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Abstract: The periodic nature of stream-wise flow occurs in a cooling channel so frequently due to
the multiple heat sources in electronic equipment, demanding the creation of an effective technique
to improve the heat-cooling convection. This work explores thermal convection enhancement in a
heated-block duct for periodic boundary conditions using the element-by-element (EBE) treatment in
a semi-implicit projection finite element method (FEM) through a preconditioned conjugate gradient
(PCG) solver. The effects of changing the Reynolds numbers (100, 175, and 250) on rectangular
cylinders installed in the channel under periodic boundary conditions were studied using time-mean
Nusselt number enhancement, friction factor enhancement, and thermal performance coefficient. The
results show that the rectangular cylinders installed stream-wise above an upstream block promote
thermal convection in the heated-block duct due to modifying the flow of no cylinders. However,
increasing the number of rectangular cylinders increases the friction factor enhancement. As a result,
the case for periodic boundary conditions with a rectangular cylinder above every two blocks has the
best thermal performance coefficient.

Keywords: heat transfer enhancement; heated-block channel; mounting rectangular cylinders; periodic
boundary conditions

1. Introduction

Over the past decades, the computer and semiconductor industry’s technologies have
advanced by leaps and bounds. They increased the numerical computational capability
applied to different thermal convection problems.

In heat transfer research, the most popular computational technique, particularly
for turbulent flow, still seems to be the Finite Volume Method [1–4]. However, FEM
methods have been among the critical engineering computational methodologies for linear
and nonlinear problems. They have two drawbacks: first, they require a higher matrix
stock, and second, they use more central processing unit (CPU) memory when solving
complex problems.

Hughes et al. [5] were the first to use an early version of the EBE with an implicit
approach to solve heat conduction problems to overcome the above drawbacks. Hughes
et al. [6] and Ortiz et al. [7] employed the EBE method to address computational structural
issues, combining these early EBE techniques with “Marchuk-type” iterative computing
techniques. To accelerate the convergence of iterative solutions, Winget [8] and Hughes
et al. [9,10] integrated EBE with “preconditioned conjugate gradients (PCG)”, referring to
these as “Crout types”. The “Crout type”, as described by Levit [11], raised the computa-
tional order of EBE to the N order. Carey et al. [12] modified the EBE matrix composition
to take the shape of a parallel processor; nonetheless, the analysis was only for structural
concerns. Wathen [13] enhanced the practical computational power of EBE by expanding
its usable dimensions from 1-D to 2-D and 3-D. Erhel et al. [14] applied the preconditioned
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technique, iterative products, and the EBE calculation method to solve 2-D and 3-D vector
problems. In addition, Papadrakakis et al. [15] adopted a global matrix pattern to speed up
the convergence rate when analyzing the employment of the preconditioned methodology
in the computation method of EBE. Mizukami [16] chose multiple large-range flow fields
as calculation models, applied the Penalty and Uzawa approach via a pressure-implicit
and velocity-explicit procedure, and merged the equations in the flow field. He then used
the EBE-CG calculation matrix to show that the latter required less numerical storage and
CPU time to calculate large-scale flow fields. Li et al. [17] and Sunmonu [18] employed
the EBE method to decrease the matrix, which shortened the computer’s calculation time.
Reddy et al. [19] used the EBE numerical architecture to reduce the number of iterations
during computation when calculating the flow field of viscous incompressible fluids by
integrating two iteration methods with a multigrid approach.

Nakabayashi et al. [20] were the first to apply the addition type of EBE to simulate
fluid flow using parallel computing and EBE computational fluid dynamics. They also
used the conjugate gradient approach to accelerate convergence, which had the same
performance as the conjugate gradient method to reduce the requirement for numerical
storage and the temporary memory of the CPU. The semi-implicit projection method
based on the projection technique was one of the effective numerical solutions to the
problem of heat flow in the unstable state and incompressibility [21,22]. The projected FEM
method (the semi-implicit FEM method) outperforms the traditional FEM methodology
by requiring less computer storage space and CPU time to compute. Thomas et al. [23]
solved incompressible flow inside a cap-pushed square chamber and transient flow across
a round cylinder using an EBE approach. Their findings demonstrated that the algorithm
was correct. Based on the references provided, it is clear that the EBE concept can reduce
the use of computer numerical stock and CPU scratch memory, while PCG can expedite
computation convergence. The current State of the Art in EBE ideas focus on parallel
computing applications and numerical efficiency examination rather than the convection
cooling of multiple heat sources.

On the other hand, a periodic boundary condition of stream-wise flow often happens
in heat exchange systems, such as heat exchangers, solar energy collectors, and electronic
equipment cooling. Several researchers have worked on thermal convection fields in a
channel under periodic boundary conditions. Savović et al. [24] modified boundary condi-
tions to periodic ones in a one-dimensional flow calculation through the finite difference
method. Murata et al. [25] investigated how the ratio of an obstacle to channel height
affected the velocity field, Cd, and Cl utilizing periodic boundary conditions. Patankar
et al. [26] explored thermal convection in channels with a periodic modification for the
fully developed flow. They discovered that the estimated laminar flow field had a sig-
nificant blockage effect and huge recirculation zones. Regarding a fully developed flow,
the Nusselt numbers for periodic modification were substantially higher than those for
conventional laminar channel flows and strongly related to the Reynolds number. Us-
ing periodic boundary conditions, Hasan Gunes [27] estimated the buoyancy flow of a
vertical channel. When the Grashof number was modest, the numerical simulation and
experimental results accorded very well. Gong et al. [28] introduced an upwind-based
interpolation approach for updating the fluid bulk temperature at the domain exit when
dealing with temperature-periodic situations. The second-order interpolation method was
viable and dependable, as demonstrated by numerical examples. Liou et al. [29] examined
how the turbine’s blades dissipated heat in a periodic pattern in their analysis of the heat
transfer of the blade rotation speed, observing that the higher the speed and Reynolds
numbers were, the more heat was transferred. Liou et al. [30] investigated heat transfer
over three different barriers (long strip, hole type, and perforated type) using numerical
simulation of the flow field through a space-periodic flow channel in a turbulent flow.
Xi et al. [31] explored the thermal convection effectiveness and friction effect in a heat
transfer apparatus through cross-wavy ducts under varied periodic boundary conditions.
They acquired a relationship between Reynolds, Prandtl number, and geometrical factors.
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Karimian et al. [32] estimated heat transfer flow in a round tube under a periodic boundary
condition. Martinez et al. [33] analyzed the fluid temperature in a finned pipe using the
Reynolds Averaged Navier-Stokes Equations method with the k− ε RNG modeling under
periodic boundary conditions. They addressed how the turbulence kinetic energy with
dissipating rate affected neighborhood characteristics in high-flow interaction regions.
Debnath et al. [34] examined a continuous close granulous flow in a vertical duct across
various horizontal and vertical directions under periodic boundary conditions by applying
the discrete element methodology. Their findings revealed a large shear and a significant
drop in average volume fraction within the wall shearing area, roughly around two particle
diameters in thickness. Shim et al. [35] used numerical simulations and periodic boundary
conditions to study a blended-convective laminar heat transport of oblique-pin fins on
a sloping hot surface. The positively inclined fins in a vertical channel performed better
thermally than the negatively inclined fins as the buoyancy-pushed flow rose.

Few articles have investigated thermal convection enhancement in a heated-block
duct using periodic boundary conditions. Therefore, this paper analyzes streamlines and
thermal convection promotion by setting a rectangular cylinder in the heated-block channel
according to the periodic ones with the iterative calculation of EBE-PCG and the numerical
method of projecting finite elements. It discusses time-mean Nusselt number enhancement,
friction factor enhancement, and thermal performance coefficients for different rectangular
cylinder arrangements to enhance thermal convection.

2. Mathematical Formulation

Figure 1 displays the heated two-dimensional flow geometries with a rectangular
cylinder placed for periodic boundary conditions. Figure 1a depicts a rectangular cylinder
above every heated block (Case 1), Figure 1b shows a rectangular cylinder above the first
block for every two heated blocks (Case 2), and Figure 1c indicates a rectangular cylinder
above the first block for every three heated blocks (Case 3).
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Figure 1. The geometries for periodic boundary conditions (a) Case 1: with a rectangular cylinder
above every block; (b) Case 2: with a rectangular cylinder above the first block for every two blocks;
(c) Case 3: with a rectangular cylinder above the first block for every three blocks.

2.1. Conservation Equations

The following assumptions are taken in this research when considering the heat
dissipation phenomenon of blocks: (1) The fluid is air and Newtonian; (2) The fluid is
incompressible; (3) The flow field contains no internal heat source; (4) The flow is laminar;
(5) The flow field and temperature field are two-dimensional.
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Use the following dimensionless group to treat continuity, Navier–Stokes, and energy
equations as dimensionless forms.

x =
x∗

l
, y =

y∗

l
, u =

u∗

u∞
, v =

v∗

u∞
,φ =

T− T∞

TW − T∞
, p =

p∗

ρu2
∞

, t =
t∗

l/u∞

Under forced convection, the parallel wall direction coordinate is x in the two-
dimensional dimensionless mass, momentum, and energy balance formulations. The
following equations are:

Mass Conservation Equation:

∂u
∂x

+
∂u
∂y

= 0 (1)

Momentum Conservation Equation:
x-direction:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
(2)

y-direction:
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −∂p
∂y

+
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
(3)

Energy Conservation Equation:

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
=

1
RePr

(
∂2φ

∂x2 +
∂2φ

∂y2

)
(4)

where pressure is defined as p(x, y) = −βx + p′(x, y) [26].
Initial condition:

u = v = φ = 0 at t = 0 (5)

Boundary conditions:
(1) Inlet

u(0, y) = u(L
l , y), v(0, y) = v(L

l , y), p(0, y) = p(L
l , y),

φ(0, y) = φ(L
l , y)

(6)

(2) Outlet

u(L
l , y) = u(0, y), v(L

l , y) = v(0, y), p(L
l , y) = p(0, y),

φ(L
l , y) = φ(0, y)

(7)

(3) Top duct wall

y =
H
l

, u = v = 0,
∂φ

∂n
= 0 (8)

(4) Bottom duct wall

y = 0, u = v = 0,
∂φ

∂n
= 0 (9)

(5) Blocks surface
u = v = 0,φ = 1 (10)

(6) Rectangular cylinder surface

u = v = 0,
∂φ

∂n
= 0 (11)
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To produce instantaneous nonlinear ordinary differential equations, we employ the tra-
ditional Galerkin finite element method discretizing the spatial coordinates in Equation (1)
through (4).

(
Nelem

∑
e=1

M
αβ
)

duβi

dt
+ (

Nelem

∑
e=1

H
α iβ)pβ +

1
Re

(
Nelem

∑
e=1

S
αiβ j)uβj + (

Nelem

∑
e=1

K
αβγj)uβjuγj = 0 (12)

(
Nelem

∑
e=1

M
αβ
)

dφβ

dt
+

1
RePr

(
Nelem

∑
e=1

A
αβ
)φβ + (

Nelem

∑
e=1

K
αβγj)uβjφj = 0 (13)

(
Nelem

∑
e=1

H
αiβ)uβi = 0 (14)

where
Mαβ =

∫
Ω(e)

(ΦαΦβ)dΩ (15)

Hαiβ =
∫

Ω(e)
(Φα,iΦβ)dΩ (16)

Sαiβj =
∫

Ω(e)
(Φα,iΦβ,j)dΩ (17)

Kαβγj =
∫

Ω(e)
(ΦαΦβ,jΦγ)dΩ (18)

Aαβ =
∫

Ω(e)
(Φα,jΦβ,j)dΩ (19)

Use the forward time difference to consider the time terms of Equations (12) and (13). Let
un

βi = uβi(n∆t), φn
β = φβ(n∆t), and pn

β = pβ(n∆t), then we have the following equations:

(
Nelem

∑
e=1

M
αβ

)
1

∆t
(un+1

βi − un
βi) + (

Nelem

∑
e=1

K
αβγi )u

n
βju

n
γi +

1
Re

(
Nelem

∑
e=1

S
αiβj)u

n
βj+(

Nelem

∑
e=1

Hαiβ)pn+1
β = 0 (20)

(
Nelem

∑
e=1

M
αβ

)
1

∆t
(φn+1

β −φn
β) + (

Nelem

∑
e=1

K
αβγj)u

n
βjφ

n
γ +

1
RePr

(
Nelem

∑
e=1

A
αβ

)φn
β = 0 (21)

(
Nelem

∑
e=1

Hαiβ)un
βi = 0 (22)

Substitute the concept of EBE’s decomposition and simplification of matrices in
Equations (20)–(22) to obtain Equations (23)–(25).

Nelem

∑
e=1

[Mαβ

1
∆t

(un+1
βi − un

βi)] +
Nelem

∑
e=1

(Kαβγju
n
βju

n
γi) +

1
Re

Nelem

∑
e=1

(Sαiβju
n
βj)+

Nelem

∑
e=1

(Hαiβpn+1
β ) = 0 (23)

Nelem

∑
e=1

[Mαβ

1
∆t

(φn+1
β −φn

β)] +
Nelem

∑
e=1

(Kαβγju
n
βjφ

n
γ) +

1
RePr

Nelem

∑
e=1

(Aαβφ
n
β) = 0 (24)

Nelem

∑
e=1

(Hαiβun
βi) = 0 (25)

2.2. Projection Method

Combining an implicit Euler representation of the diffusive item with a second-
order one of the advective components yields a finite-element form for the semi-implicit
projection methods.
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1. Step 1

Using the explicit-Adams–Bashforth methodology handles nonlinear convective terms
and applying the Euler time-integrating scheme treats diffusive groups to obtain an inter-
mediate velocity field.

Nelem

∑
e=1

(Mαβũn+1
βi ) =

Nelem

∑
e=1

(Mαβun
βi)− ∆t · [3

2

Nelem

∑
e=1

(Kαβγjun
βju

n
γi)−

1
2

Nelem

∑
e=1

(Kαβγjun−1
βj un−1

γi )]− 1
Re

∆t
Nelem

∑
e=1

(Sαiβiũn+1
βi ) (26)

2. Step 2

Since projection velocity (ũn+1
βi ) and pressure (pn+1

β ) affect un+1
βi , the Poisson equation

needs to be solved.

Nelem

∑
e=1

(Aαβpn+1
β ) = − 1

∆t

Nelem

∑
e=1

(Hαiβũn+1
βi ) (27)

Then substitute the pressure, Pn+1
β , to obtain final velocity.

Nelem

∑
e=1

(Mαβun+1
βi ) =

Nelem

∑
e=1

(Mαβũn+1
βi )− ∆t

Nelem

∑
e=1

(Hαiβpn+1
β ) (28)

3. Step 3

Solve the energy conservation equation to obtain temperature.

Nelem

∑
e=1

(Mαβφ
n+1
β ) =

Nelem

∑
e=1

(Mαβφ
n
β)− ∆t

3
2

Nelem

∑
e=1

(Kαβγjun
βjφ

n
γi)−

1
2

Nelem

∑
e=1

(Kαβγjun−1
βj φ

n−1
γi )]− 1

RePr
∆t

Nelem

∑
e=1

(Aαβφ
n+1
β ) (29)

4. Step 4

Let n = n + 1 and return to Step 1.
The numerical method approaches presented in this part seek to eliminate large

matrices because the combination of nonlinear equations and energy equations throughout
the process will result in a large matrix that, if left unprocessed, will delay computer
processes. As a result, the preceding method will save computer storage space while
performing computer-efficient calculations. This study used a quadrilateral with four nodes
instead of a triangle element to acquire correct findings within a finite range. Calculate the
mass, convection, pressure gradient, divergence, and dissipation matrices all at once and
repeat them every time interval throughout the procedure.

3. Results and Discussion
3.1. Mesh Independence Test and Model Validation

Employing Mesh 2 has the highest relative error of the Nu against Mesh 3, within 1%
in a series of mesh independence tests shown in Table 1. After a series of time-step size
tests (0.001, 0.002, and 0.004), the size of the dimensionless time step of 0.002 approximates
0.5% in all cases for the lowest inaccuracy of drag coefficient relative to the finest one of
dimensionless time step size 0.001. This section also compared the program’s performance
with that of the article by Murata et al. [25] to confirm the program’s reliability. Their
condition is the flow of a square obstruction in a channel with periodic boundary conditions.
When Re = 154 and no-slip conditions apply to the fluid flow on the solid wall, the top and
bottom walls are thermally insulated. The difference between the numerical solution and
Murata et al. [25] is 3.3% when expressed in terms of the St value from Table 2.

3.2. The Arrangement Geometries for Periodic Boundary Conditions

Employing a heated block under periodic boundary conditions approximates multiple
heated blocks in a channel lower wall to investigate how the rectangular cylinder augments
the thermal convection of heated blocks (Figure 1) compared with heated blocks without
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a rectangular cylinder under periodic boundary conditions. Three sets of arrangements
are investigated in this study corresponding to every block with a rectangular cylinder
(Figure 1a), every two blocks with a rectangular cylinder (Figure 1b), and the arrangement
of every three blocks (Figure 1c).

Table 1. Mesh independent test.

Case Mesh

Without Rectangular cylinder
Mesh 1 (element number: 1722; node number: 1621)
Mesh 2 (element number: 3314; node number: 3164)
Mesh 3 (element number: 4002; node number: 3836)

1
Mesh 1 (element number: 727; node number: 700)
Mesh 2 (element number: 1451; node number: 1407)
Mesh 3 (element number: 2176; node number: 2114)

2
Mesh 1 (element number: 1454; node number: 1400)
Mesh 2 (element number: 2902; node number: 2814)
Mesh 3 (element number: 4352; node number: 4228)

3
Mesh 1 (element number: 2181; node number: 2100)
Mesh 2 (element number: 4353; node number: 4221)
Mesh 3 (element number: 6528; node number: 6342)

Table 2. Comparison of Strouhal number St.

Murata et al. [25] Present Paper

Strouhal number 0.30 0.31

3.3. Time-Averaged Nusselt Number on Heated Blocks

The Nu is acquired through the Nusselt number for the dimensionless time higher
than 30 and taken with 1000 time steps (according to the Cd-dimensionless time curve).
Figure 2 indicates the change in the Nu over a heated block in Case 1 at various Reynolds
numbers. The Nu at the front corner of a heated block reaches its maximum, then decreases
and increases along the upper surface of the one, and has the other peak value over the
rear corner. The Nu on the first corner (point 1) is higher than on the second corner (point
3) because of the flow around point 1 through a small area with a higher velocity (having a
large streamlines curvature and denser temperature contours in a stream-wise direction.
The maximum Nu rises as the Reynolds number increases. The difference of peak Nu for
Re = 100 and 175 is not apparent; however, it becomes substantial at Re = 250. Figure 3
displays the variation in the Nu over a heated block for Case 2 when changing the Reynolds
number. As the Reynolds number grows, so does the maximum Nu. The peak values
of the Nu appear at the corners of each heated block. In a stream-wise direction, the Nu
at the first corner (point 1) of the first heated block is higher than that at the first corner
(point 6) of the second heated one because flow around point 1 passes through a small
flow area with a higher velocity (having a greater curvature). Nu on the second corner
(point 3) of the first heated block is higher than that on the second corner (point 8) of the
second heated block as the fluid receives more and more heat from each heated block in a
stream-wise direction (having a recirculation zone between the first and the second heated
block). Figure 4 illustrates the change in Nu over a heated block for Case 3 at various
Reynolds numbers. In a stream-wise direction, the Nu at the first corner (point 1) of the
first heated block is higher than that at the first corner (point 6 and point 11) of the other
heated ones because the flow around point 1 passes through a small flow area with a higher
streamline curvature. The Nu for the Reynolds number 250 on the first corner (point 1) of
the first heated block is similarly much higher than those for the Reynolds numbers 100 and
175 because the Reynolds number 250 has larger velocities; in addition, two recirculation
zones occur after the rectangular cylinders to cause a greater streamline curvature around
the first corner (point 1) of the first heated block.
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3.4. Streamlined Patterns and Temperature Contours

Figure 5 depicts streamlines for Case 1’s periodic boundary conditions on a heated
block at various Reynolds numbers. For each Reynolds number, a recirculation zone forms
behind the heated block as the flow passes a rectangular cylinder above each block. Two
recirculation zones form behind the rectangular cylinder as the Reynolds number reaches
250 to display a greater streamline curvature on the corners of each heated block. It acquires
a higher Nu at a Reynolds number of 250 than at other Reynolds numbers (Figure 2).
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Figure 6 shows streamlined patterns for Case 2’s periodic boundary conditions on
heated blocks at various Reynolds values. For Reynolds numbers 100 and 175, a substantial
recirculation zone arises behind the first heated block when the flow passes a rectangular
cylinder above the first block of every two-block case. A smaller recirculation area forms
following the second heated block. Two recirculation zones similar to in Case 1 appear
behind the rectangular cylinder when the Reynolds number becomes 250, and a large
recirculation zone occurs between two heated blocks.

Figure 7 shows streamlines for Case 3’s periodic boundary conditions on heated blocks
under different Reynolds numbers. When the fluid flows through a rectangular cylinder
above the first block for every three blocks, having a large streamline curvature around
the block corner (Figure 7) produces a maximum Nu (Figure 4). A large recirculation
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zone occurs behind the first heated block, and a smaller recirculation zone appears behind
the second and third heated blocks for Reynolds numbers 100 and 175. A big recircula-
tion zone with a smaller recirculation zone forms behind the rectangular cylinder when
the Reynolds number is 250. It obtains a higher Nu at a Reynolds number of 250 than
other Reynolds numbers (Figure 4). Figure 8 indicates temperature contours for periodic
boundary conditions on a heated block for Case 1 at various Reynolds numbers. The
distributions of temperature contours for Reynolds numbers are similar; the temperature
contours surrounding the first corner (point 1), both ends of the rectangular cylinder, and
the second corner (point 3) are denser than those in other areas to cause higher time-mean
Nusselt numbers, as shown in Figure 2 (due to a large streamline curvature around the
block corner in Figure 5). Figure 9 illustrates temperature contours for periodic boundary
conditions on heated blocks for Case 2 under various Reynolds numbers. The distribu-
tions of temperature contours for Reynolds numbers are alike; the temperature contours
surrounding the corners of each heated block (point 1, point 3, point 6, and point 8) and
both ends of the rectangular cylinder are denser than those in other points to cause higher
time-mean Nusselt numbers, as shown, in Figure 3 (due to a large streamline curvature
around the block corner in Figure 6).
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Figure 9. Temperature contours for periodic boundary conditions on heated blocks for Case 2 at Re =
(a) 100; (b) 175; (c) 250.

Figure 10 illustrates temperature contours for periodic boundary conditions on heated
blocks for Case 3 with variable Reynolds numbers. The distributions of temperature profiles
at Reynolds numbers are similar; the temperature contours surrounding the corners of each
heated block (point 1, point 3, point 6, point 8, point 11, and point 13) and both ends of
the rectangular cylinder are denser than those in other points to cause higher time-mean
Nusselt numbers, as shown in Figure 4 (due to a large streamline curvature around the
block corner, as shown in Figure 7).
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3.5. Friction Factor Enhancement, Nusselt Number Enhancement and Thermal Performance Coefficient

The heated block channel with a rectangular cylinder improves heat transfer and
increases flow resistance. A friction factor enhancement f

fo
reflects the pressure loss ratio

between having and not having a rectangular cylinder case, where f = 4p/(0.5ρu2
∞) ·dh/L

and fo refers to without rectangular cylinder case. The <Nu>
<Nu0>

represents Nusselt number
enhancement concerning the heat transfer effect between with and without rectangular
cylinder case. It is convenient to use Nusselt number enhancement to represent the area
average of Nusselt number enhancement in the following. Figure 11 indicates the change in
the friction factor enhancement and Nusselt number enhancement with different Reynolds
numbers and periodic boundary conditions for various arrangements of rectangular cylin-
ders. The friction factor enhancement f

fo
indicates Case 1 > Case 2 > Case 3 for Re = 100,

175, and 250. It means that the arrangement of Case 1 produces the highest friction factor
enhancement due to the highest pressure drop caused by most fluid contacting surfaces.
The area average of time-mean Nusselt number enhancement <Nu>

<Nu0>
shows Case 2 > Case 3

> Case 1 at Reynolds numbers 175 and 250, and three cases are nearly identical at Re = 100.
A coefficient of thermal performance η defined as ( <Nu>

<Nu0>
/(f/f0)

1/3) comprises friction
factor enhancement and heat transfer enhancement effects to illustrate the combined in-
fluence of installing a rectangular cylinder. Figure 12 displays the variance of thermal
performance coefficient versus the Reynolds number for periodic boundary conditions
under different settings of the rectangular cylinder. Under three Reynolds numbers (100,
175, and 250), the η of Case 2 presents a maximum value, and the η for Case 1 is a minimum.
The results imply that a rectangular cylinder above the leading edge of every two heated
blocks conducts the best performance, with the rectangular cylinder restraining the fluid
flow in Case 2 even more seriously than in Case 3; however, Case 2 performs a much
higher heat transfer enhancement than Case 3. Case 1 displays the highest friction factor
enhancement and the lowest performance in heat transfer enhancement among the three
cases. Therefore, the value order of η follows as Case 2 > Case 3 > Case 1.
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Figure 11. (a) Variation in friction factor enhancement; (b) Variation in Nusselt number enhancement
with Reynolds number for periodic boundary conditions with various arrangements of rectangular
cylinders.
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4. Conclusions

The study presents three installation cases of a rectangular cylinder for heat transfer
enhancement in a heated-block duct under periodic boundary conditions employing the
EBE treatment with a semi-implicit projection FEM through a PCG solver. The three
cases include rectangular cylinder installation in every block (Case 1), every two blocks
(Case 2), and every three blocks (Case 3), to fix a rectangular cylinder for the front corner
of the leading block. In these cases, the study analyzes the Nu over the heated-block
surface, the streamlines, and the temperature field in the duct under different Reynolds
numbers for periodic boundary conditions. The numerical simulation results demonstrate
the flow field and thermal convection enhancement of setting a rectangular cylinder within
a cooling channel with multiple heated blocks. The distributions of temperature contours
for Reynolds numbers are alike; the temperature contours surrounding the corners of each
heated block and both ends of the rectangular cylinder are denser than those in other
points to cause higher time-mean Nusselt numbers due to a large streamline curvature
around the block corner. The difference in thermal performance coefficients in the three
permutations provides the total effect of combining convection heat transfer variation and
pressure-drop effects. In Case 1, installing too many rectangular cylinders increases the
friction factor enhancement due to a higher pressure drop but with enhanced heat transfer
due to modifying the flow field of no rectangular cylinder. However, fixing a cylinder every
three blocks, as in Case 3, reduces the friction factor enhancement but does not improve heat
enhancement like with every two blocks in Case 2. In this study, an appropriate rectangular
cylinder arrangement is Case 2 to attain the best thermal performance because it exhibits
the highest performance in heat transfer enhancement with a slightly higher friction factor
enhancement. The further possible applications of the presented heat transfer enhancement
are the cooling problem of multiple heated components such as light-emitting diode
modules, printed circuit boards, CPU chips, or heat exchangers to decrease temperature
rise effectively and promote use life.
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Nomenclature
A duct cross-section area (m2)
A diffusion matrix in energy equation
CPU central processing unit
Cd drag coefficient (=

(
Ffx + Fpx

)
/
(
0.5ρu2

∞l
)
)

dh hydraulic diameter (m) (=4A/Pw)
EBE element-by-element
FEM finite element method
Ffx friction drag per unit depth in x direction
Fpx pressure drag per unit depth in x direction
f friction factor (4p/(0.5ρu2

∞) · dh/L)
H duct height (m)
H pressure gradient matrix or divergence matrix
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h convective coefficient (W/m2-◦C)
K convection matrix
L duct length (m)
l block width
M mass matrix
n number of calculation
Nu local Nusselt number (=hl/k)
Nu time-mean Nusselt number

(
=
∫

Nudt/
∫

dt )
< Nu > area average of time-mean Nusselt number

(
=
∫

NudA/
∫

dA )
p* pressure (kPa)
p pressure of the node
p dimensionless pressure

(
= p∗/

(
ρu2

∞
)

)
Pr Prandtl number (=ν/α)
Pw wetted perimeter (m)
PCG preconditioned conjugate gradient
Re Reynolds number (=u∞H/ν)
S diffusion matrix in momentum equation
St Strouhal number
t* time (s)
t dimensionless time (t*/(l/u∞))
T temperature (◦C)
T∞ reference temperature (◦C)
u dimensionless horizontal velocity (= u∗/u∞ )
u∞ the cross-section mean velocity (m/s)
u velocity vector at the node
v dimensionless vertical speed (= v∗/u∞ )
x dimensionless horizontal coordinate (= x∗/l )
y dimensionless vertical coordinate (= y∗/l )
∆t dimensionless time step size
Subscripts
w block surface
0 without rectangular cylinder
Superscript
* dimensional variables
Greeks
α thermal diffusivity (m2/s)
η thermal performance
ν kinematic viscosity coefficient (m2/s)
ρ density (kg/m3)
φ dimensionless temperature (= (T− T∞)/(TW − T∞) )
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