn’t vary in length.
The data set contains 2477 training observations and 2477 test observations.

The subsequent steps are followed to adapt the LSTM neural network deep learning
classification of the health and anomalies detected classes in the faulty signals representing
the Li-ion battery terminal voltage and its SOC, as suggested in [40]:

Step 1. Load dataset input-output measurements (healthy-subscript h, faulty: subscript fv for
voltage fault, fc for current fault, and for dataset test to asses the classification accuracy
is used the subscript new) Vbat = [Yh Yfv Yh_new Yfc] is battery terminal voltage
sequence: healthy-voltage fault-new healthy dataset-current fault SOC = [SOCh
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SOCfv SOC_new SOCfc] for the battery SOC sequence with the same meaning as
for Vbat

Step 2. Create Cell Array for XTrain and YTrain with combinations of Vbat and SOC, Condition
Code: 0-Healthy, 1-Fault Voltage,2-Fault Current; 3-False alarm. XTrain = {[Yh,SOCh]’;
[Yfv,SOCfv]’; [Yh_new,SOCh_new]’; [Yfc,SOCfc]’; [Yh,SOCfc]’} is training input se-
quence YTrain = categorical{[‘0′,’1′,’2′,’3′]} denotes the output training sequence for
anomaly classification (diagnosis)

Step 3. Visualize the first time series in a plot. Each line corresponds to a feature.
Step 4. Prepare the dataset for padding: During training, by default, the software splits

the training data into mini-batches and pads the sequences so that they have the
same length. However, too much padding can have a negative impact on the
network performance.

Remark 1. In the case that the observations haven’t the same length, to prevent the training process
from adding too much padding, the training data can be sorted by sequence length, and the hen has
selected a mini-batch size so that sequences in a mini-batch have a similar length.

Step 5. Choose a mini-batch size of 50 to divide the training data evenly and reduce the
amount of padding in the mini-batches.

Step 6. Define the LSTM neural network architecture:

Step 6.1. Specify the input size to be sequences of size 2 (the dimension of the
input data: 4 features, each of dimension 2 × 2477)).

Step 6.2. Specify a bidirectional LSTM layer with 250 hidden units, and output to
the “last” element of the sequence.

Step 6.3. Specify four classes by including a fully connected layer of size 4 (number
of features), followed by a SoftMax layer and the classification layer.

Step 6.4. Specify the options:

Step 6.4.1. Specify solver to be “adam”
Step 6.4.2. Setup the gradient threshold to be 0.5
Step 6.4.3. Setup the maximum number of epochs to be 150.
Step 6.4.4. Specify the sequence length to be “longest” (for the same length)

Step 7. LSTM Training data phase net = trainNetwork (XTrain, YTrainn, Layers, options)
Step 8. LSTM data Test: test the LSTM with a never seen data input sequence. XTest =

{[Yh, SOCh_new]’} YTest = categorical {[‘0′]}
Step 9. LSTM Classification of the test data: YPred = classify (net, XTest), . . . MinibatchSize

= minibatchSize, SequenceLength = “longest”
Step 10. Calculate the classification accuracy of the predictions: acc = sum (YPred==YTest/numel

(YTest))

The value of the LSTM neural network classification accuracy is the highest number 1;
thus, the LSTM has excellent classification accuracy. Also, for a new combination, with an
input never seen, the result is correct with an accuracy of 1.

XTestnew = [Yh_new, SOCh]’;
YPred = classify (net, XTest1)’, . . .
MiniBatchSize =miniBatchSize, . . .
SequenceLength = (“longest”);
acc = sum (YPred –Ytest/numel (Ytest)
YPred = 0;
acc = 1;
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3. Results
3.1. Li-Ion Cobalt Battery Type -Statistics Performance Evaluation
Li-Ion Cobalt Battery Generic Model- AEKF SOC Estimator Simulation Results

To analyze the SOC accuracy performance of the generic Simulink Simscape battery
model and to prove its robustness to changes in the initial SOC values from 80% to 40%,
noise level and different driving cycle current test profiles, such as FTP-75, UDDS and
UDDS-EPA, a comparison of the battery performance in terms of the AEKF SOC cell
estimates and battery terminal voltage versus the true battery cell values is performed in
the Figure 12a–c, and in Figures 13a–d and 14a–d which are showing also the SOC residuals.
The EKF SOC estimator algorithm steps are the same as those presented briefly in [22–24],
and Annex A of [37].
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value; (d) SOC residual.
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Figure 14. MATLAB Simulations results: (a) UDDS-EPA driving cycle current test profile; (b) AEKF
SOC battery cell estimated value versus SOC true value; (c) AEKF estimate of battery cell value
versus true value; (d) SOC residual.

In the last three Figures 12–14, the MATLAB simulation results reveal the same ro-
bustness of the AEKF SOC estimator to changes in the initial SOC value starting from 40%
battery charged instead of 80% as in the battery model and to switching the driving style
from one profile to another, namely FTP-75, UDDS and EPA that are the most used driving
cycle tests.

The accuracy performance of the battery SOC is evaluated by using statistic perfor-
mance criteria capable of justifying the Li-ion battery model selection. In the case study
are preferred the root mean square error (RMSE), mean square error (MSE), mean absolute
error (MAE) and standard deviation (Std), well defined and documented in [11]. As a
baseline for the battery SOC model, errors are the estimated value of SOC by the AEKF
algorithm at SOC initial value = 80%. The results are shown in Table 1.

Table 1. Statistic criteria SOC evaluation for SOC initial value = 80%.

Baseline RMSE MSE MAE Std

Model SOC vs. SOC AEKF 0.063 1.06 × 10−6 0.001 0.044 (AEKF)

The MATLAB simulation results presented in all Figures 12–14 reveal an excellent
SOC accuracy performance for the adopted Li-ion battery model, valuable information
extracted from the residual value of SOC which is smaller than 1% compared to the 2%
reported in the literature. Also, the statistical criteria used for SOC accuracy evaluation
confirm the same excellent accuracy of the AEKF SOC estimate compared to the actual
value of the battery model.

3.2. MATLAB Simulation Results for Joint Parameter and State Estimation EKF for Fault
Detection and Isolation

The MATLAB simulation results for JEKF are depictured in Figure 15a–l. Figure 15a,b are
shown the AEKF Rint and temperature estimates versus LIB model values. In Figure 15c is
depicted the AEKF LIB SOC. In Figure 15d is illustrated the terminal voltage, in Figure 15e
you can see the voltage fault estimates values, and in Figure 15f is visualized the residual
of battery SOC; the terminal voltage of LIB model for voltage fault is shown in Figure 15g.
The last set of Figure 15h–l have the same signification as for the faulty current LIB model.



Inventions 2023, 8, 74 21 of 30Inventions 2023, 8, x FOR PEER REVIEW 21 of 31 
 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 15. Cont.



Inventions 2023, 8, 74 22 of 30Inventions 2023, 8, x FOR PEER REVIEW 22 of 31 
 

  

(f) (g) 

 
 

(h) (i) 

 

(j) 

Figure 15. Cont.



Inventions 2023, 8, 74 23 of 30Inventions 2023, 8, x FOR PEER REVIEW 23 of 31 
 

  

(k) (l) 

Figure 15. AEKF MATLAB simulation results: (a) AEKF Rint estimate versus Rint battery model; 

(b) AEKF temperature estimate versus LIB model internal temperature; (c) AEKF Faulty LIB SOC 

model estimate versus LIB SOC model (Voltage fault); (d) AEKF Faulty LIB Terminal voltage (Vbat) 

estimate versus Faulty LIB model Terminal voltage (Voltage fault); (e) AEKF Voltage Fault estimate; 

(f) LIB model SOC residual (Voltage fault); (g) LIB model terminal voltage residual (Voltage fault); 

(h) AEKF Faulty LIB SOC model estimate versus LIB SOC model (Current fault); (i) AEKF Faulty 

LIB Terminal voltage (Vbat) estimate versus Faulty LIB model Terminal voltage (Current fault); (j) 

AEKF Current Fault estimate; (k) LIB model SOC residual (Current fault); (l) LIB model terminal 

voltage residual (Current fault). 

The thresholds for Bias Voltage fault (𝑓𝑉) and Current fault (𝑓𝐼) are calculated as follows 

[35]: 

𝑆𝑂𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛(𝑆𝑂𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)  ∓ 3 ∗ 𝑠𝑡𝑑(𝑆𝑂𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) (10) 

𝑉𝑏𝑎𝑡𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛(𝑉𝑏𝑎𝑡𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)  ∓ 3 ∗ 𝑠𝑡𝑑(𝑉𝑏𝑎𝑡𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) (11) 

where mean and std denote the average and standard deviation statistics.  

The performance analysis of AEKF SOC, Terminal voltage and both(𝑓𝑉 , 𝑓𝐼) bias faults 

estimates are done by comparison of each residual of LIB SOC and terminal voltage, as a 

difference between measurements and estimates, collected from three parallel AEKF 

filters bank, one to simulate the health condition (code 0), voltage faulty condition (code 

1), and current faulty condition (code 2) of three LIB models.  

In Figure 15f,g represented the SOC and terminal voltage residuals for the faulty LIB 

model obtained by injecting in Equation (7) an addition bias voltage fault  (𝑓𝑉) of 3V 

magnitude (Figure 15d), and in the Equations (3), (4) and (6) an addition bias current (𝑓𝐼) 

of 2A magnitude (Figure 15i). The detection of the faults is occurred very close to the 

injection instant (500 s and 1000 s respectively, and the voltage fault is removed fast, after 

700 s, at the end of the window [500,1200] (seconds) in contrast to the current-voltage 

which is removed after a delay of approx. 400 s after the end of the injection window 

[1000,2000] (seconds) as is shown in Figure 15i. For the diagnosis of both faults (anomalies) 

is used, the following signature matrix is shown in Table 2. 

Table 2. Signature fault Table. 
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Figure 15. AEKF MATLAB simulation results: (a) AEKF Rint estimate versus Rint battery model;
(b) AEKF temperature estimate versus LIB model internal temperature; (c) AEKF Faulty LIB SOC
model estimate versus LIB SOC model (Voltage fault); (d) AEKF Faulty LIB Terminal voltage (Vbat)
estimate versus Faulty LIB model Terminal voltage (Voltage fault); (e) AEKF Voltage Fault estimate;
(f) LIB model SOC residual (Voltage fault); (g) LIB model terminal voltage residual (Voltage fault);
(h) AEKF Faulty LIB SOC model estimate versus LIB SOC model (Current fault); (i) AEKF Faulty LIB
Terminal voltage (Vbat) estimate versus Faulty LIB model Terminal voltage (Current fault); (j) AEKF
Current Fault estimate; (k) LIB model SOC residual (Current fault); (l) LIB model terminal voltage
residual (Current fault).

The thresholds for Bias Voltage fault ( fV) and Current fault ( f I) are calculated as
follows [35]:

SOCthreshold = mean(SOCresidual) ∓ 3 ∗ std(SOCresidual) (10)

Vbattthreshold = mean(Vbatresidual) ∓ 3 ∗ std(Vbatresidual) (11)

where mean and std denote the average and standard deviation statistics.
The performance analysis of AEKF SOC, Terminal voltage and both ( fV , f I) bias faults

estimates are done by comparison of each residual of LIB SOC and terminal voltage, as a
difference between measurements and estimates, collected from three parallel AEKF filters
bank, one to simulate the health condition (code 0), voltage faulty condition (code 1), and
current faulty condition (code 2) of three LIB models.

In Figure 15f,g represented the SOC and terminal voltage residuals for the faulty
LIB model obtained by injecting in Equation (7) an addition bias voltage fault ( fV) of 3V
magnitude (Figure 15d), and in the Equations (3), (4) and (6) an addition bias current ( f I) of
2A magnitude (Figure 15i). The detection of the faults is occurred very close to the injection
instant (500 s and 1000 s respectively, and the voltage fault is removed fast, after 700 s,
at the end of the window [500,1200] (seconds) in contrast to the current-voltage which is
removed after a delay of approx. 400 s after the end of the injection window [1000,2000]
(seconds) as is shown in Figure 15i. For the diagnosis of both faults (anomalies) is used, the
following signature matrix is shown in Table 2.
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Table 2. Signature fault Table.

Vbat SOC Code State

Healthy Healthy 0 H

Faulty Faulty 1 fV

Faulty Healthy 2 f I

Healthy Faulty 3 fM

In this Table, the fM denotes a situation that could be met in realistic situations, namely
a misclassified fault. The MATLAB simulation results reveal a very accurate estimation
and robustness of the traditional EKF SOC estimator and terminal voltage predictor for
changes in operating conditions and SOC initial values.

3.3. DLSNN MATLAB Simulation Results

For the healthy scenario, Figure 16a,b illustrates the DLSNN prediction performance
for the terminal voltage of LIB Vbat in Figure 16a. For performance assessment is depicted
in Figure 16b, the LIB voltage residual.
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Figure 16. DLSNN MATLAB simulation results for the healthy scenario: (a) Vbat prediction versus
Vbat data set test; (b) Terminal voltage residual.

Returning to Figure 8e, it can be noted an excellent 8.15× 10−7 mse overall perfor-
mance for the adopted DLSNN, thus slightly superior compared to the traditional EKF
SOC estimation and Voltage prediction algorithm employed in the previous subsection.

For faulty voltage scenarios, the MATLAB simulation results are presented in Figure 17a–c.
In addition, Figure 17a illustrates the DLSNN Voltage fault prediction, Figure 17b shows the
DLSNN prediction voltage error, and Figure 17c reveals DLSNN’s performance for the data
set test.

For faulty current scenarios, the MATLAB simulation results are depicted in Figure 18a
for showing the DLSNN prediction voltage, and 18b to assess the DLSNN prediction voltage
error. For all three scenarios, the outstanding prediction performance of DLSNN shows
performance superiority compared to the EKF estimator. However, due to the voltage
anomaly in the measurement dataset, the mse performance of 0.0469 is lower compared to
the mse performance for healthy LIB that reaches.
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Figure 17. DLSNN Voltage fault scenario MATLAB Simulation results: (a) DLSNN Voltage pre-
diction versus Voltage battery model; (b) DLSNN Voltage Fault prediction error; (c) DLNN Test
prediction phase.
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Figure 18. DLSNN’s third scenario for current fault prediction is (a) Performance validation in the
test phase; (b) Current fault prediction error.

The impact of the current anomaly in the measurement dataset on mse performance
is comparable to those met for healthy LIB, namely of 8.31× 10−5, better than the second
scenario of anomaly detected in the Voltage sensor dataset. In conclusion, the main advan-
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tage of using the DLSNN technique lies in its data-driven feature and excellent accuracy
performance; thus, is not required the battery model, which in almost all realistic cases is
affected by uncertainties and unmodeled parts; the accuracy of the DLSNN prediction is
only affected by the quality of the data set.

3.4. The LSTM Anomaly Classification-MATLAB Simulation Results

The training phase, the first observation and the padding task are illustrated in Figure 19a–c.
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Figure 19. Deep Learning LSTM classification-Training phase: (a) Training observation1-features;
(b) Padding task to keep the same length for sequences (Minibatch size is 50); (c) Training phase
Progress for a NN with 250 hidden layer neurons and 1.5 value of the gradient threshold.

The accuracy performance of the LSTM deep learning neural network to classify the four
classes reaches 80%, and the loss is very small, around 0.2. Thus it performs very well, and it
can correctly classify a combination (SOC, Vbat) never seen, with an accuracy equal to 1.

In this research work, we investigate further the regression ability of the LSTM to
predict the values of variables SOC and Vbat combined in the same sequence (health-
voltage fault-health-current fault) tested for classification. Thus, the target (response) from
the last output layer of the LSTM NN structure is now in numerical format, no more in
cathegorical format as for classification events. The LSTM deep learning NN structure has
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only four blocks, as is exposed in Figure 11b. The last layer replaces the SoftMax layer
from Figure 11a with a Regression layer. Readers can refer to [42,43] for details on this
structure. The MATLAB simulation result is illustrated in Figure 20a–d for training phase
progress and battery voltage prediction. Comparing the results of the MATLAB simulations
shown in all three Figures 16–18 for the DLSNN prediction technique to those shown in
Figure 20a–d for LSTM, it is evident that the RMSE accuracy performance of LSTM Deep
Learning NN with regression layer is lower. Thus DLSNN prediction technique performs
better. The LSTM parameters must be returned by “trial and error” until the performance
is comparable to DLSNN or unsuitable for this application. Therefore, our focus remains
on the DLSNN regression network, and future work will be under new investigations.
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4. Discussion

Achieving the main objective of this paper requires a lot of documentation effort.
Rigorous documentation involves time, passion, respect, and responsibility for the reader
thirsty for knowledge and creativity. The information gathered during documentation and
then disseminated to the reader must be of high quality, scientifically valuable, innovative
and of genuine interest to him from a theoretical and practical point of view. Indeed, strict
adherence to the fulfilment of these requirements combined with the editorial ones is the
key to the success, validation, and recognition of the value of the complete research results.

Furthermore, the complexity of this research work was an ample opportunity for us
to enhance our experience in control systems significantly. Among them, the processes
of identification, modelling, state estimation, and supervised and unsupervised neural
networks, each of one or combined, open exciting research directions. Additionally, getting
good skills in algorithmic and systemic approaches helps develop, program and real-time
implementation of Li-ion battery SOC estimators and terminal voltage predictors on the
MATLAB Simulink software platform. For “proof concept” and simulations purposes
is adopted a Simulink Simscape generic model of a preset Li-ion Cobalt of 5.4 Ah rated
capacity and 7.2 V nominal voltage that could be integrated into a BMS for possible usage
in an extensive palette of HEVs and EVs applications with promising future potential in the
automotive industry. The proposed Li-ion Cobalt battery parameter values are extracted
from a specific Simulink Simscape block setup of a preset Li-ion Cobalt battery tested
using an FTP-75 discharge driving cycle profile. The accuracy performance of the SOC
model is excellent, with an error of less than 0.5% at steady state, compared to the 2% error
reported in the literature. An accurate Li-ion battery model has a significant impact on the
accuracy of the EKF estimator, revealed by MATLAB simulation results that indicate high
SOC accuracy and robustness to changes in the initial SOC estimate from 80% to 30% and
40% and also to changes in driving cycles from FTP-75 to the most widely used UDDS and
EPA UDDS tests. A bank of three EKF SOC estimators and terminal voltage predictors
generates the SOC and Voltage residuals for three scenarios: healthy, bias voltage and bias
current faults in the measurement sensors. Thus, an FDI technique residual based on a
traditional EKF FDI strategy can detect all three scenarios and diagnose the type of each
fault. As a valuable alternative to the conventional EKF FDI strategy model based, in this
research are made several investigations to adapt advanced intelligent data-driven methods
to generate all fault scenarios, namely a DLSNN learning model of high accuracy, assessed
by RMSE performance of 0.0588 (for Voltage fault) and around 5.5× 10−7 (healthy) and
8.87× 10−6 (current fault) slightly superior compared to the traditional EKF FDI strategy,
RMSE around 0.007.

5. Conclusions

This research combines traditional and advanced AI-inspired intelligent approaches
from machine learning (ML) and deep learning (DL) models. The proposed Li-ion Cobalt
battery is a generic Simulink Simscape model. Therefore, the battery parameter values are
extracted from the Simulink Simscape battery block setup for a preset Li-ion Cobalt battery
tested for three driving cycles: an FTP-75, USSD and EPA USSD. The LSTM deep learning
neural network technique used in this work proved valuable for anomaly detection and
diagnosis by classification with high accuracy, around 80%, and a loss performance very
close to zero. Furthermore, we have also investigated the use of LSTM DLNN to generate
the same scenarios by using the regression feature of its structure. However, the MATLAB
simulation result reveals a lower regression RMSE performance accuracy for all three
scenarios than the DLSNN regression learning model. In future work, we will continue our
investigations on improving LSTM performance for the regression of data time series.
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