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Abstract: The use of embedded processors is the most promising direction in the development of
automatic control systems. The article is devoted to analog models and technical solutions that allow
continuous analysis of information in a technical system in order to synthesize control signals. Technical
solutions are obtained on the basis of continuum logic methods, which aim to increase the speed of
embedded computing networks, reduce power consumption, and unify the element base of analog
processors. The effect of high speed is achieved due to the transition from sequential digital calculations
to parallel synthesis of analog control signals. Examples of the implementation of schemes for the
synthesis of control commands using the developed models of logical operations are given.

Keywords: embedded systems; continuous logic; analog logic; analog cyber–physical networks;
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1. Introduction

Physiological processes occurring in living organisms obey the laws of continuous
information exchange to ensure the integrity of the functioning of all organs in various
conditions [1]. The parallelism of the formation of commands to the organs of a living
organism and their consistency in order to achieve goals has been noted in the works of
physiologists, starting with I.P. Pavlova. The current level of development of physiology
confirms the thesis about the prospects for creating new technical solutions that replicate
the diversity of living nature [2].

This paper proposes to consider the technical system as a distributed system, which
differs from the well-known approach to the organization of computing structures [3]
by using methods of continuous interaction of physical processors in executive bodies
and analog devices. A network of embedded processors turns a technical system into a
computing device that must meet such system requirements as cost, power consumption,
and the use of limited physical resources [4].

The emergence of embedded real-time systems on microcontrollers has created condi-
tions for the development of hybrid dynamic systems that demonstrate the characteristics
of systems with both continuous and discrete time [5], can continuously change depending
on differential inclusions, and can also change discretely in accordance with differential
inclusions. The materials of the Cyber–Physical Systems seminar [6] were the first to formu-
late goals and objectives for the creation of a new systems science, which are both physical
and computational, combining hardware and physical systems with software. Its appear-
ance is associated with the theory of hybrid systems [7] and the algebra of synchronized
processes [8].

Synchronization of the continuous and discrete time of change of variables is the
main problem of hybrid systems. To determine whether the state function is true or not,
the theory of temporal logic is applied [9]. The work [10] shows methods and means of
combining the operation of analog and digital devices in embedded systems. However,
their application does not solve the problem of compatibility of processes different in
nature—physical and computational.
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Problems do not arise when sufficiently slow robots [11] are designed, which are used
in construction or driving a car. For fast applications, for example, for engine control,
embedded systems are used [12], in which it is necessary to quickly and in real-time calcu-
late nonlinear dependencies between parameters. A decrease in productivity is especially
unacceptable when creating objects of microelectromechanical systems (MEMS) [2,13,14]
and robotic complexes for military, special, and dual purposes [15]. The development
of highly sensitive microsensors, spatial orientation devices, and micromechanical gear-
boxes [16–18] creates the prerequisites for the development of new methods for algorithmic
control of miniature objects, in which the size and weight of computing devices can become
a determining factor.

Object control systems that respond to changes in the parameters of the environment
at the rate of receipt of messages from it belong to the class of reactive systems [19]. Their
feature is an “instantaneous” reaction to changes in input signals. The development of
reliable software for reactive systems requires the coordination of executive and computing
facilities [20]. Under the conditions of an avalanche growth in the logical complexity of
control objects, the speed of algorithms in reactive systems comes into conflict with the
reliability and speed of program execution.

In [21], an attempt was made to apply the principle of hierarchical parallelism to form
the interaction of finite automata by synchronizing reactive systems. However, when it is
applied, the problem of the temporal gap between digital computing and continuous phys-
ical processes remains. Von Neumann architectures and distributed network computing do
not mix well because the large amounts of data moved in and out of memory, along with
high clock speeds, do not encourage low-power, high-performance data processing.

Hybrid systems that combine digital and analog technologies can, to some extent,
remove this problem. Major corporations (IBM, INTELL) are investing significant resources
into the research of systems with analog components. In 2014, the TrueNorth neural
processor was created, which implements a spiked neural network [22]. In 2017, Intel
announced the development of the Loihi neuromorphic research processor [23,24], which
has the ability to learn in real time.

Developments of leading companies show great achievements in the field of increasing
efficiency, the variety of tasks being solved through the use of the most complex (billion
transistors) microcircuits, and increasing the power of processors. For embedded systems,
the need for a different approach is obvious, which ensures the fulfillment of weight,
size, and energy restrictions. In this regard, wildlife paradigms determine the direction for
further improvement of such systems through the transition to the use of analog processors.

The prospect of exploiting the benefits of analog computing is forcing hardware de-
signers to look for new opportunities. However, the lack of situational analysis mechanisms
becomes the main obstacle to the use of analog processors.

In [25,26], analog logic is introduced in order to speed up calculations and reduce
energy costs for processing radio signals. The analog representations come from either
describing digital (binary) random variables with their probability distributions in a digital
signal processing problem or from relaxing binary constraints of an integer programming
problem. Analog logic automata conceptually work in digital space with analog representa-
tions. Logic automata [26] quantize space and time with distributed cells connected locally,
each performing a basic logic operation [27].

Analog computing develops with the creation of analog microcircuits for artificial neu-
ral networks [28]. The theoretical basis for such developments are the laws of continuous
logic [29].

Continuous logic is introduced as some natural generalization of traditional discrete
logic for the case when the set of possible values of logical variables is continuous [30,31].
In continuous logic, the truth value of a proposition falls into the continuous range [0, 1],
where 0 stands for complete falsity and 1 for complete truth [32]. The middle part of the
interval gives an uncertainty that is acceptable for economic and social disciplines, but in
technical applications, leads to the risks of obtaining unacceptable solutions.
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The purpose of this study is to use the capabilities of continuum logic to increase
the speed of embedded control systems under restrictions on the energy, weight, and size
characteristics of control objects.

This article is devoted to analog models and technical solutions that allow continuous
analysis of information distributed inside a technical system (TS). The application of contin-
uous logic operations for obtaining exact solutions not burdened with fuzzy interpretation
of states is considered. It is proposed to embed analog processors in TS aggregates to form a
distributed computing structure analog cyber–physical network. The problems of combin-
ing continuous situational analysis of the parameters of a technical system with real-time
synthesis of control signals for physical processes are solved. Examples of high-speed
analog devices that implement continuum logic operations are given.

2. Materials and Methods
2.1. Setting Goals and Objectives

The functioning of the TS can be represented as a deterministic sequence of processes
of a variety of physical nature. For example, the operation of an internal combustion engine
involves mechanical, electrical, and thermal processes associated with the movement of the
piston, ignition, and combustion of fuel.

The sequence of execution of processes is subject to the influence of various external
and internal factors that change the modes and algorithms of the TS. To build a generalized
model of changing states, we represent the TS in the form of three sets, the structure of
which is capable of continuously changing at each moment of time:

• a set of working aggregates Π(t) of the technical system;
• the set of energy flows (EF) synthesized by the aggregates <(t);
• a set of EF parameters X(t).

The transition from one state to another due to continuously changing parameters is
represented by the diagram in Figure 1.
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At each moment of time, a certain group of aggregates Π(t) is in the active state,
determining the mode of operation of the TS. Changes in the values of the energy flow
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parameters lead to the activation or deactivation of the aggregates; this, in turn, causes a
change in the set of energy flows circulating in the network. Changes in the energy flow
affect parameters characterizing the state of the TS.

We will assume that all the listed events occur continuously, affecting the structural,
flow, and event dynamics of the TS. The dynamic connections of the structural and paramet-
ric states of the TS generate a continuum logic of switching on/off the aggregates, which
must exist in the time continuum of the functional dynamics of the processes occurring in
the TS.

Continuous changes in the sets generate the TS continuum logic, which determines:
structural, parametric, and flow dynamics. The network dynamics are generated by the
events taking place in the technical system:

• parametric dynamics continuously captures the change in time of the parameters of
the technical system δX(t);

• structural dynamics determines the change in time of the composition of the PhPr
δP(t) with connected aggregates;

• flow dynamics determine the change in time of the set of EF transmitted over the network.

The unification of models for sequential queues of connecting aggregates will allow
the creation of hardware control algorithms for TS. The developed methods should connect
the event dynamics of parameter changes with the structural dynamics of connecting
aggregates and changing the EF; for this to be acheived, it is necessary to determine the
conditions and rules for the control logic of continuous processes in the TS.

2.2. Analogue Cyber–Physical Networks

Any TS can be represented by a set of aggregates (devices) that receive input EFs Ein(t).
With the help of output energy flows Eout(t), the aggregates change the state of the entire
system. In analog cyber–physical networks (ACPN), each aggregate can be connected to an
embedded analog processor agent (Figure 2). The agent converts object sensor signals and
network status signals Ψ1(t), . . ., ΨK(t) into aggregate control signals ϕ(t), and into external
signals Ψ(t) that carry information about the state of the aggregate. The analog signal F(t)
transmits the functional characteristic of the EF Eout(t) to the ACPN. The signal q(t) informs
about the operating mode of the aggregate. The hardware combination of aggregates and
agents will be referred to as a physical processor (PhPr). PhPr are considered sources of
functional–logical transformations of TS states. PhPr, unlike aggregates, have the ability to
analyze the state of the processes occurring in the technical system. Thus, PhPr acquires
the properties of a computing device and becomes part of a distributed control system.

ACPNs connect physical processes with the logical processing of technical system
states. The transition from one state to another is due to continuously changing parameters
in time.

In ACPN, structural transformations occur simultaneously with functional transfor-
mations of parameters. Events include the transition of parameter values through the
boundaries of the areas of permissible values, turning on or off aggregates, and transferring
or blocking the transfer of EF. Events in ACPNs occur asynchronously and are associated
with changes in parameters at the input of the PhPr. The necessary and sufficient condition
for connecting the PhPr aggregate π to the technical system can be written as follows:

π ∈ Π(t) : {∀α ∈ R(π); x(α) ∈ Cα(π)}, (1)

where Π(t) is a subset of the PhPr with the aggregates turned on, R(π) is the set of EF
included in the PhPr π, x(α) is the numerical vector of the parameters of the EF α, and
Cα(π) is the range of permissible values of the parameters of the EF α.
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To control the operation of the PhPr, the ACPN defines the operations of contin-
uum combinational logic: negation of the EF—α, conjunction—α1 ∧ α2 ∧ . . . ∧ αk and
disjunction—α1 ∨ α2 ∨ . . . ∨ αk, in which the PhPr agent controls the fulfillment of condi-
tion (1). Depending on the values of the parameters, the agent’s logical function q(t) takes
two values: TRUE or FALSE. Only with a true value, is the PhPr aggregate connected to
the ACPN.

2.3. ACPN Structure

ACPN can be represented as a neuron-like heterarchical structure, in which PhPr
converts external EFs x1(t), x2(t), . . ., xn(t) into control signals for aggregates fi (Figure 3).

In ACPNs, along with the processes of functional transformations, structural changes
occur. Changing the parameters δX(t) of the EFs can lead to a change in the condition
(1) of the functioning of the PhPr. This will trigger the activation or deactivation events
of the aggregates. Further along the chain, the set of PhPr Π(t) will change. Structural
changes in the ACPN will cause the EF to be turned on or off, which will lead to a change
in functional characteristics and to new events in the network. Structural changes will
continue until a steady state is reached and the functional relationships between the PhPr
in the ACPN are stabilized. In this case, stabilization is achieved by deterministic changes
in the aggregate connection structure when events move along the open heterarchical
structure of the network. In ACPN, the number of PhPr is limited, and the number of
conditions and structural states of ACPN is limited. Since all states and events are known
and represent finite sets, when designing the ACPN, it is possible to set in advance all the
switching conditions and the structure corresponding to them.
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EF parameters are controlled by agents, which, in case of parameters crossing the
boundaries of operating modes, turn off or turn on the aggregates, changing the network
functionality. These changes are deterministic in nature, incorporated in the design of the
network, and can be interpreted as structural knowledge about the application of methods
for the synthesis of control signals.

Figure 4 shows the situation of violation of the conditions for connecting the aggregate
in PhPr22. Logic-blocking signals are passed down the hierarchical structure, and as a
result, all branches dependent on PhPr22 are disabled. The operation of the aggregates
performing the functions f 2 and f 3 is blocked.

When designing, the network acquires logical properties as a result of evolutionary
growth. The addition of new aggregates does not require a radical restructuring of its
structure. The unification of links between the PhPr and the dependence of the logic of
their work only on incoming EF creates opportunities for gradual expansion. For example,
to include the PhPr44 aggregate t in the ACPN (Figure 3), only PhPr24 and PhPr33 will
need to coordinate the operating modes. The build-up process is similar to the inclusion
of new knowledge about the operation of the added aggregates. Therefore, ACPN can be
considered a cognitive system in which procedural knowledge is distributed in the nodes.
Each PhPr in such a representation model of the ACPN is a carrier of knowledge about
the functional-logical procedures for the synthesis of control signals. The signal transfer
from input to output can be considered a logical inference in a knowledge representation
production system. In this interpretation, ACPN is a semantic model of the subject area
that links the PhPr through the relationship between them.
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2.4. The ACPN Continuous Logic

Analog models of the interaction of processes in the TS allow, using the rules of math-
ematical logic, to perform a continuous analysis of the parameters of the EF transmitted
to the TS and make decisions about connecting or disconnecting the aggregates. ACPNs
created on the basis of such models represent an alternative to digital technologies for the
synthesis of control commands. They provide a high efficiency of situational calculations
with low power consumption of the equipment.

To pass to logical models, we define logical operations linking the states of PhPr, EF,
and the parameters.

2.5. Unary Operations of the Continuum Logic of Block Interaction in a Distributed Control Network

Let us assume that each aggregate has alternative modes of operation depending on
the input EF. Let us denote by the symbol C the domain of definition of the parameters of
the EF included in the PhPr πα. If

→
x (α) is the numerical vector of parameter values of the

incoming EF, α is in one of two non-overlapping areas C or C, then the condition for the
aggregate to transmit the outgoing EF r to the network will be:{→

x (α) ∈ C⇒ r(πα) ∈ <(t)
→
x (α) ∈ C⇒ r(πα) /∈ <(t)

, (2)

where <(t) is the set of EF transmitted over the network at time t.
Let us consider the PhPr πα with the domain of definition of the parameters of the

incoming EF C. The condition for the aggregate to transmit an outgoing EF r to the network
will be: {→

x (α) ∈ C⇒ r(πα) /∈ <(t)
→
x (α) ∈ C⇒ r(πα) ∈ <(t)

(3)

PhPr πα and πα transmit to the outputs incompatible EFs r and r, which cannot be
simultaneously present in the ACPN due to conditions (2) and (3). In what follows, such
EFs will be called opposite. PhPr πα и πα aggregates will work in incompatible modes.
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The sets of EF parameters r(πα) and r(πα) coincide, and from their incompatibility, it
follows that the ranges of the parameters D and D do not intersect: D ∩D = ∅. Using the
incompatibility of the PhPr modes πα and πα, you can combine their PhPr outputs (Figure 5)
to transfer outgoing EFs to the PhPr πβ. Depending on whether the parameters of the EF α
belong to the ranges C or C, the PhPr πβ will receive the EF from πα or from πβ.
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EF incompatibility can be used for the binary division of ACPN branches. Figure 6 shows
a fragment of the network in which the EF α generates two branches with contrarian EFs r
and r. The top branch will be online when r ∈ <(t), and the bottom branch when r ∈ <(t).
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The top branch connects chains 1 and i. They will be enabled when r ∈ <(t). The
lower branch connects the chains i + 1, N. They will be enabled, when r ∈ <(t).

Consider PhPr πα. At its inputs, we will feed the EFαΣ and parameters, which determine
the range C or C, CΣ = C∪C, and C∩C = ∅ (Figure 7). When the EF αΣ parameters fall
into the region C, αΣ will denote by the symbol α. When the EF αΣ parameters fall into the
region C, αΣ will denote by the symbol α. If the area is set C, then the appearance of an
outgoing EF αwill be determined by condition (2) (Figure 7a); if the area is set C at the input,
then the appearance of the outgoing EF α will be determined by condition (3) (Figure 7b),
i.e., PhPr πα filters EF αΣ depending on the parameters of region CΣ.
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Figure 7. Control of the operating modes of the aggregate in the PhPr: (a) domain of definition C;
(b) domain of definition C.

By changing the parameters of the region CΣ, it is possible to vary the response PhPr
πα to the incoming EF α. This gives you more control over EF in ACPN. Conditions (2) and
(3) determine the operating modes of the aggregate in the PhPr πα. As a result, depending
on the parameters of the area CΣ, one of the two EFs α or α can then be used in the control
of the ACPN, may appear at the output of PhPr πα.

Unlike digital logic, in this case, the output will not be the value of a Boolean variable
but one of the two incompatible EFs α or α, which will generate two incompatible modes
of operation of aggregate.

To implement the negation operation in ACPN, we introduce the PhPr π*. The input
of the PhPr π* receives analog signals with the parameters of the boundaries of non-
intersecting regions C and C. The PhPr π* performs a one-to-one mapping Γ of the
parameters XC and XC of the regions,

Γ(XC) = XC
Γ(XC) = XC

(4)

If the parameters of the region C are applied to the input of the PhPr π*, then the
output will be the parameters of the region C and vice versa (Figure 8).
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In ACPNs, the EF negation operation is implemented by connecting the inverter π*
and the EF filter πα (Figure 9).

When applying the parameters of the region C to the PhPr π*, the control input of the
filter πα will receive the parameters of the region C from the inverter π*, and the functional
output will receive the EF α and vice versa. Thus, when performing the negation operation,
the PhPr πwill change the transmission conditions of the EF αΣ to the opposite ones, and
there will be an inversion of the operating mode of the aggregate in the PhPr π.

Thus, when performing the negation operation, the PhPr π will change the transmis-
sion conditions of the EF αΣ to the opposite ones, and the operation mode of aggregate in
the PhPr πwill be the inverted relative of the C(C) domain of definition.
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2.6. Binary Operations of the Continuum Logic of Block Interaction in a Distributed Control Network

The need to perform binary logical operations arises in ACPNs when two or more EFs
are fed to the input of the PhPr. If several EFs arrive at the input of the PhPr π, then the
aggregate maps the set of their parameters into the range of values of the parameters of the
outgoing EF r(π). Binary operations of continuum logic check whether the parameters of the
incoming EF are in the domain of their definition in the PhPr. Depending on the values of the
EFs incoming parameters, a decision is made to connect the aggregate to the network.

Let us consider PhPr π, the inputs of which are fed by two EFs αΣ and βΣ. Their
parameters form numerical orthogonal vectors

→
x (αΣ) and

→
x (βΣ). In the continuum

parametric logic, the range of allowable values of a numerical vector can be divided into
two subsets CαΣ = Cα ∪Cα and CβΣ = Cβ ∪Cβ. The hit of the parameter vectors

→
x (αΣ)

and
→
x (βΣ) in each subdomain affects the operation mode of the aggregate in the PhPr π.

Binary operation ACPNs are designed to determine the modes of operation of the aggregate
depending on whether the values of the parameters of the EF αΣ and βΣ belong to the
subdomains Cα,Cα, Cβ,Cβ.

The parameters of the incoming EFs are the sum of orthogonal vectors
→
x (αΣ) +

→
x (βΣ).

The domains of their values are Cartesian products of subdomains: Cα × Cβ,Cα × Cβ,
Cα ×Cβ,Cα ×Cβ, and the block operation modes will be determined by the conditions
for the sum of vectors to belong to these four domains.

2.7. Operation of Conjunctive Unification of Energy Flows

Let the domain of definition of the parameters of the incoming EF for the PhPr πα∧β
be the Cartesian product of the domains C(π) = Cα × Cβ. In a linear vector space of
parameters X, the operation of the conjunctive aggregate of EF α∧ β is defined if

R(πα∧β) = α∪ β;
→
x (α) +

→
x (β) ∈ Cα ×Cβ;α ∈ <(t);β ∈ <(t)⇒ r(πα∧β) ∈ <(t), (5)

where r(πα∧β) is the EF outgoing from the PhPr πα∧β, R(πα∧β) is the set of EFs included
in the PhPr πα∧β,

→
x (α) and

→
x (β) are the numerical vectors of the EF α and β parameters,

and <(t) is the set of EFs transmitted over the network at time t.
The PhPr πα∧β aggregate will be connected if and only if condition (5) is met. In

Figure 10a, the shaded area corresponds to condition (5).
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(b) ACPN π∧ of conjunctive operation of EF α and β.

Figure 10b shows ACPN π∧ performing a conjunctive operation for EF α and β in the
domain of definition C(π) = Cα ×Cβ. It consists of three PhPrs: πα, πβ, and παΛβ. The
PhPrs πα and πβ filter the EFs αΣ and βΣ supplied to the input, and extract from them the EFs
α and β, the parameters of which fall, respectively, in the regions Cα and Cβ. The selected
EFs are used in the PhPr παΛβ to form the control signal fαΛβ transmitted to the aggregate.

2.8. Operation of Disjunctive Union of Energy Flows

The ACPN π∨ performs the disjunctive operation of EF α and β, if at its input the
parameters of at least one of the EF α or β are in the range of acceptable values Cα or Cβ

(Shaded areas in Figure 11).
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Figure 11. Domain of definition of the disjunctive operation.

Figure 12 shows the ACPN performing the disjunctive aggregate of the EFs αΣ and
βΣ. Its structure consists of the spirit of the PhPr columns. The first column contains the
filtering PhPr πα, πβ, πα, πβ, which EF α,α,β,β separated from the EF αΣ and βΣ. The
second column of the PhPr synthesizes the aggregate control signals with the functions
fα∧β, fα∧β, fα∧β. The domains of function definitions do not intersect, so the outgoing
PhPr signals of the second column can be combined. The ACPN output will receive a
control signal with the function

fα∨β =


fα∧β npu →

x (αΣ) ∈ Cα&
→
x (βΣ) ∈ Cβ

fα∧β npu →
x (αΣ) ∈ Cα&

→
x (βΣ) ∈ Cβ

fα∧β npu →
x (αΣ) ∈ Cα&

→
x (βΣ) ∈ Cβ

(6)
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2.9. Operation of Conjunctive Negation of Energy Flows

To control the operation of the ACPN π∧, which performs the operation of negating
the conjunction, we will apply to its inputs of ACPN π∧, in addition to the EF α and β,
signals from the output of the region invertor π* (Figure 13). They will set the scope of the
ACPN parameters. If the values of the input signals of the PhPr π* determine the region
Cα ×Cβ, then at its output, there will be signals with the parameters of the region

D(π∗) = Cα ×Cβ = Cα ×Cβ ∪Cα ×Cβ ∪Cα ×Cβ, (7)

which is shaded in Figure 14.
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If the PhPr π∧ input signals do not fall within the region D(π∗), then the PhPr π∧
output signal is absent and the aggregate in ACPN π∧ will be blocked.

In ACPN π∧ the negation conjunctions of EF α and β is performed:

r(π∧) = α∧ β⇒
{→

x (α) +
→
x (β) ∈ Cα ×Cβ ⇒ r(π) /∈ <(t)

→
x (α) +

→
x (β) /∈ Cα ×Cβ ⇒ r(π) ∈ <(t)

(8)

From (7) and (8), it follows that to turn on the ACPN π∧ aggregate, one of the condi-
tions must be met:

→
x (α) +

→
x (β) ∈ Cα ×Cβ (9)

→
x (α) +

→
x (β) ∈ Cα ×Cβ (10)

→
x (α) +

→
x (β) ∈ Cα ×Cβ (11)

From (9)–(11), it follows that at the output of the ACPN π∧ agent there will be a control
signal when the parameters of the incoming EFs α and β are in one of the three areas:
Cα ×Cβ, Cα ×Cβ, Cα ×Cβ. Therefore, for the negation of conjunction operation, de
Morgan’s law is fulfilled

α∧ β = α∨ β (12)

2.10. Operation of Disjunctive Negation of Energy Flows

To control the operation of the ACPN π∨, which performs the operation of disjunction
negation, we will apply to its inputs of ACPN π∨, in addition to the EF α and β, signals from
the output of the region inverter π*. They will set the scope of the ACPN π∨ parameters.
If the values of the input signals of the FF π* determine the parameters of the region
Cα×Cβ ∪Cα×Cβ ∪Cα×Cβ, then at its output, there will be signals with the parameters
of the boundaries of the region

D(π∗) = Cα ×Cβ ∪Cα ×Cβ ∪Cα ×Cβ = Cα ×Cβ, (13)

which is shaded in Figure 15.
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If the PhPr π∨ input signals do not fall within the region D(π∗), then the PhPr π∨
output signal is absent and the aggregate in ACPN π∨ will be blocked.

In ACPN π∨ the disjunctives negation of EF α and β is performed:

r(π) = α∨ β⇒
{→

x (α) +
→
x (β) ∈ Cα ×Cβ ⇒ r(π) /∈ <(t)

→
x (α) +

→
x (β) /∈ Cα ×Cβ ⇒ r(π) ∈ <(t)

(14)

From (13), (14) it follows that the ACPN π∨ output will have a control signal for the
aggregator when the parameters of the incoming EF α and β are in the area: Cα × Cβ.
Taking into account the condition (5), we can conclude that conjunctive operation for the
EFs α and β, with the domains of Cα and Cβ, is performed. Therefore, to negate the
disjunctive aggregate of EFs, de Morgan’s law is fulfilled:

α∨ β = α∧ β (15)

2.11. XOR Operation

ACPN π⊕ performs an exclusive OR operation on EF α and β: r(π⊕) = α⊕ β, if at its
input the parameters of one and only one EF α or β are in the definition area C(π).

To perform the operation two incompatible PhPrs are required: πα∧β and πα∧β. The
domain of definition C(π) the incoming EF is shown in Figure 16.

C(π) =
[
C(πα)×C(πβ)

]
∪
[
C(πα)×C(πβ)

]
(16)
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3. Results
3.1. Circuitry of Analog Networks

The effectiveness of the logical operations discussed above has been verified as a result
of the creation of analog processors that are used in the embedded control of the TS. On the
basis of the developed element base, various devices and systems have been implemented
that allow synthesizing control of ongoing physical processes signals in real time.

3.2. Continuum Processor

In ACPNs, the model of the physical process Π (including the calculation process) can
be represented as an element (Figure 18) with four groups of outputs: X, Q, Z, q(q), which
is called a continuum processor (CP). The inputs of the set X are fed with signals containing
the values of the input parameters ℵ(t) = {x1(t), x2(t), . . . , xn(t)}. From the conclusion r,
the resulting values of the output parameter r(t) = f (ℵ(t)) are derived. The remaining
signals determine the logic of interaction between the CP and the network.
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Figure 18. Image of a continuum processor on a circuit diagram.

The image of the CP on the circuit diagrams is divided into five rectangular parts that
perform different tasks: the synthesis of functional dependencies of the input parameters
ℵ(t), the processing of logical input signals Q(t), the transmission of synthesized analog
signal r(t) to the output, and the transmission of output logical signals q and q with
information on connecting or disconnecting the signal outputs r.
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The CP is a combination of analog circuits with a unified structure of functional logical
connections that solve two problems simultaneously: calculating the functional dependencies
of parameters and logical analysis to make decisions about the choice of the method of
processing the source data. Both tasks are solved jointly in a time continuum of changes in
the source data. This is the fundamental difference between the proposed methodological
and circuit solutions from the traditional calculation scheme, in which the transition from the
analog form of signal representation to digital, and then to programs. Logical data processing
in continuous computing devices is performed within those processes that are modeled.

The main difference between the CP and the existing analog processors [33] is the
ability of situational modeling in the time continuum of systems of interacting processes
Π(t) = {Π1(t), Π2(t), . . . , ΠS(t)}.

Due to the combination of functional transformations and logical procedures in con-
tinuous computing (without discretization of time intervals), the device is perceived as
a single information object that responds in real time to changes in physical parameters.
CP is an analog model of continuous processes and, therefore, it can be integrated into
technical system in the form of an adequate mathematical real-time model. The computing
system becomes part of continuous physical processes, one of their links.

The operation of the CP is carried out according to the rules of predicate logic, com-
bining the conjunction of three conditions:

Q(t) ∧ ϑ( f ,ℵ(t)) = θ(ℵ(t)) ∧ϕ∧ ϑ( f ,ℵ(t)) (17)

where θ, ϕ, ϑ are binary functions; θ is the check of calculation conditions, ϕ is the check of
readiness of initial data, ϑ is the check of constraint, f is the calculation function.

The CP includes comparators for comparing the values of analog signals X, logic gates
for verification of conditions (17), and electronic switches for transmitting analog signals Z
to the network.

The speed of the CP determines the response time of the keys in the logic control
circuits, which for modern analog switches is about 10–100 ns. Thus, the proposed technical
solution provides the ability to control physical processes that change over time with
frequencies up to tens of megahertz. At high speed, the energy costs of the CP are units of
mW because the computational process does not require high-frequency switching.

Let us consider examples of the execution of continuum logic operations using CP.

Example 1. The logical negation operation can be performed by two CPs π and π, if the input
voltage x(t) has non-intersecting domains of definition C ∩C = ∅. Figure 19 shows the agent
circuit that performs the negation operation. The voltage x(t) changes in the region C∪C. Signals
with areas C or C parameters and a tuple of analog and logical signals ϑ = (x,qx) are fed to the
CP input.

In the case of applying the parameters of the C area to the input, two variants of the
network reaction are possible:

• when the signal x voltage enters the region C, the outgoing signal x will appear at the
output of the CP π, and there will be no analog signal at the input of the CP π;

• when the signal x voltage enters the region C, the outgoing signal x = x will appear at
the output of the CP π, and there will be no analog signal at the input of the CP π.

Thus, when performing the negation operation, the CP πwill change the conditions for
transmitting the signal x and the conditions of controlling the operation mode for aggregate
in the CP π to the opposite ones.
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By changing the parameters of the region C(C) at the input of the CP π, it is possible
to invert the conditions for using the considered network.

Example 2. The device that performs the XOR function of two arguments is shown in Figure 20. It
consists of two CPs, π1 and π2, the functional inputs of which are fed with analog signals x1 and x2.
The logical inputs receive readiness signals ϕ, which are generated by the circuits for checking the
conditions for the signals ×1 and ×2 to fall into the range of their allowable values C1 and C2. The
logical readiness signal ϕ(x1) is transmitted simultaneously to the second logical input of the CP
π1 and through the inverter to the second logical second input of the CP π2. The logical readiness
signal ϕ(x2) is transmitted simultaneously to the logical first input of the CP π2 and through the
inverter to the logical first input of the CP π1. Such a connection ensures the blocking of both CPs
with the simultaneous supply or absence of signals x1 and x2 at the input. Otherwise, one of the
CPs will be open for processing and transmission to the output of one of the signals f1 or f2. The
appearance of an analog signal at the output of the device is reported by a logical signal q.



Inventions 2023, 8, 101 18 of 23

Inventions 2023, 8, x FOR PEER REVIEW 20 of 26 
 

• when the signal x voltage enters the region  , the outgoing signal x x=  will 
appear at the output of the CP π , and there will be no analog signal at the input of 
the CP π. 

Thus, when performing the negation operation, the CP π  will change the condi-
tions for transmitting the signal x and the conditions of controlling the operation mode 
for aggregate in the CP π  to the opposite ones. 

By changing the parameters of the region ( )   at the input of the CP π, it is 
possible to invert the conditions for using the considered network. 

Example 2. The device that performs the XOR function of two arguments is shown in Figure 20. 
It consists of two CPs, π1 and π2, the functional inputs of which are fed with analog signals x1 and 
x2. The logical inputs receive readiness signals φ, which are generated by the circuits for checking 
the conditions for the signals ×1 and ×2 to fall into the range of their allowable values 1  and 

2 . The logical readiness signal φ(x1) is transmitted simultaneously to the second logical input of 
the CP π1 and through the inverter to the second logical second input of the CP π2. The logical 
readiness signal φ(x2) is transmitted simultaneously to the logical first input of the CP π2 and 
through the inverter to the logical first input of the CP π1. Such a connection ensures the blocking 
of both CPs with the simultaneous supply or absence of signals x1 and x2 at the input. Otherwise, 
one of the CPs will be open for processing and transmission to the output of one of the signals f1 or 
f2. The appearance of an analog signal at the output of the device is reported by a logical signal q. 

 
Figure 20. Connection CP in XOR operation of two analog signals. 

The logical readiness signals φ(x1) and φ(x2) come from the circuits that check the 
fulfillment of condition (17) for signals x1 and x2. 

Example 3. Suppose that it is required to generate a control signal: 
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The logical readiness signals ϕ(x1) and ϕ(x2) come from the circuits that check the
fulfillment of condition (17) for signals x1 and x2.

Example 3. Suppose that it is required to generate a control signal:

Z∨ =


f1(x1, x2) i f x1 ∈ C1, x2 ∈ C2

f2(x1) i f x1 ∈ C1, x2 /∈ C2
f3(x2) i f x1 /∈ C1, x2 ∈ C2

(18)

The function f1(x1,x2) in the task has the maximum priority. It is used if both signals x1, x2
are applied to the input of the device and are not violated the condition (1) for selecting the function
Z = f1(x1,x2). The function f2(x1) is applied when at least one requirement to use the function f1 is
violated, the signal x1 is applied to the input, the condition (1) for choosing the function f2 are not
violated, and the restrictions on the value Z = f2(x1) are fulfilled. The function f3(x3) is applied when
at least one requirement for the use of the functions f1 and f2 is violated, the signal x2 is applied to
the input, the condition (1) for choosing the function f3 is not violated.

The task is implemented as a disjunctive combination of analog signals (Figure 21). The device
processes the incoming voltages x1 and x2 and the logic levels of the signaling flags ϕ(x1) and ϕ(x2).
At x1 ∈ C1, x2 ∈ C2 the output of the CP π1 is connected and its inverse logic signal q1 blocks the
CP π2 and π3. At x1 ∈ C1, x2 /∈ C2, the signal f2(x) is connected to the output of the device. At
x1 /∈ C1, x2 ∈ C2, the signal f3(x) is connected to the output of the device.

The presented examples demonstrate the universal capabilities of the CP to be embed-
ded in various logic processing circuits for analog signals. Hardware support for continuum
logic allows you to create an element base of ACPNs.
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One of the most important properties of CP-based circuits is the relatively low fre-
quency of changes in signal voltage levels transmitted in the network. In digital computing
devices, sequential computations occur that require a high frequency of clock signals. In the
CP, there is a continuous synthesis of the functional dependencies of the signals according
to the given nodal values using interpolation methods. In this case, the frequency band
of analog signals is determined by the physical processes in the control object. It is much
narrower than the frequency band of digital pulses.

Low frequencies of signal changes lead to the fact that even with a sufficiently large
distance of ACPN units from each other, the communication lines remain electrically short.
Thus, the coordination of ACPN devices is simplified in comparison with digital networks,
and the implementation of distributed control systems for large objects is simplified.

The frequency properties of circuits on the CP are associated with technological and
physical limitations. Technological limitations are determined by the capabilities of the
element base. Physical limitations are associated with a specific implementation of the
ACPN. The main factor of physical limitation is the control object dimensions.

ACPN functionally connects the aggregates to perform automatic control of flight
stabilization processes. The spacing of the aggregates at a distance of several tens of meters
makes it possible to synthesize control signals in the frequency range of 1 MHz. In this case,
the wave properties of the connecting cables do not appear, and the design of the control
system is simplified. Structural simplification of the control system makes it possible
to increase its capabilities in the field of increasing reliability by connecting redundant
communication channels.

Figure 22 shows the distribution of rudders control units on the aircraft body.
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4. Discussion

The article considers the theory of functional-logical processing of control signals by
built-in analog computing devices.

The set goal of increasing the speed while reducing the mass-dimensional and energy
indicators of a distributed control system is achieved by introducing an add-on in the form
of analog calculators-agents into each aggregate. Agents, together with aggregates, form an
analog cyber–physical network. With the help of the developed operations of continuum
logic, the parametric, structural, and flow dynamics of the control system are significantly
improved. At the same time, the computational process becomes an inseparable component
of the physical processes occurring in the aggregates of the TS, since it is not associated
with the transition to digital and software-algorithmic event processing.

The developed operations of continuum logic react to continuous changes in the
processes in the TS, synthesizing commands for controlling the aggregates. Unlike the
existing methods of continuum logic [29–32], in the proposed models, fuzzy calculations
are replaced by deterministic ones. The negation operation is defined as in two-valued
discrete logic, i.e., the logical laws of the excluded middle (tertium non datur) are fulfilled.
Logic operations become an integral part of the continuum synthesis of control signals for
aggregates. This allows:

• simultaneously process the states of the technical system and synthesize control signals;
• speed up the response of the control system to changes in the object’s parameters;
• reduce the design complexity, and improve the energy performance of the control system.

The approach to computing management is developing in the direction of unifying
the element base, expanding the logical and algorithmic capabilities of analog devices. The
technical result is the expansion of functionality, the unification of the structure of analog
processors, and the increase in the efficiency of control of analog devices by switching from
hybrid systems to ACPN.
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Direct conversions of analog signals, parallel computing, and elimination of high-
frequency digital processing make it possible to reduce the energy costs of ACPN by two
orders of magnitude compared to digital distributed systems.

One of the promising areas of application for embedded ACPN is the analog processing
of radio signals. With restrictions on weight and size characteristics and energy indicators,
problems arise with the technical capabilities of digital systems. A report at the Systems of
Signals Generating and Processing in the Field of on Board Communications Conference [33]
presented a new approach to radio signal processing using an analog neurofilter. The task
separation of signal from noise is solved using trainable analog neuron-like devices.

The advantages of the proposed approaches in technical systems of great complexity
are demonstrated by the use of ACPNs for monitoring and diagnosing radio engineering
complexes [34]. With a high intensity of transmission of the flow of information messages
over communication lines, an overload of digital channels occurs. The transition to analog
methods for processing control and diagnostic information and the integration of analog
processors into control and diagnostic systems can significantly increase the depth and
completeness of parameter control and increase the reliability of radio engineering com-
plexes. By reducing the requirements for the frequency characteristics of communication
channels in analog systems, it is possible to increase the intensity of polling sensors and the
efficiency of monitoring components that are separated over long distances.

The use of hardware methods for synthesizing control functions and complex situ-
ational analysis of the states of the control object significantly speeds up the response of
analog processors to ongoing events. In combination with low power consumption and
weight and size characteristics, ACPNs are a promising basis for a control system for small
robots and unmanned aerial vehicles.

The presented models of functional–logical signal processing in heterarchical chains of
physical processors and parallel computing are an excellent solution for analog neural networks.

5. Conclusions

The performed studies allow us to draw theoretical and practical conclusions:

(1) The possibilities of applying the theory of analog systems continuous logical analysis
for obtaining deterministic solutions have been expanded. The developed models
replace the fuzzy calculations used in continuum logic with logical operations of
dividing decision-making areas into sub-areas, the boundaries of which are uniquely
determined by the relationships between the instantaneous values of the parameters
of the control object. The unambiguity of the decisions made increases the accuracy
and reliability of the results of the situational analysis of the states of the vehicle in
comparison with existing methods of continuous logic.

(2) The presented generalized models of the logical analysis of the states of the TS allow
systematizing the development of embedded analog devices for the distributed control
of technical and technological objects that do not require: analog-to-digital conversions
of sensor signals, programmable control devices and matching of embedded digital pro-
cessors. The obtained hardware solutions are aimed at integrating computing processes
into aggregates in order to create an ACPN, in which the synthesis of control signals of
the TS takes place at low energy costs and the design complexity of the equipment.

(3) The developed methods for the logical analysis of the states of the TS and the synthesis
of control signals are implemented in analog devices based on continuum processors,
which allow real-time (at a frequency of up to several tens of megahertz) of the
operating modes of aggregates. Built-in CPs turn the TS into a distributed computing
structure, in which analog computing is integrated with physical processes, leading to
an increase in performance with a decrease in energy parameters due to the transition
from sequential high-frequency digital calculations to continuous synthesis analog.

The declared properties of ACPNs open up prospects for their application in control
systems for distributed TS, in artificial neural networks, micro-electromechanical, and
microelectronic systems.



Inventions 2023, 8, 101 22 of 23

6. Patents

Patent for the invention of the Russian Federation No. 2739723 IPC G06G 7/00
(January 2006), G06F 7/00 Continuum Processor., Patent Library of the Russian Federation,
28 December 2020.
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