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Abstract: This research aims to employ and qualify the bio-inspired algorithms: Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), and Differential Evolution Algorithm (DE) in the
extraction of the parameters of the circuit equivalent to a photovoltaic module in the models of a
diode and five parameters (1D5P) and two diodes and seven parameters (2D7P) in order to simulate
the I-V characteristics curves for any irradiation and temperature scenarios. The peculiarity of this
study stands in the exclusive use of information present in the module’s datasheet to carry out the
full extraction and simulation process without depending on external sources of data or experimental
data. To validate the methods, a comparison was made between the data obtained by the simulations
with data from the module manufacturer in different scenarios of irradiation and temperature. The
algorithm bound to the model with the highest accuracy was DE 1D5P, with a maximum relative
error of 0.4% in conditions close to the reference and 3.61% for scenarios far from the reference. On
the other hand, the algorithm that obtained the worst result in extracting parameters was the GA
in the 2D7P model, which presented a maximum relative error of 9.59% in conditions far from the
reference.

Keywords: photovoltaic module; bio-inspired algorithms; modelling; parameter extraction; simulation

1. Introduction

The great technological development, changes in habits, and needs of the society of
the 21st century propelled a growing global demand for energy. In addition, the scarcity
of fossil fuel stocks and the environmental impacts generated by non-renewable energies
intensify the world’s interest in renewable, sustainable, and clean energy sources [1,2]
coming from biomass [3], bioethanol [4], wind [5], and photovoltaic [6].

Among the renewable energy sources, solar energy stands out, which is captured and
transformed by photovoltaic (PV) panels. The number of installed photovoltaic systems
has shown a significant increase, as shown by [1], which reveals that at the end of 2018,
more than 500 GW of power generated by photovoltaic panels was reached worldwide.
Four years later, in 2022, the mark of 1 TW global solar capacity was achieved [7]. Also,
according to the authors, it is estimated that in the year 2030, this will be 10 TW, and in
2050, 70 TW of power will be generated by photovoltaic panels, thus supplying a large part
of the global energy consumed.

Although in recent years there have been public concessions with reduced fees and
taxes, investment in technological advances, and improvements in efficiency and in the
capacity of energy produced, which have led to a significant reduction in system costs, the
grouping of photovoltaic equipment still presents a costly acquisition, installation, and
engineering cost [8], especially in large installations such as power plants.

In this sense, studies and simulations between the photovoltaic generation system and
its installation area, together with the detection of possible failures in energy generation
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or tracking systems, can increase the precision in dimensioning and consequently avoid
economic losses [9,10].

Note that, for a good simulation, other factors are taken into account, in particular, the
environmental and climatic factors (e.g., temperature and irradiation) as well as the model
of the photovoltaic panels that are responsible for emulating the behavior of the PV in the
values of current and voltage outputs I × V under real operating conditions in order to
evaluate the performance of the system in specific meteorological conditions of a certain
region or even in conditions unfavorable to the generation of energy [11].

Thus, modeling the energy production of a photovoltaic module occurs through
simulations of photovoltaic electrical characteristics, which are modeled by an equivalent
electrical circuit [12]. Several types of equivalent circuit models have been proposed over the
years, among which stand out the single-diode models [10,12,13] and two diodes [14–16].

To extract the parameters of the PV model, mathematical or computational methods
are used to solve non-linear equations [17]. There is a wide variety of optimization tech-
niques that are used in the extraction of parameters, among which is the use of heuristic
algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and
the Differential Evolution Algorithm (DE), among others [16].

According to [11,18], the greater the number of diodes, the more accurate the simu-
lation can be but the greater the number of parameters to be estimated. Thus, with the
increase in the order of the model, there is inevitably an increase in its flexibility, making it
more susceptible to overfitting concerning the scarce reference data. Another issue, much
less critical but not irrelevant, is the increase in computational cost to solve the model’s
regression problem.

Several studies that apply heuristic algorithms for PV simulation add a wide variety of
current-voltage (I × V) data external to the datasheet [10,19–21]. These external data can be
obtained in the following ways: experimentally with field measurements, by pre-existing
simulations of the module, and using external studies carried out previously [13]. The
choice of approach can make the simulation process costly or even unfeasible. In this
context, this work stands out for its ability to employ bio-inspired algorithms without
needing external information added to the module’s datasheet.

Thus, the objective of this work is to simulate and evaluate the performance of PV
modules under different environmental conditions of irradiation and temperature in the
models of one diode and five parameters (1D5P) and two diodes and seven parameters
(2D7P), using bio-inspired algorithms such as PSO, GA, and DE in extracting the param-
eters of the equivalent circuit equations, using only the data provided in the Canadian
manufacturer’s datasheet [22].

The manuscript is organized as follows: Section 2 presents the materials and methods.
It starts with Section 2.1, which describes two electric circuit models that are equivalent
to the photovoltaic module and their respective equations and parameters to be extracted.
In the next section, bio-inspired optimization methods are presented, beginning with the
concepts of the fitness function common to all methods in Section 2.2. Section 2.3 details
how each method is constructed for extracting the parameters in the reference conditions.
With the extracted parameters, Section 2.4 reveals how the parameters are employed
for generating the curves I × V. Section 3 presents, firstly, the values of the parameters
extracted from each combination of a model with a bio-inspired method and advances to
the I × V curves in five different conditions of temperature and irradiation, each figure is
accompanied by a table that contains essential points of the graph. Finally, the last section is
the conclusion, which summarizes the results obtained and the implications of the findings.

2. Materials and Methods
2.1. Equivalent Circuit Models of the Photovoltaic Cells

A photovoltaic module is formed by several photovoltaic cells connected in series.
In turn, the photovoltaic cell is the device capable of performing the photovoltaic effect,
which consists of transforming the energy of solar radiation into electrical energy. The
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most used material for constructing commercial photovoltaic modules are those with
monocrystalline silicon and polycrystalline silicon [23,24]. To realize the modeling process
of a photovoltaic panel, it is necessary to determine the parameters that represent the
physical phenomena verified in the equipment. For this purpose, it is necessary to establish
an electrical model equivalent to a real model. This process is crucial because it allows for
estimating precisely the energy produced by the module as well as the electrical parameters
for any conditions [13].

According to [25], the behavior of a photovoltaic cell can be represented by an equiv-
alent electric circuit that contains an electric current source in parallel with a diode. The
current source is responsible for generating a continuous electric current, and the diode
represents the PN junction of the semiconductor contained within the photovoltaic cells,
which is responsible for generating the saturation currents [26]. Though, an equivalent
circuit with only these two components is not enough to represent the I × V curve of a
real photovoltaic panel [27] since the ohmic losses of the material and the internal cell
dissipation are not considered. Thus, the most common models in the literature to represent
a commercial photovoltaic cell are based on a current source connected to one or two diodes
and resistors to represent ohmic losses and dissipation. Many authors classify the models
by the number of diodes in the equivalent circuit and the number of parameters to be
extracted. Based on this convention, the most used models of photovoltaic cells are one
diode and five parameters [10,13] and two diodes and seven parameters [14,28].

2.1.1. The Single-Diode PV Model

The single-diode model is one of the most widely utilized equivalent electric circuit
models in the literature for representing a photovoltaic cell [11,29]. According to [20], a
photovoltaic cell is composed of a photo-generated current (IL), which is produced by
the flow of light that generates a continuous electric current and by its resistances, being
produced in series by the semiconductor material itself in its metallic contacts and the
resistance in parallel represents an alternative path for the flow of electric current caused
by impurities or defects in the cell. Thus, the model of a single-diode (SDM) can represent
the photovoltaic cell, consisting of an ideal diode connected in series with a current source,
which represents the photo-generated current, and the two resistances that demonstrate
the losses, being the resistance in series (Rs), and shunt resistance (Rsh) [30], as shown
in Figure 1.
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Thus, the result is five unknown parameters to be extracted in this model, namely:
the ideality factor of the diode (A), the reverse saturation current of the diode (I0), the
photo-generated current (IL), the series resistance (Rs), and the resistance in parallel (Rsh).

The five parameters to be obtained are present in the SDM characteristic equation,
obtained from Kirchhoff’s law, and express the electric current as follows.

I = IL − Id −
V + Rs I

Rsh
= IL − I0

[
exp
(

q(V + IRs)
AkTc

)
− 1
]
− V + Rs I

Rsh
(1)
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where I is the cell output current (A); Id is the current flowing through the diode (A); I0 is
the inverse saturation current of the diode (A); q is the elementary charge of the electron
(1.602 × 10−19 coulombs); k is the Boltzmann constant (1.31 × 10−23 J K−1); Tc is the cell
temperature (K); A is the diode ideality factor, and V is the cell output voltage (V).

Because PV consists of several photovoltaic cells connected in series (NCS), Equation (1)
became:

I = IL − I0

[
exp
(

q(V + IRs)
NCS AkTc

)
− 1
]
− V + Rs I

Rsh
(2)

Thus, Equation (2) is used to extract the five parameters of the 1D5P model. Although
this model describes the photovoltaic cell very well, it disregards the effect of loss of
recombination current in the depletion area [30]. Furthermore, according to [31] and
the authors [29], the single-diode model presents inaccuracy in the modeling under low
illumination conditions.

Therefore, to correct such inaccuracies, one more diode was included in the modeling,
thus constituting the double-diode model (DDM), also called 2D7P, as discussed in the next
section.

2.1.2. The Double-Diode PV Model

From the double-diode model, it is possible to simulate the recombination effect of the
special load, adding a separate current component with its exponential voltage dependence.
Thus, in some cases, the literature demonstrates that this model presents greater simulation
accuracy than the single-diode model [15,18,29]. Figure 2 shows the equivalent electrical
circuit of the double-diode model.
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Note that when adding another diode in the equivalent electrical circuit, there is an
increase in the number of parameters to be found. Thus, in addition to the five parameters
of the single-diode model, this model requires the extraction of two additional parameters,
namely: the diode ideality factor of the second diode (A2) and the inverse saturation current
of the second added diode (I02), calling the model 2D7P.

Thus, the equation representing the circuit will be:

I = IL − I01

[
exp
(

q(V + IRs)
A1kTc

)
− 1
]
− I02

[
exp
(

q(V + IRs)
A2kTc

)
− 1
]
− V + Rs I

Rsh
(3)

Analogously to what was completed in the Equation for the SDM, due to the numerous
cells connected in series, Equation (3) becomes:

I = IL − I01

[
exp
(

q(V + IRs)
A1NCSkTc

)
− 1
]
− I02

[
exp
(

q(V + IRs)
A2NCSkTc

)
− 1
]
− V + Rs I

Rsh
(4)
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From Equations (2) and (4), bio-inspired optimization algorithms are applied to obtain
the parameters.

2.2. Initial Concepts for Extracting Parameters

Regardless of the bio-inspired algorithm to be applied, some concepts are common
between the methods. For example, candidate to be the solution to the problem is called an
individual, in this case, the parameters to be extracted. Thus, it is called a population, a set
of individuals.

The first step for extracting parameters by bio-inspired algorithms is randomly gener-
ating an initial population of Np individuals. However, some restrictions are applied. These
primarily determine the intervals in which the parameter values are physically possible.
If there is enough information, further restrict these ranges to values most likely to occur.
Table 1 shows the ranges of values for each parameter for both models [13].

Table 1. Parameter ranges for the initial population of a 1D5P and 2D7P for Particle Swarm Opti-
mization, a Genetic Algorithm, and a Differential Evolution Algorithm.

Parameters Minimum Maximum

IL 0.90× Iiscre f 1.10× Iiscre f
I0 or I01 and I02 10−8 A 10−5 A
A or A1 and A2 1 2

Rs 0 Ω 10 Ω
Rsh 1000 Ω 5000 Ω

In this work, the standard test conditions (STC) will be used as a reference, given that
it is possible to find all the values of the main points of the I ×V curve for this condition in
the datasheet of a module. The terms that appear with “re f ” are those obtained from the
manufacturer’s data sheet under standard conditions.

Another important and common operation in all algorithms of this work is the criteria
for evaluating individuals. This criterion, called the fitness function (ff ), aims to check
whether the parameters fit the model. This function starts from the equation of the equiva-
lent circuit. In this sense, Equation (2) is used for the case of 1D5P, and for the 2D7P model,
it is established by Equation (4). In order to build the fitness function, it is necessary to
set the model equation equal to zero and to apply it to each of the points found in the
module’s datasheet under the reference conditions, namely, the open circuit voltage (V0Cre f ,
0), maximum power point (VMPre f , IMPre f ) and short-circuit current (0, ISCre f ). Substituting
the obtained data and the physical constants, the system will present three equations, where
the unknowns will be only the parameters the algorithm needs to extract.

To keep the values always positive, the Root Mean Square Error (RMSE) criterion
is used. As the name implies, this criterion consists of adding the square of each side
of the equations that are not zero, and the result of the sum is divided by the number
of equations, after which the square root is taken in the result obtained, as shown in
Equation (5). Consequently, Equations (6) and (7) mathematically show the fitness function
for the cases of 1D5P and 2D7P, respectively.

RMSE(x) =

√√√√ 1
N

N

∑
k=1

f f (V, I, x)2 (5)

where N is the number of experimental points used; f f is the fitness function referring to
the model to be employed.

f f (V, I, x) = IL − I0

[
exp
(

q(V + IRs)

Ncs AkTc

)
− 1
]
− V + Rs I

Rsh
− I (6)

where x = {IL, I0, A, RS,Rsh} for the 1D5P model.
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f f (V, I, x) = IL − I01

[
exp
(

q(V + IRs)

Ncs A1kTc

)
− 1
]
− I02

[
exp
(

q(V + IRs)

Ncs A2kTc

)
− 1
]
− V + RsI

Rsh
− I (7)

where x = {IL, I01, I02, A1, A2, RS,Rsh} for the 2D7P model.
Once the initial population intervals and the evaluation criteria are established, each

algorithm extracts the parameters according to Section 2.3.

2.3. Bio-Inspired Algorithms
2.3.1. Particle Swarm Optimization (PSO)

Proposed by James Kennedy and Russell C. Eberhart in 1995, the optimization al-
gorithm starts from the idea of reproducing on a computer how societies process knowl-
edge [32].

In this algorithm, the individual is called a particle. Thus, each particle has D in-
formation. Such information represents the parameters to be found. It is xi, a position
vector belonging to RD that represents the position of the particle, and vi, a velocity vector
belonging to RD that characterizes the vector velocity and indicates the direction of the
particle’s movement. The next position of the particle is given by Equation (8).

xi (t + 1) = xi (t) + vi (t + 1) (8)

where xi(t) is the current position of the particle and vi(t + 1) is described by Equation (9):

vi(t + 1) = 0.729·[vi(t) + ψ1·(pi(t)− xi(t)) + ψ2·(pg(t)− xi(t))] (9)

Therefore, vi(t) is the velocity in the previous iteration; pi(t) is the best position visited
by the particle so far; pg(t) is the best position found by any member of its neighborhood
in the current iteration; and ψ1 and ψ2 are positive random vectors whose elements
are generated from a uniform distribution with predefined upper bounds as follows:
ψ1 ∼ U(0, L1) e ψ2 ∼ U(0, L2), where L1 = L2 = 1.49445 [19]. Because Equation (11) is
multiplied by the factor 0.729, this algorithm is a variant of the traditional PSO, which is
called Particle Swarm Optimization with constriction factor [33].

For extracting the parameters, the first step is the generation of the initial population,
which is carried out in a pseudo-random manner, with Np = 50 and intervals provided by
Table 1, as discussed in Section 2.2. Subsequently, each particle is evaluated by ff, and the
algorithm advances according to the flowchart shown in Figure 3. Afterward, finding the
values of pi and pg and updating the values of xi and vi, described in Equations (8) and (9),
respectively. This recursion is performed until the stopping criterion is activated. In this
research, this was a total of 1000 generations (Ng). The Np and Ng values are justified in the
parameter fine-tuning revealed in Section 3.1.

Finally, the individual of the last generation with the lowest fitness value is determined.
The individual’s information will be the parameters that the algorithm needs to find.

2.3.2. Genetic Algorithm (GA)

John Holland developed the Genetic Algorithm in 1975, proposing an optimization al-
gorithm that uses Charles Darwin’s evolutionary theory as a metaphor for natural selection
and reproduction processes to reproduce such ideas in the computer [34].

In this case, the candidate to solve the problems is called a chromosome or indi-
vidual. Each chromosome has M information, representing the parameters to be found.
Analogously to the PSO, the first step is the generation of the initial population, which is
conducted pseudo-randomly, with Np = 50 and intervals provided by Table 1. Subsequently,
each particle is evaluated by ff, and the algorithm advances according to the flowchart in
Figure 4, with the operators: Selection GA, Crossover GA, and Mutation GA, described in
the corresponding Sections below. This recursion is performed until Ng = 3000. The Np
and Ng values are justified in the parameter fine-tuning revealed in Section 3.1.
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Finally, the individual of the last generation with the lowest fitness value is determined.
The individual’s information will be the parameters that the algorithm needs to find.

Selection Operator for GA

According to [35,36], the tournament method is one of the main methods used for the
selection operator. In short, this operator is implemented as follows: Nt individuals are
extracted from the temporary population, forming the set Pt, which will be the individuals
that will compete in the tournament. The tournament winner will be the individual from
the Pt set with the lowest fitness value. Thus, this individual is inserted into the population
for the next iteration. This procedure is repeated Np times to complete the population.
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Crossover Operator for GA

Crossover is the operator based on the sexual reproduction of living beings, and its
purpose is to create children by mixing the genetic characteristics of the parents selected
in the previous operator. For this, Pc is defined as the crossover probability parameter,
which defines the probability of an individual being selected for this purpose. Thus, in
each iteration, N f individuals from the population are chosen. Within this set, pairs are
formed to generate descendants with the recombined chromosomes [37].

The arithmetic crossover method is used to carry out the combination of chromo-
somes [38]. According to the authors, the descendants are formed from linear combinations
of the original individuals. Therefore, if xg = [x1 . . . xm]

M and yg = [y1 . . . ym]
M are

two individuals selected for reproduction, the components of the new individuals will be
obtained according to Equations (10) and (11), respectively.

xgi = αgxgi +
(
1− αg

)
× ygi (10)

ygi =
(
1− αg

)
× xgi + αgygi (11)

where αg is a random real number between 0 and 1, αg ∼ U(0, 1). Once the descendants
are generated, they are added to the original population, forming a temporary population
subjected to the mutation process.

Mutation Operator for GA

This genetic operator aims to add genetic characteristics to the individuals of the
population. This process is controlled by a fixed parameter PM, called mutation probability,
recommended as 1% [39]. According to [40], a widespread way to use the operator is as
follows: if it is a real vector r = [r1r2 . . . rM], a prevalent way to generate a descendant
r′ = [r1

′ . . . rM
′] per mutation is given by Equation (12).

r′j = rj + mj (12)

where j denotes the jth component of r that was selected for mutation, and mj is a random
variable. Using a normal (Gaussian) distribution, with zero mean and variance σm, has
been one of the main ways to introduce mutation in real coding individuals.

2.3.3. Differential Evolution Algorithm (DE)

The optimization method called differential evolution was proposed by J. Storn and
K. Price in 1995 with the idea of creating a metaheuristic population dedicated to the opti-
mization of functions in continuous spaces, that is, for parameters with values belonging
to the group of real numbers [41,42]. The steps of this algorithm are similar to the Genetic
Algorithm. However, the peculiarity of this technique lies in the use of information present
in the population itself to introduce disturbances in individuals [40].

In this algorithm, the individual is also called the target vector and has D information,
the parameters to be extracted. Analogously to the other algorithms, the first step is the
generation of the initial population, which is conducted pseudo-randomly, with Np = 50
and intervals provided by Table 1. Subsequently, each particle is evaluated by f f , and the
algorithm advances according to the flowchart in Figure 5, with the operators’ Mutation
DE, Crossover DE, and Selection DE described in the corresponding Sections below. This
recursion is performed until Ng = 3000. The Np and Ng values are justified in the parameter
fine-tuning revealed in Section 3.1.
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Finally, the individual of the last generation with the lowest fitness value is determined.
The individual’s information will be the parameters that the algorithm needs to find.

Mutation Operator for DE

For each target vector φi,G, com i = 1, . . . , NP, a new vector is generated through
Equation (13) [40].

vi,G+1 = φrr1,G + 0, 5
(
φrr3,G −φrr2,G

)
(13)

where rr1, rr2, rr3 ∈ {1, 2, ..., NP} are mutually distinct items and also different from
index i.

At the end of the mutation process, the matrix of mutated individuals is obtained, in
which each individual is given by vi,G+1 with i = 1, . . . , NP.

Crossover Operator for DE

Let φi,G be the target vector under analysis and vi,G+1 the respective mutated vector,
obtained by Equation (13). The vector ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uMMi,G+1) is called a
trial vector and is obtained as follows.

uji,G+1

{
uji,G+1, i f rj ≤ CR or j = Ii

φji,G, i f rj > CR and j 6= Ii

where j = 1, . . . , M, rj ∼ (0, 1), CR ∈ [0, 1] is a constant that defines the rate of crossover
and Ii is a randomly chosen index ∈ {1, . . . , M} [40].

Selection Operator for DE

φi,G is the target vector under analysis and ui,G+1 is its respective trial vector. The
selection operator of the differential evolution is conducted as follows:

If ui,G+1 has a fitness value greater than the fitness value of φi,G, then φi,G+1 = ui,G+1;
Else, φi,G+1 = φi,G.
At the end of the selection process, the new population is acquired, formed by the

target vectors φi,G+1, com i = 1, . . . , Np.
Finally, integrating the selection, crossover, and mutation operators the way it was

previously described in the Figure 5 flowchart, we have the standard version of the Differ-
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ential Evolution Algorithm known by the notation DE/rand/1/bin (for details of other
variants, see [43,44].

2.4. Plot of I vs. V Curve

With parameters found in the reference conditions, the IL values can be updated for
any temperature and irradiation values by Equation (14) [45].

IL =

(
G

Gre f

)(
IL,re f+µISC

(
Tc − Tc,re f

))
(14)

where G is the solar irradiance (W/m2) and µISC is the short-circuit current temperature
coefficient.

The values of the reverse saturation current of the diode ( I0, I1 and I2), can also be
updated to the desired values through Equation (15) [45].

I0 = I0,re f

(
TC

TC,re f

)3

exp

[( qeg

kA

)( 1
Tc,re f

− 1
Tc

)]
(15)

Where eg is the diode diffusion factor (V), µISC is the short-circuit current temperature
coefficient, and µISC is the short-circuit current temperature coefficient.

The value of the parameter Rsh varies proportionally with the irradiance value, ac-
cording to Equation (16) [46]. In contrast, in this method, the A, A1, A2, and Rs values
remain constant.

Rsh = Rshre f

(Gre f

G

)
(16)

In this way, it is possible to obtain the I × V curve of the module, through Equation (2),
for the 1D5P case or through Equation (4), for the 2D7P model, thus determining the
currents, voltages, and output powers of the photovoltaic module for the conditions desired.

The implementation of the algorithms to obtain the parameters and the plot of the
curves were carried out using the MATLAB™ software [47].

3. Results and Discussions

As seen in Section 2 of this research, bio-inspired algorithms extract the necessary
parameters from the models in the reference conditions. Thus, Table 2 shows the values of
the parameters found by the Particle Swarm Optimization, Genetic Algorithm, and Differ-
ential Evolution Algorithm algorithms for the 1D5P and 2D7P models of the CANADIAN
CS-3W-450-MS solar module [22].

Table 2. Parameters extracted by each method from the CANADIAN CS-3W-450-MS module.

I01 Rs A1 Rsh IL I02 A2

PSO 1D5P 1.83 × 10−7 3.151 × 10−3 1.555148 3581 11.605 -- --
PSO 2D7P 1.00 × 10−8 2.77 × 10−9 1.993292 4146.44 11.605 4.998 × 10−7 1.64692
GA 1D5P 7.62 × 10−7 4.123 × 10−3 1.688376 4999.98 11.702 -- --
GA 2D7P 1.00 × 10−6 2.607 × 10−2 1.7909 4999.99 11.820 1.00.10−6 1.7925
DE 1D5P 2.83 × 10−8 7.085 × 10−2 1.408829 3045.88 11.60537 -- --
DE 2D7P 3.387 × 10−7 5.22 × 10−3 1.785252 4059.22 11.6051 7.32 × 10−8 1.49564

With the extracted parameters, it is possible to modify them for any values of tempera-
ture and irradiation with the auxiliary equations presented in Section 2.4 of this research.
Thus, it is possible to simulate the I–V curves for the desired situations.

In order to verify the effectiveness of the algorithms, simulations were carried out
in five different situations: The first situation is performed under STC conditions, the
second occurs with G = 700 W/m2 and Tc = 40 ◦C, the third with G = 400 W/m2 and



Inventions 2023, 8, 107 11 of 24

Tc = 60 ◦C, the fourth with G = 1050 W/m2 and Tc = 20 ◦C, and finally, the Nominal
Operating Cell Temperature (NOMT) with G = 800 W/m2 and Tc ∼= 44 ◦C. According
to [13], the first three cases represent very different operating conditions and cover a
relevant range of these variables, as it changes from a pessimistic case, with low irradiation
and high-temperature values, to average irradiation and temperature values in the cell,
which are most commonly encountered in practice and arrive in the STC situation. In
addition to these three simulations, a last but one was performed with irradiation values
higher than the STCs. In comparison, the temperature values in the cell are lower than
those of the standard test conditions. According to [24], this scenario would have higher
electrical currents and power than the STCs, which makes this circumstance important
to be analyzed. Although these conditions are difficult to locate around the globe, it is
possible to find them in some regions of Brazil [48,49]. And finally, the last one is the case
with the NOMT conditions, which are common conditions to find [50] and whose function
is to validate the effectiveness of the employed schemes in usual situations.

Figure 6a shows the superposition of the curves generated by the bio-inspired algo-
rithms PSO, GA, and DE using the 1D5P model, while Figure 6b reveals the curves using
the 2D7P model, under reference conditions (STC). Both curves present the data provided
by CANADIAN SOLAR for comparison purposes. Table 3 indicates the points of (V0Cre f , 0),
(VMPre f , IMPre f ), (0, ISCre f ) and the average relative error (e%) of the data obtained by the
parameters in relation to those provided by the manufacturer. The relative percentage error
(e%) is calculated by Equation (17), while the maximum power point PMP is found by the
product of the current IMP by the voltage VMP.

e% =

∣∣∣∣valuedata − valuesimulated
valuedata

∣∣∣∣×100% (17)
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under conditions G = 1000 W/m2 and Tc = 25 ◦C.

Table 3. Points of interest for the different methods under STC conditions G = 1000 W/m2 and
Tc = 25 ◦C.

Method PMP IMP VMP ISC VOC

Data provided
450.456 W 10.960 A 41.100 V 11.600 A 49.100 Vby Manufacture

PSO 1D5P 450.632 W 10.926 A 41.244 V 11.600 A 49.038 V
e% <0.10% 0.31% 0.35% <0.10% 0.13%

GA 1D5P 449.904 W 10.920 A 41.200 V 11.600 A 49.038 V
e% 0.12% 0.36% <0.10% <0.10% 0.13%

DE 1D5P 450.341 W 10.920 A 41.240 V 11.600 A 49.040 V
e% <0.10% 0.36% 0.34% <0.10% 0.12%

PSO 2D7P 445.804 W 10.810 A 41.240 V 11.605 A 49.030 V
e% 1.03% 1.37% 0.34% <0.10% 0.14%

GA 2D7P 443.544 W 11.017 A 40.260 V 11.820 A 49.037 V
e% 1.53% 0.52% 2.00% 1.89% 0.13%

DE 2D7P 450.341 W 10.920 A 41.240 V 11.605 A 49.390 V
e% <0.10% 0.36% 0.34% <0.10% 0.59%

Through Table 3, it is possible to verify that the simulations using the 1D5P model
had significantly better results than those carried out in the 2D7P model. The methods
applied to the 1D5P model had an average relative error of a maximum of 0.6%, whereas
those applied to the 2D7P model had errors of up to 2%. It is evident that the order of the
model affects the estimates of the model parameters. This can be explained by the fact
that the algorithms need to find seven variables in the 2D7P model compared to five in
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the 1D5P model. At the same time, the fitness function only has three points to evaluate
due to the restriction of information on the operating curve of the modules declared by
the manufacturer. Studies conducted by [19,20] point out that there is a tendency for
bio-inspired algorithms to have greater simulation accuracy the greater the number of
points in the evaluation criterion. Thus, the fact that the algorithms need to adjust two
more variables in the 2D7P model may explain the lower performance.

Analyzing in a general way, the results were positive for the STC conditions. Since
the worst case was at the maximum power voltage point by the GA 2D7P scheme showing
e% = 2%. It is worth mentioning that the combinations with the best performance were the
PSO 1D5P and DE 1D5P, which presented errors below 0.4% for the cases of PMP, ISC, and
VOC, in the STC conditions.

Similar to the previous case, Figures 7–9 show the superimposition of the curves gen-
erated by the bio-inspired algorithms and the data provided by CANADIAN SOLAR [22],
under the specified conditions. Tables 4–6 show the points of interest (V0C, 0), (VMP, IMP),
and (0, ISC) as well as the respective relative errors of each method. It is important to
emphasize that the data provided by CANADIAN SOLAR, except for the standard test
conditions, are generated from simulations made in the PVSYST SOFTWARE [51].
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under conditions G = 700 W/m2 and Tc = 40 ◦C.

Table 4. Points of interest for the different methods under conditions G = 700 W/m2 and Tc = 40 ◦C.

Method PMP IMP VMP ISC VOC

Data provided
298.996 W 7.726 A 38.700 V 8.180 A 46.210 Vby Manufacture

PSO 1D5P 291.492 W 7.532 A 38.700 V 8.184 A 46.050 V
e% 2.51% 2.51% <0.10% <0.10% 0.34%

GA 1D5P 287.984 W 7.696 A 37.420 V 8.253 A 45.900 V
e% 3.68% 0.39% 3.30% 0.88% 0.67%

DE 1D5P 294.120 W 7.600 A 38.700 V 8.180 A 46.180 V
e% 1.63% 1.63% <0.10% <0.10% <0.10%

PSO 2D7P 286.637 W 7.660 A 37.420 V 8.174 A 45.900 V
e% 4.13% 0.85% 3.31% <0.10% 0.67%

GA 2D7P 284.968 W 7.616 A 37.417 V 8.325 A 42.800 V
e% 4.69% 1.42% 3.31% 1.76% 7.37%

DE 2D7P 291.084 W 7.520 A 38.708 V 8.174 A 46.050 V
e% 2.65% 2.67% <0.10% <0.10% 0.34%
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Table 5. Points of interest for the different methods under conditions G = 400 W/m2 and Tc = 60 ◦C.

Method PMP IMP VMP ISC VOC

Data provided
155.893 W 4.420 A 35.270 V 4.720 A 42.100 Vby Manufacture

PSO 1D5P 147.187 W 4.310 A 34.150 V 4.7230 A 41.650 V
e% 5.58% 2.50% 3.17% <0.1% 1.06%

GA 1D5P 143.575 W 4.360 A 32.930 V 4.762 A 41.260 V
e% 7.90% 1.36% 6.63% 0.90% 2.00%

DE 1D5P 150.260 W 4.400 A 34.150 V 4.720 A 41.920 V
e% 3.61% 0.45% 3.17% <0.10% 0.43%

PSO 2D7P 142.960 W 4.340 A 32.940 V 4.710 A 41.300 V
e% 8.30% 1.81% 6.61% 0.21% 1.90%

GA 2D7P 140.940 W 4.280 A 32.930 V 4.800 A 41.000 V
e% 9.59% 3.17% 6.63% 1.69% 2.61%

DE 2D7P 146.716 W 4.300 A 34.120 V 4.710 A 41.600 V
e% 5.88% 2.71% 3.26% 0.21% 1.18%
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Table 6. Points of interest for the different methods under conditions G = 1050 W/m2 and Tc = 20 ◦C.

Method PMP IMP VMP ISC VOC

Data provided
480.849 W 11.570 A 41.560 V 12.150 A 49.910 Vby Manufacture

PSO 1D5P 482.141 W 11.294 A 42.690 V 12.150 A 49.830 V
e% 0.27% 2.40% 2.71% <0.10% 0.16%

GA 1D5P 479.017 W 11.525 A 41.564 V 12.250 A 49.850 V
e% 0.38% 0.39% <0.10% 0.82% 0.12%

DE 1D5P 480.817 W 11.568 A 41.564 V 12.150 A 49.810 V
e% <0.10% <0.10% <0.10% <0.10% 0.20%

PSO 2D7P 477.471 W 11.488 A 41.564 V 12.160 A 49.835 V
e% 0.70% 0.71% <0.10% <0,10% 0.15%

GA 2D7P 475.908 W 11.450 A 41.564 V 12.380 A 49.830 V
e% 1.03% 1.04% <0.10% 1.89% 0.16%

DE 2D7P 481.885 W 11.288 A 42.690 V 12.160 A 49.870 V
e% 0.22% 2.44% 2.72% <0.10% <0.10%

Observing Figures 7–9, as well as their respective tables, it can be seen that the model
linked to the most successful method was DE 1D5P. It showed relative errors of less than
0.2% for the case of G = 1050 W/m2 and Tc = 20 ◦C, less than 1.63% for the case of
G = 700 W/m2 and Tc = 40 ◦C, and less than 3.61% in the case of low irradiation. The
algorithms that used the 1D5P model also showed good results, emphasizing the PSO 1D5P
scheme, which presented a maximum relative error of approximately 5% for the worst case,
which was the one with the lowest irradiation.
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Another important piece of information is that the more the conditions deviated from
the STC conditions, the greater the error. This happens because the reference parameters
are collected through the datasheet under STC conditions. However, even choosing a very
pessimistic condition, G = 400 W/m2 and Tc = 60 ◦C, which is practically one of the worst
possible conditions to be found in practice, the schemes DE 1D5P, PSO 1D5P, GA 1D5P, and
DE 2D7P showed errors less than 8%. The study by [26], which tested several modeling
processes and the extraction of photovoltaic module parameters, intended to verify the
effectiveness and precision of each of the methods and resulted in Chenni’s method [45],
was the most accurate, and [13], who compared Chenni’s method with PSO 1D5P, revealed
that this error range is acceptable for simulating photovoltaic modules.

In this work, the 2D7P and GA 2D7P combinations presented errors greater than 8%.
Thus, their use is less recommended than the other schemes presented.

To complete all cited cases, Figure 10a shows the superposition of the curves gen-
erated by the bio-inspired algorithms PSO, GA, and DE using the 1D5P model, while
Figure 10b reveals the curves using the 2D7P model under NOMT conditions. Table 7
show the points of interest (V0C, 0), (VMP, IMP), and (0, ISC) as well as the respective
relative errors of this case. It is important to highlight that the NOMT conditions are
G = 800 W/m2, Tambience = 20 ◦C, and wind speed (Ws) equals 1.5 m/s. According to [52]
the cell temperature of a photovoltaic module can be described by Equation (18).

Tc = 0.943× Tambience + 0.028× G− 1.528×Ws + 4.3 (18)
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Table 7. Points of interest for the different methods under NOMT conditions G = 800 W/m2 and
Tc ∼= 44 ◦C.

Method PMP IMP VMP ISC VOC

Data provided
336.00 W 8.760 A 38.300 V 9.360 A 46.200 Vby Manufacture

PSO 1D5P 331.980 W 8.716 A 38.088 V 9.372 A 45.780 V
e% 1.20% 0.50% 0.55% 0.13% 0.91%

GA 1D5P 325.058 W 8.718 A 37.630 V 9.450 A 45.680 V
e% 3.26% 0.48% 1.75% 0.96% 1.13%

DE 1D5P 333.850 W 8.765 A 38.089 V 9.372 A 45.880 V
e% 0.64% <0.10% 0.55% 0.13% 0.69%

PSO 2D7P 326.854 W 8.686 A 37.630 V 9.358 A 45.770 V
e% 2.72% 0.84% 1.75% <0.10% 0.93%

GA 2D7P 324.131 W 8.720 A 37.171 V 9.530 A 45.665 V
e% 3.53% 0.46% 2.95% 1.82% 1.16%

DE 2D7P 331.222 W 8.696 A 38.089 V 9.358 A 45.860 V
e% 1.42% 0.73% 0.55% <0.10% 0.74%

Analyzing Figure 10 and Table 7, it can be seen that all combinations are viable for
this case since the highest relative error was 3.53%. Analogous to all previous cases, the
most successful schemes were PSO 1D5P, which presented a maximum relative error of
1.2%, and DE 1D5P, which presented errors of less than 0.7%. This last result proves that
the methods used in this research are efficient for extracting the parameters and simulating
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the photovoltaic modules. Then, in a situation usually found, all the schemes had a relative
error of less than 4%. In addition, the DE 1D5P method reached a higher level than the
others and had an accuracy greater than 99% for this case.

3.1. Sensitivity Analysis of the Fitness Function

According to Section 2, the more the fitness function value approaches zero, the more
the parameters are adjusted to the model. Thus, the requirements for choosing Np and
Ng were that, as a priority, the calculated value of the function ( f f ) should be at most
10−2. However, if there is no aptitude convergence in up to 2 s, the chosen parameters are
those that originated the smallest value of f f up to 2 s. Table 8 reveals the fitness values for
different Np and Ng values and summarizes the search for more adequate values for each
simulation scheme carried out in the research (parameter fine-tuning). The computer used
for testing has an AMD Ryzen 5 3600X 6-Core Processor 3.80 GHz and 16 GB of RAM. It is
noteworthy that the absolute time is not relevant to the study. It only serves as a benchmark
to superficially compare the cost of the three employed methods.

Table 8. Sensitivity of fitness function.

Np Ng ff Time (s)

PSO 1D5P

30 300 0.3 0.04
50 300 0.00401 0.058
30 1000 0.00438 0.07
50 1000 5.75 × 10−6 0.121

PSO 2D7P

10 100 0.18 0.098
50 100 0.04 0.048
30 1000 0.36 0.24
50 1000 0.00426 0.28

GA 1D5P

10 100 2.83 0.06
50 100 0.51 0.0965
10 2000 0.82778 0.24
50 3000 0.06 1.8

GA 2D7P

10 100 1.76 0.068
50 100 0.33 0.012
10 1000 0.36 0.2
50 3000 0.09 2

DE 1D5P

10 100 2.26 0.01
50 100 0.06 0.07
10 300 0.56 0.06
50 300 0.001 0.12

DE 2D7P

10 100 0.389 0.06
50 100 0.0022 0.008
10 300 0.36 0.074
50 300 6 × 10−6 0.14

Analyzing the performances of each method, as well as the algorithm’s time to find
the parameters, it is observed that the DE 1D5P scheme obtained the best results in this
work because it was the one that presented the highest accuracy in the points of interest in
the most distant conditions from the STC, in addition to having presented precise results in
this reference condition, with errors of less than 0.2%. In addition, it was the method with
the shortest processing time to obtain the parameters.

Analogously to the study for the module made up of monocrystalline cells in Section 3
of this work, research was carried out for the module CANADIAN CS-3W-440-P [53] made
up of polycrystalline cells. The results obtained were remarkably similar for both cases.
This detailed study is available in the Supplementary Materials.
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4. Conclusions

This work applied the bio-inspired algorithms PSO, GA, and DE in the extraction of the
parameters of the circuit equivalent to a photovoltaic module in the 1D5P and 2D7P models
to simulate the I-V characteristic curves for any irradiation and temperature scenarios,
only using the information contained in the module datasheet. In addition, a comparison
was made between the results obtained from each method with data provided by the
CANADIAN module manufacturer in different irradiation and temperature scenarios.

In general, the bio-inspired algorithm that presented the highest accuracy was the
DE, with maximum relative errors of 0.4% in conditions close to the reference, 3.61% for
scenarios very distant from the reference, and 1.61% for intermediate situations, when using
the model 1D5P; furthermore, it was the one that achieved the shortest time to estimate
the parameters. The PSO algorithm achieved better results than the GA algorithm, mainly
in cases where the temperature and irradiation conditions were quite different from the
STC, in which the worst case had an error of approximately 5%. In comparison, the GA
algorithm inaccurately measured 7.9% when using the 1D5P model. Therefore, the PSO
achieves second place among the algorithms presented in this study.

One of the most relevant contributions of this research is the conclusion that using the
1D5P model leads to better results than those obtained using the 2D7P model. This occurs
due to the fitness function’s construction process, which uses only three points of the I × V
curve in the reference conditions. This scarcity of data, linked to the fact that the two-diode
model needs to find two more parameters than the single-diode model and, therefore, is
also more flexible, are the main reasons the single-diode model stands out. However, it is
worth noting that by conducting the fitness function as presented in Section 2, it is possible
to extract the model parameters and, posteriorly, simulate the I × V curves for the desired
temperature and irradiation conditions for any commercial photovoltaic module, using
only its respective datasheet, without needing external studies or measurements.

Finally, it is concluded that the PSO 1D5P and, mainly, DE 1D5P schemes presented
favorable results for extracting parameters and, consequently, performing the simulation
of photovoltaic modules with excellent accuracy through the precise generation of I × V
curves. Furthermore, these schemes demonstrate remarkable viability and robustness, as
they achieve excellent accuracy while requiring minimal processing time and no external
data beyond the technical datasheet of the photovoltaic module.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/inventions8050107/s1. Table S1. Parameters extracted by each method
from the CANADIAN CS-3W-440-P module. Table S2. Points of interest for the different methods
under conditions G = 1000 W/m2; and Tc = 25 ◦C. Table S3. Points of interest for the different methods
under conditions G = 700 W/m2; and Tc = 40 ◦C. Table S4. Points of interest for the different methods
under conditions G = 400 W/m2; and Tc = 60 ◦C. Figure S1. Superposition of I × V curves generated
by PSO, GA and DE for (a) 1D5P and (b) 2D7P under conditions G = 1000 W/m2; and Tc = 25 ◦C.
Figure S2. Superposition of I × V curves generated by PSO, GA and DE for (a) 1D5P and (b) 2D7P
under conditions G = 700 W/m2; and Tc = 40 ◦C. Figure S3. Superposition of I × V curves generated
by PSO, GA and DE for (a) 1D5P and (b) 2D7P under conditions G = 700 W/m2; and Tc = 40 ◦C.
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