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Abstract: In this work, we propose a brain-computer-interface (BCI)-based smart-home interface
which leverages motor imagery (MI) signals to operate home devices in real-time. The idea behind
MI-BCI is that different types of MI activities will activate various brain regions. Therefore, after
recording the user’s electroencephalogram (EEG) data, two approaches, i.e., Regularized Common
Spatial Pattern (RCSP) and Linear Discriminant Analysis (LDA), analyze these data to classify users’
imagined tasks. In such a way, the user can perform the intended action. In the proposed framework,
EEG signals were recorded by using the EMOTIV helmet and OpenVibe, a free and open-source
platform that has been utilized for EEG signal feature extraction and classification. After being
classified, such signals are then converted into control commands, and the open communication
protocol for building automation KNX (“Konnex”) is proposed for the tasks” execution, i.e., the
regulation of two switching devices. The experimental results from the training and testing stages
provide evidence of the effectiveness of the users’ intentions classification, which has subsequently
been used to operate the proposed home automation system, allowing users to operate two light bulbs.

Keywords: brain-computer interface; motor imagery; home automation

1. Introduction

The human brain has been studied for decades due to its interest as a dynamic and
complex structure, and brain—computer interface systems have evolved to explore new
ways to harness their power to improve human lives. Particularly, the goal of brain—
computer interface systems is to establish a direct communication pathway between the
brain and an external device, bypassing the body’s more typical pathways of nerves and
muscles [1]. A huge number of studies have explored the potential of BCI systems in various
applications, including rehabilitation [2], navigation and robotic control [3], environmental
control [4], and gaming and entertainment [5].

Depending on the selected experimental approach and expected neurophysiological
activation pattern, many forms of task-related information can be retrieved from brain
waves. Significant examples include evoked potentials (EPs), steady-state evoked poten-
tials (SSEPs) [6], event-related potentials (ERP) [7], and sensorimotor rhythms as motor
imagery [8].

Motor-imagery-based BCI, in which users imagine performing a specific movement
without actual execution, has emerged as a promising approach for facilitating communica-
tion and control both for individuals with motor disabilities [9] and for general-purpose
applications. In stroke rehabilitation applications, robotic arms controlled by MI have been
used to direct patients” arm motions in stroke recovery [10], while a virtual reality has been
employed for upper limb rehabilitation [11]. A continuous game control via MI-BCI has
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been developed in [12], while an immersive virtual-reality-based embodiable feedback
has been implemented in [13] to improve MI-BCI control. In [14], a motor-imagery-based,
adaptive BCI speller has been designed.

Moreover, as the number of smart devices in our homes continues to grow, so does the
need for efficient and convenient control systems. In this direction, several approaches have
been presented in the literature in recent years. A prototype of SSVEP-based BCI for home
appliances control is presented in [15]. Surface electromyography (sSEMG) readings from
the occipitalis region have been used to drive a home automation system [16]. The “Neu-
rophone” [17] uses hidden Markov models trained to recognize mental instructions via
the Gamma feature band. Powered by a P300 control interface, the “BackHome” system
assembles a suite of services—including smart home control, cognitive stimulation, online
browsing, remote telemonitoring, and home support tools—to promote autonomy at home
for users and carers without specialized training [18]. Among the offered approaches, to
the author’s knowledge, the potential of MI-BCIs to provide intuitive means of controlling
home devices, particularly for individuals with physical disabilities, has not been entirely
explored, and this paper intends to fill this space.

MI-BCI-based systems require that the user’s intended movements are interpreted.
Such a task is accomplished by first classifying the EEG signals and then converting them
into commands. In recent years, several classifiers have emerged as popular techniques
for addressing this challenge. Among these techniques include a Bayesian approach [19],
pattern matching [20], neural networks [21], support vector machines [22], whitening
techniques based on Gram-Schmidt orthogonalization [23], and Linear Discriminant Anal-
ysis [24]. LDA is a supervised classification algorithm that has been widely and suc-
cessfully applied to BCI problems for its simplicity and high accuracy in classifying into
different categories.

Furthermore, if the feature space dimension is large, a spatial filter could be employed
to reduce the number of features, thus keeping the classifier from overfitting. The most
straightforward approach is to manually select features from an a priori data inspection.
Automatizing, however, could be accomplished by the use of statistical methodologies. A
well-known method for extracting brain activity that is used in MI-BCls is represented by
common spatial patterns (CSP) [25], which is a feature extraction technique that optimizes
the separation of different signal classes. In order to improve the performance of the CSP
algorithm in high-dimensional data settings, the addition of a regularized term to the CSP
algorithm represents a valid solution to improve robustness against noisy or incomplete
data [26]. The combination of these two well-known methods, i.e., LDA and regularized
CSP, leads to a more accurate and efficient classification of EEG signals.

This is why, in this work, we propose a novel use of an MI-based BCI system that makes
use of LDA and RCSP to drive a home automation system. The entire software architecture
is based on Konnex, a standardized protocol for home automation that facilitates the
communication between hardware devices to control various home appliances in real-time.
In addition, the proposed framework enables the control of two different devices at once
by providing real-time information on the devices’ state.

Our findings demonstrate that the proposed BCI system achieves good classification ac-
curacy and good response times, indicating its potential for use in home automation systems.

The paper is organized as follows: Section 2 introduces the participants, the exper-
iments, the data acquisition, the pre-processing, and the classification phases. The ex-
perimental sections comprising the software and hardware architectures as well as the
experimental results are detailed in Section 3. Finally, Section refsec:conc presents conclu-
sions and future works.

2. Materials and Methods
2.1. Participants

The study was conducted on four subjects. Participants were asked to remain focused
and attentive throughout the MI training session to obtain accurate and reliable results.



Inventions 2023, 8, 91

30f10

The participants’ composure and focus during the training session contribute to the positive
outcomes of the experiment, as it helps to reduce anxiety and stress levels, which can affect
the performance of motor skills.

2.2. Experiments

In the standard paradigm for the discrimination of two mental states, the experimental
task is to imagine either a right-hand or a left-hand movement depending on a visually
presented stimulus. During the resting phase, the participants were introduced to the BCI
system and instructed on what to do during the training and tests session. Therefore, it
was crucial to provide them with thorough clarifications and instructions.

Specifically, participants were asked to stare intently at a screen located around
150 [cm] in front of them (see Figure 1).

Figure 1. Experimental setup: a personal computer connected to two devices through KNX, i.e., two
light bulbs.

Figure 2 shows the sequence in time of each trial for both the training and the test
phases, beginning at time ty) = 0 [s]. The sequence begins with an initial resting phase
(t; = 40 [s]) during which the participant relaxes and concentrates on the session to be
performed. After the initial resting phase, as shown in Figure 2, the trials start with the
fixation cross that appears on the screen (see Figure 3b). Afterward, it is overlaid with an
arrow at the center of the monitor for t4,, = 1.25 [s], pointing either to the left or to the right
(as shown in Figure 3a,c). In this phase, depending on the direction of the arrow, the subject
is instructed to imagine a left- or right-hand movement for );; = 3.75 [s]. Each trial lasts
tivial = 8 [s] in total. One entire training run includes twenty trials per class (forty in total),
while one entire test run includes ten trials. Overall, in order to evaluate the performance
of the training and test phases, subjects were required to stay focused for t,;,, = 7 [min]
for the training phase and ts; = 2 [min] for the testing phase.

Fixation Cross | Arrow(1.25[s])) | MI(3.75[s]) |

Trial Execution | Random interval
0 [s] 8[s]

Figure 2. Experimental paradigm: MI trial’s phases. The three key stages—fixation cross, arrow cue,
and MI task—are depicted to highlight the time intervals between them.

(a) (b) (©)

Figure 3. Arrows’ sequence during the training phase. (a) Right arrow; (b) Fixation cross; (c) Left arrow.
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2.3. Data Acquisition

In order to acquire EEG signals, an Emotiv EPOC X headset was used. Recordings
were made using a total of 14 electrodes. The selected electrodes were AF3, F3, F7, FC5,
T7, P7, and O1 (Left side); and AF4, F4, F8, FC6, T8, P8, and O2 (Right side). Figure 4
shows the EEG topography distribution for subject A in one MI task execution during the
training phase. All electrodes are arranged according to the international 10-20 system
seen in Figure 5.

(@) (b) (0) (d)
Figure 4. EEG topographical distribution of subject A during the training phase. (a) Fixation cross
0 [s], (b) Arrow cue at 2.75 [s], (c) MI task starting at 4.25 [s], (d) MI task at 5.25 [s].

(a) (b)
Figure 5. Neuroheadset headset and its spatial configuration. (a) Emotiv EPOC X; (b) Electrodes con-

figuration.

The wireless device uses advanced sensor technology to capture brainwave signals
with high accuracy and precision at a sampling rate of 128 [Hz].

2.4. Pre-Processing and Classification

With the final aim of developing a complete framework to command home appliances,
we selected some of the most reliable approaches to pre-process and classify EEG data.
In particular, filtering, the application of an RCSP filter, and a final classification performed
by an LDA classifier are the three main stages that comprise the post-processing analysis
and classification, summarized in the following text. A graphical block representation of
these three main phases is shown in Figure 6.

EEG Butterworth R-CSP LDA Control
[ Acquisition } »[ filter } »[ Filter }*{ classifier }»{ Signals ]

Figure 6. Adopted classification methodology.

In the filtering phase, each trial was band-pass filtered in the range of 8-30 [Hz], using
a 5th-order Butterworth filter. The objective of this filtering procedure was to eliminate
any noise or unwanted artifacts from the EEG data that could potentially interfere with
the subsequent analysis. The 8-30 [Hz] frequency range used in this study was chosen to
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highlight the most pertinent frequencies to the analysis of sensorimotor rhythms, which
are known to be associated with movement and motor imagery.

Subsequently, after the band-pass filtering was performed, a regularized common
spatial filter (RCSP) [26] was applied to the data, aiming at improving the signal-to-noise
ratio of EEG data with a particular focus on inter-subject variability and spatial resolution
improvement. In general, supposing that there are two classes, the CSP’s goal is to train
spatial filters wcgp that minimize the variance of filtered EEG signals for one class, while
maximizing it for the other, according to

T T T
wegpXy Xiwesp wegpCiwesp
csp — arg max JCSP

)

J(wesp) = argmax

L
wlspX, Xowesp wlspCowesp

where the superscript | denotes the transpose matrix, X; is the data matrix, and C; is the
spatial covariance matrix for the class i. Regularization is obtained by adding a penalty

function P(wcgp) measuring how much the spatial filter wcsp satisfies a given prior
according to

.
wegpCiwesp
wlspCowesp + aP(wesp)

]p (wCsp) = argmaXx (2)
where # € R > 0is an a priori defined regularization parameter. The more the spatial filters
wcsp satisfy it, the lower P(wcsp) is. Hence, to maximize Jp(wcsp), P(wesp) should be
minimized, thus ensuring that the spatial filters satisfy the prior. This approach has been
selected since it collects the spatial filters with the highest discriminative power. The aim
was to avoid possible CSP sensitivity to noise and overfitting. We refer the reader to
Figure 7 for an illustration of the set of CSP scalp projections generated with the RCSP
algorithm for one participant in the user study.

CSP Pattern 1

° T 0.6 0.6
VAN 0.4 0.4
A 0.2 0.2

| 0 0

-0.2 -0.2

-0.4 -0.4

-0.6 -0.6

Figure 7. Common spatial pattern map. The figure illustrates the set of CSP filters of a single
participant in the study. The CSPs are optimized for the discrimination of left-hand motor imagery.

Spatial filtering was followed by a classification process using Linear Discriminant
Analysis, a common approach for distinguishing between characteristics of different
classes—more specifically, between two classes. The approach is fast and allows for improv-
ing the classification performance by finding a rotation that maximizes the (normalized)
distance between the centers of the two sets of data. In particular, when two groups A and
B are assumed to have independent Gaussian distributions, the methodology calculates a
projection vector that minimizes the variances of the projected populations while maximiz-
ing the mean distance between them. Thus, defining the two classes as A and B, the mean
difference and the pooled covariance matrices can be written, respectively, as

Ap = pp —pa ©)
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EZ%(ZB-FZA). 4)

The LDA projection vector can be defined as

wrpa = BpE”! ©)

Therefore, given an arbitrary input x, the symmetric LDA score is given by

p=wipax' —d (6)

where the offset term is

1
d= >WLDA (B + ﬂA)T ()

Using this method, the classification between two groups A and B can be performed.

3. Experimental Results
3.1. Experimental Setup

In this section, we present the experimental setup and results that show the effective-
ness of the presented BCI control framework, which is schematically shown in Figure 8.
The integration of several technologies, presented here, has allowed the challenging design
of an MI-BCl-based system capable of driving home appliances devices to be performed.

T o

iy
&0 9 F 9 Sy
NODE-RED

Figure 8. System architecture overview: from the signals acquisition to hardware devices.

First, EEG data were recorded through Emotiv EPOC X through the 14 sensors that
subjects placed on their scalp. EMOTIVPRO allowed interactions with a fixed workstation.
Then, OpenVIBE (http://openvibe.inria.fr/, accessed on 11 July 2023) was integrated
to perform the signals’ post-processing, feature extraction, and classification for both
the training and the testing phases. Lab Streaming Layer (LSL), an open-source software
framework for real-time acquisition and synchronization of various types of data, facilitated
the data exchange between EMOTIVPRO and OpenVIBE. Once the feature extraction
and classification phases were complete, Node-RED, an immediate programming tool
for interconnecting hardware devices, APIs, and online services over TCP/IP, used the
gathered information for both commanding the different hardware devices according to
the users’ intentions and received feedback about the status of the devices.

Ultimately, the KNX protocol enables the completion of the binding process that takes
place between the Node-RED and the hardware interface. In particular, commands and
devices’ statuses are sent and received via KNX by performing a gateway and port setting.
In such a way, instructed actions such as switching a light bulb on or off or setting a dimmer
can be performed. The advantage of the KNX standard is that it allows devices to be
linked to the line in any topological installation configuration; in addition, it also allows the
system to be controlled using a large range of interfaces, which are pivotal characteristics
in our BCI implementation. To show the results, the implemented KNX architecture was
composed of two switches that allow the control of two lighting systems that, from now on,
will be referred to as LS-A and LS-B; these switches were connected through a twisted pair
shared bus (see Figure 1). It should be mentioned that actuator relays and sensors, such as
brightness or temperature sensors, could be integrated into the architecture.
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3.2. Software Implementation

The designed software architecture makes use of Node-RED for the software associa-
tion between the OpenVIBE outputs and the KNX real devices, fully using its advantage
of being highly suitable for low-level programming of event-driven applications and for
making stable connections between hardware components. A schematic representation is
shown in Figure 9. The data transfer is performed over TCP via a custom Node-RED library
which sends classified signals in string form. After an initial set of the port number within
the Inject block, the TCP Client Node block can be set up in listening mode. This allows for
listening of the data coming from OpenVIBE over TCP. Afterward, the users’ provided
commands are decoded to drive the selected devices; the devices’ states are continuously
fed back to the system and then sent to the real devices by using the KNXs blocks.

By using such a designed software architecture, two devices were handled by switch-
ing their states as needed by the imagined right and left motions. This indicates that the
state of the light system LS-A changed when users considered a left-handed motion, and
the status of the light system LS-B changed when users considered a right-handed motion.
By using this strategy whose strength is in enabling users to handle not just one but two
devices at once, MI can be used to manage more than one device at a time.

=<, Node-RED

5678 1 TCP Control Loop e
- e
LS-B &R
]
o
R LS-A Get LS-A Status
(]
e
IR LsB Get LS-B Status

]

Figure 9. Node-RED flow chart of the proposed software implementation.

Results

This section is devoted to presenting the results of the efficacy of the proposed MI-BCI-
based home automation system. In particular, trials included a training phase followed by
a testing phase in which participants thought about left and right movements in order to
simultaneously have control of the state of two devices, i.e., the KNX smart light LS-A and
the KNX smart light LS-B. The interested reader is referred to the Supplementary Video
to see the system in action (http://www.dees.unict.it/mbucolo/index.php/resources,
accessed on 11 July 2023).

Four healthy subjects were involved in testing both the software and hardware ar-
chitectures. The system'’s effectiveness was first defined by determining how accurate
the system was at recognizing the left and right commands in the recorded EEG signals.
The results of this first phase are summarized in Table 1, which displays the right and left
training accuracies for each individual across 40 trials. During the training phase, each
subject performed the task described in Section 2.2, completing 20 trials for each class,
i.e., left or right. The whole training phase (40 trials) lasted 7 min. This amount of time
was considered sufficient in terms of computational efficiency, adequacy of the data, and
overfitting mitigation. As a matter of fact, 7 min allowed for obtaining a good balance
between reliable results, efficient computational resource management, and the risk of the
model being overly specialized. Moreover, from an experimental perspective, the longer
the training phase, the greater the risk of subjects’ loss of attention, which could affect the
experiments’ performance. By looking at the results, they show that all the target end users
involved in the evaluation were able to achieve satisfactory accuracies > 70%. Moreover,
a small difference is observable between the best-obtained performance (subject 1) and
the worst one (subject 4), which provides evidence that the approach is reliable under
various conditions.
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A second analysis was performed to analyze how accurate the proposed MI-BCI-based
home automation system was at executing the users’ intentions in test sessions. Each
participant completed 10 tasks which, in turn, resulted in a command generation to drive
the proposed home automation system by changing the light system states. The outcomes
of such an analysis are shown in Table 2. The testing phase lasted 2 min and took place
exactly as the training phase, except for the fact that feedback was provided in the form of
a blue bar decoding the intensity of the response to the visualized stimulus. In this case,
the results show that all the target end users involved in the evaluation were able to gain
control over the MI-BCI system with an average score of ~72%. Furthermore, the fact
that the training phase results are consistent among participants, with an upper bound of
80% and a lower bound of 70%, is further proof of the validity of the proposed approach.
Overall, the solution proposed in this work exhibits satisfactory performance and holds
significant potential for further development and implementation.

Table 1. Training accuracy.

Subjects Number of Trials Training Phase Accuracy
1 40 73.32%
2 40 71.20%
3 40 70.01%
4 40 71.50%

Table 2. Test phase accuracy.

Subject Number of Tasks Testing Phase Accuracy
1 10 80%
2 10 70%
3 10 70%
4 10 70%

4. Conclusions

In this work, we addressed the challenging problem of designing an MI-BCI-based
smart home interface to drive smart-home appliances in real time. Our work shows that
the problem can be solved using a software and hardware architecture that was designed,
implemented, and thoroughly tested with different subjects to show the effectiveness of
the proposed solution. In particular, the integration of accessible programming tools, such
as Node-RED, and reliable communication protocols for hardware devices’ setup and
communication, such as “KNX”, made the realization of a control framework to drive two
switching devices with sufficient accuracy possible.

Further study should be carried out to cope with daily fluctuations of EEG signals,
and more has to be done to ensure a more reliable performance. In particular, applying
such a system to a wider number of users and focusing on long-term experiments can also
be crucial next steps to be performed. In addition, in light of the versatility of the proposed
communication protocol, tests on more devices could be performed to allow users to extend
the set of possible devices that users can effectively control.

However, despite the effectiveness of the proposed approach and in light of the
complexity of the domain, additional challenges are still required to be faced. Additional
investigations should be carried out to reduce the training phase time. Conspicuous subjects’
efforts are required in the current implementation. In addition, from a control perspective,
further improvements should be made in the direction of enhancing the system outputs.
In fact, users should be given more control degrees of freedom to perform regulation of
more than two devices at a time. MI multi-class classifications can significantly help in this
direction. From a technological point of view, further experiments need to be performed
to see the approach reliability out of research laboratories, in real-world conditions, and
across a wide variety of subjects. These experiments could raise additional challenges not
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yet considered, such as the impact that real-world environmental disturbances can have on
such systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/inventions8040091 /s1.

Author Contributions: S.C.: Conceptualization; Software; Validation; Formal Analysis; Writing—
original draft; Writing—review & editing. D.S.: Methodology; Software; Validation; Writing—original
draft; Writing—review & editing. A.M.: Supervision; Funding acquisition. A.B.: Data curation. M.B.:
Conceptualization; Investigation; Writing—review & editing; Supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been funded by the project PON 2014-2020 “Ricerca e Innovazione”—Project:
“4 FRAILTY-Sensoristica intelligente, infrastrutture e modelli gestionali per la sicurezza di soggetti
fragili”—ARS01_00345—CUP: E66C18000200005 and by the project Sicilian MicronanoTech Research
And Innovation Center (SAMOTHRACE)—CUP E63C22000900006.

Data Availability Statement: Data will be provided at the following link: http://www.dees.unict.it/
mbucolo/index.php/resources, accessed on 11 July 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MI Motor Imagery
BCI Brain Computer Interface
EEG  Electroencephalogram
KNX  Konnex
EP Evoked potentials
SSEP  Steady-State evoked potentials
ERP  Event-Related potentials
EMG  Electromyography
LDA  Linear Discriminant Analysis
CSpP Common Spatial Patterns
RCSP  Regularized-CSP
TCP Transmission Control Protocol
1P Internet Protocol
LS-A  Lighting system-A
LS-B Lighting system-B
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