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Abstract: During the past few years, there has been a notable surge of interest in the field of smart
structures. An intelligent structure is one that automatically responds to mechanical disturbances by
minimizing oscillations after intelligently detecting them. In this study, a smart design that contains
integrated actuators and sensors that can dampen oscillations is shown. A finite element analysis
is used in conjunction with the application of dynamic loads such as wind force. The dynamic-
loading-induced vibration of the intelligent piezoelectric structure is aimed to be mitigated using a
µ-controller. The controller’s robustness against uncertainties in the parameters to address vibration-
related concerns is showcased. This article offers a thorough depiction of the benefits stemming
from µ-analysis and active vibration control in the behavior of intelligent structures. The gradual
surmounting of these challenges is attributed to the increasing affordability and enhanced capability
of electronic components used for control implementation. The advancement of µ-analysis and robust
control for vibration reduction in intelligent structures is amply demonstrated in this study.

Keywords: smart structures; reduced vibration; µ-analysis; robust control; controller; µ-synthesis

1. Introduction

Since structures must now be lighter, more flexible, and stronger because of changes
in structural design, light structures have increasingly been employed in a variety of
engineering applications in recent years [1–4]. In many situations where it is preferable to
avoid adding extra stiffeners or dampers to a structure, the employment of active control
vibration suppression methods for extremely lightweight constructions is a significant aim.
Additionally, active approaches are better suited when the parameters of the regulated
system or the disturbance to be canceled change over time [5–7]. Any structure that
sags under a load can be considered to be a distributed parameter system and flexible
structure. Active controllable smart electro/magneto materials open up novel avenues for
the design of exceptionally accurate and efficient devices, structures, structural electronics,
and mechatronic systems [8–10]. As is obvious, the contribution of control is very important
in structural engineering. Many researchers have dealt with the application of smart
materials in the sciences. There is a lot of research about such types of applications. Some
famous and recent publications are below [11–13].

In this work, innovations are presented for the damping of structural oscillations and
the introduction of uncertainty into simulation models through the mass and stiffness
matrices. The suppression of oscillations is achieved even for very large changes in the
initial matrices of the model, which is a great innovation in engineering. By amalgamating
smart materials, sensors/actuators, control electronics, computers, and artificial intelli-
gence, traditional mechatronic devices or systems undergo significant enhancement, giving
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rise to an entirely new era of fully integrated smart structures. Owing to their lightweight
nature and capacity to connect strain with electric fields, piezoelectric sensors, and actua-
tors find extensive applications across various practical domains, notably including smart
constructions. Piezoelectric sensors and actuators may be easily attached to vibrating struc-
tures to regulate structural vibrations [12–14]. In our paper, we use piezoelectric sensors
and actuators in engineering structures. The nominal system, or the beam with known
elastic, piezoelectric, and viscous characteristics, is first analyzed to better understand the
optimum control issue [14,15]. Control systems are often applied to structures to optimize
their response [16–18].

The resilience of the control in the presence of flaws is also addressed, which is a
more practical query. Both the noise from measurements and the fact that systems are
affected by disturbances such as wind power are taken into consideration. An approximate
version of the genuine mathematical pattern is employed in the design. Additionally,
two control rules, Hinfinity, and µ-analysis, are created for the composite plate to reduce
vibrations [19–21]. Utilizing the provided measurements (displacement) and control in-
puts, the control objective revolves around upholding the equilibrium of the plate. This
involves countering external disturbances, noise, and model imperfections to sustain zero
displacements and rotations.

2. Materials and Methods
2.1. Equation of Motion of the Smart Structure

The equation of the beam for mechanical and electrical loading is given by the Euler–
Bernoulli assumption [22]. In this work, the Euler–Bernoulli model is used because the
simulation is performed using a thin beam. The piezoelectrics have very small dimensions
and are integrated into the beam. In our future paper, we will deal with thick plates and
more complex constructions, taking into account the Timoshenko model. The earliest and
most straightforward classical theory for beam bending is the Euler–Bernoulli beam theory.
It is applied in customary manual beam deflection calculations (Figure 1). It is predicted
that the beam’s cross-section is always parallel to the neutral axis (even after deformation).
Shear forces are not taken into consideration; only the bending moment is used to compute
the deflection. The intelligent structure we employ is made of pzt materials, which provide
a bending moment. The Pzt materials are fitted and embedded in the beam.

EI
∂4y(t, x)

∂x4 + ρA
∂2y(t, x)

∂t2 = fm(t, x) + fe(t, x) (1)

where A is the area of the cross-section of the beam, ρ is the density of the beam, I is the
moment of inertia of the beam, and E is Young’s modulus of the beam.
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Figure 1. Piezoelectric section j embedded at the beam.

In Figure 2, we can see the smart beam with an embedded piezoelectric actuator, which
produces mechanical force as an output when it has electrical force as an input [19–22]. The
electric force fe(t,x) due to the piezoelectric activator is given by,

fe(t, x) =
∂2Mpx(t, x)

∂x2 (2)
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where Mpx represents torsion due to the piezoelectric actuator.
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Figure 2. Beam with an attached piezoelectric patch.

The shape function H is used to represent the displacement of the piezoelectric patch
on the beam. The torsion Mpx from the pzt is given by,

Mpx(t, x) = C0epe(t)
[
H
(
r− r1j

)
−H

(
r− r2j

)]
uj(t) (3)

where,
C0 = EI·Kf (4)

Kf =
12EEphhp

(
2h + hp

)
16E2h4 + EEp

(
32h3hp + 24h2h2

p + 8hh3
p

)
+ E2

ph4
p

(5)

In Table 1 and Figure 3, we take our smart structure parameters.
The mechanical tension epe(t) due to the piezoelectric patch is given by,

epe(t) =
d31

hp
uj(t) (6)

Thus, Equation (3) can be written as,

Mpx(t, x) = Cp
[
H
(
r− r1j

)
−H

(
r− r2j

)]
uj(t) (7)

where,

Cp = EIKf
d31

hp

After partial production running at Equation (2), using (3), the electric force is given by,

fe(t, x) = Cpuaj(t)
[
δ′
(
r− r1j

)
− δ′

(
r− r2j

)]
(8)

where, ∫ ∞

−∞
δ(n)(t− θ)ϕ(t) = (−1)nϕ(n)(θ)

From (1), using (8), the equation of the smart beam during vertical dynamical distur-
bance q0(t) and the electrical dynamical force due to the piezoelectric patch are given by,

EI
∂4y(t, x)

∂x4 + ρA = q0(t) + Cpuj(t)[δ′
(
r− r1j

)
− δ′

(
r− r2j

)
] (9)

For a similar piezoelectric (Figure 3), Equation (9) becomes:

EI
∂4y(t, x)

∂x4 + ρA
∂2y(t, x)

∂t2 = q0(t) + Cpuj(t)∑j
i=1

[
δ′
(
r− r1j

)
− δ′

(
r− r2j

)]
(10)
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Table 1. Smart beam characteristics.

Parameters Values

L, for beam length 1.20 m
W, for beam width 0.004 m

Wp, pzt width 0.004 m
h, for beam thickness 0.096 m

hp, piezoelectric thickness 0.0002 m
ρ, for beam density 1700 kg/m3

E, for Young’s modulus of the beam 1.6 × 1011 N/m2

Ep, Young modulus of pzt 6.3 × 1010 N/m2

bs, ba, for Pzt thickness 0.002 m
d31 the Piezoelectric constant 250 × 10−12 m/V
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Figure 3. Smart beam with embedded piezoelectric actuators and sensors.

2.2. Modelling

This work deals with the reduction in oscillations using piezoelectric and advanced
control techniques. The case of piezoelectric placement is taken. In Figure 4, the actuators
are placed across the beam [23].
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The system’s dynamic characteristics are described as follows,

M
..
q(t) + D

.
q(t) + Kq(t) = fm(t) + fe(t) (11)

Here, let us break down the provided information:
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fm: This represents the overall external loading mechanical vector.
K: This stands for the global stiffness matrix.
M: This represents the global mass matrix.
D: This is the viscous damping matrix.
fe: This denotes the global control force vector arising from electromechanical cou-

pling effects.
Rotations wi and transversal deflections ψi: These components constitute the indepen-

dent variable q(t).
So, in essence, the equation relates various components in the context of a smart beam.

It involves the global external loading mechanical vector (fm), the global mass matrix (M),
the global stiffness matrix (K), the viscous damping matrix (D), and the global control
force vector (fe) resulting from electromechanical coupling. The independent variable q(t)
consists of rotations (wi) and transverse deflections (ψi):

q(t) =


w1
ψ1
...

wn
ψn

 (12)

With ‘n’ representing, in the analysis, the finite elements number employed, the subse-
quent procedure involves transforming these data into a state space control representation,
following the conventional methodology.

x(t) =
[

q(t)
.
q(t)

]
.
x(t) =

[
02n×n

M−1(fm(t) + fe(t)

]
+

[ .
q(t)

−M−1D
.
q(t)−M−1Kq(t)

]
=

[
02n×n

M−1(fm + fe)(t)

]
+

[
02n×2n I2n×2n
−M−1K −M−1D

][
q(t)
.
q(t)

]
=

[
02n×n

M−1fm(t)

]
+

[
02n×n

M−1fe(t)

]
+

[
02n×2n I2n×2n
−M−1K −M−1D

][
q(t)
.
q(t)

]
(13)

Additionally, we define fe(t) = Fe × u(t) as, where (of size 2n × n) is the piezoelectric
force resulting from applying a unit input to the corresponding actuator [15,19–21],

Fe =



0 0 0 0
cp −cp 0 0
0 0 0 0
0 cp −cp 0
0 0 0 0
0 0 cp −cp
0 0 0 0
0 0 0 cp


(14)

and u represents the voltages applied to the actuators. Finally, the disturbance vector is
d(t) = fm(t). Then,

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n

M−1F*
e

]
u(t) +

[
02n×2n
M−1

]
d(t)

= Ax(t) + Bu(t) + Gd(t)

= Ax(t) + [BG]

[
u(t)
d(t)

]
= Ax(t) +

∼
B
∼
u(t)

(15)
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With the output equation (displacements are just measured), we can improve this.

y(t) = [x1(t) x3(t) . . . xn − 1(t)]T = C x(t)

The parameters of our system are shown in Table 1 and Figures 3 and 5.
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3. Results
3.1. Robustness Issues

H∞ (Hinfinity) control offers a significant advantage by effectively addressing the
most pronounced effects of the unexpected noise and disturbances present in a system.
Furthermore, it enables the design of an Hinfinity controller that showcases robustness
against a predetermined degree of modeling inaccuracies. Unfortunately, as will be shown
in the examples that follow [24,25], this last alternative is not always implementable.

The planned Hinfinity controller’s resistance to modeling mistakes will be examined
in the sections that follow. The presentation will also encompass an effort to construct
a µ-controller, followed by a thorough comparison between the two approaches. For all
the simulation scenarios, procedures from MATLAB’s Robust Control Toolbox will be
employed, specifically:

1. For uncertain elements, bw1 = ureal(‘bw1’, 1, ‘Percentage’, 25)
which implements a real uncertain element ‘bw1’ of a nominal value 1 and variation
±25%, i.e., bw1 ranges from 0.75 to 1.25.

2. To compute the limits on the structured singular value, bounds = mussv(Spqf, Bl);
where Spqf is an frd object of the system (i.e., a frequency response output) and Bl
defines the uncertainty type.

3. To calculate a µ-controller, K = dksyn(qbeam1_u, m, r);
where qbeam1_u defines the uncertain system and m and r are the numbers of
inputs/outputs of the system. In this case, the uncertain system is created through
the iconnect structure, since it is more versatile than sysic.

The numerical models utilized in all the simulations are realized using three distinct
approaches:

1. Through Equation (16),

M = M0 + M0(I + mpδM)
M0 is the initial Mass Matrix

K0 is the initial Stiffness Matrix:
K = K0 + K0(I + kpδK)

D = D0 + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM]

(16)
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followed by the subsequent assessment of matrix N for specific values of kp and mp.
2. Through the utilization of MATLAB’s “uncertain element object”, which is essential

to the D-K robust synthesis algorithm.
3. Via Simulink implementation (Figure 6a,b)
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3.2. Robust Analysis

A robust analysis is performed by utilizing the relations:

sup
ω∈R

µ∆(N11(jω)) < 1 (17)

(for robust stability), and,
sup
ω∈R

µ∆a(N(jω)) < 1 (18)

for robust performance [26–28].
The initial disturbance, in all the subsequent simulations, consists of two components:

the first being a dynamic wind force (depicted in Figure 7), and the second being a mechan-
ical load of 10 N applied at the free end. The robust analysis was then carried out for the
H∞ controller obtained, spanning the designated values of mp and kp.
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Figure 7. The dynamical wind force at the free end of the smart structures.

For the case where mp = 0 and kp = 0.9, which translates to a ±90% deviation from
the nominal stiffness matrix K, the response of the displacement is illustrated in Figure 8
when subjected to the dynamic input. Figure 9 depicts the boundaries of these values. The
system retains its stability and robust performance, evidenced by the fact that the upper
limits of both values consistently remain below 1 across all the pertinent frequencies.
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Figure 10 provides further support for this assertion, showcasing the applied voltage
and displacement of the free end amidst a notable level of uncertainty. For the same
system, comparing this to the open-loop response, the nominal controller demonstrates
a commendable performance. Figure 10 shows the voltages for the last four nodes of the
vector; the blue color is for the last node, which means the free end of the beam (one
actuator), the red is for the seventh node (two actuators), the green is for the sixth node
(three actuators), and the light blue is for the fifth node (four actuators). At all the nodes,
the voltages are much less than 500 V, which is the limit of piezoelectric patches.

For the case where mp = 0.9 and kp = 0: this represents a notable ±90% deviation
from the nominal mass matrix M. Figure 11 visually presents the limits for these values,
demonstrating that the system maintains its stability and functions efficiently. Remarkably,
the upper limits of both values persistently remain below 1 across the pertinent frequencies.
This assertion gains further support from Figure 12, which showcases the displacement
response of the free end to the first dynamic input, in addition to the applied voltage.
Comparing this to the open-loop response of the same plant, it is evident that the nom-
inal controller performs well. Figure 12 shows the results for mp = 0.9, which is (mp) a
numerical vector that translates to a ±90% deviation from the nominal stiffness matrix M,
i.e., as obtained from the relation change in mass by 1.9 from the initial value. Please see
Equation (16).
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Figure 11. µ-bounds of the Hinfinity controller for mp = 0.9 and kp = 0.

For the scenario where mp = 0.9 and kp = 0.9: this equates to a substantial ±90%
variation from the nominal values of both the mass matrix M and stiffness matrix K.
Figure 12 shows the results for mp = 0.9, where mp is a numerical vector, which translates



Inventions 2023, 8, 119 11 of 18

to a ±90% deviation from the nominal mass matrix M = 1.9M0 (Equation (16)), i.e., as
obtained from the relation change in mass by 1.9 from the initial value.

Figure 13 illustrates the limits of these values. Clearly, the system maintains its stability
and demonstrates robust behavior, given that the upper bounds of both values consistently
stay below 1 for all the pertinent frequencies.
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By employing the structured uncertainty of the real plant, the µ-analysis can increase
the precision of the singular value function of the closed-loop system. The so-called D-
K iteration, which may be employed in the µ-synthesis to improve the controller, takes
the structured singular value function into account. The weighting factor and controller
are developed using this procedure in repeated rounds. This method still works, even
if the joint optimization or D-K iteration are not convex, and global convergence is not
guaranteed. The goal of this study is to demonstrate a Hinfinity-based control design strategy
that offers reliable stability and minimal performance. A number of nominal performances
and strong stability parameters will be supplied, since they are crucial for the controller. The
purpose of this work is to present a Hinfinity-based control design approach that provides a
nominal performance and dependable stability. Since it is crucial for the controller design
that these two types of criteria be stated, a number of nominal performances and robust
stability characteristics will be provided. However, this problem is more difficult given
that an identification process produces the nominal model of the inverted pendulum. For
the selection of the strong stability and nominal performance criteria, a variety of design
options are presented. Despite meeting the necessary high stability criteria, to ensure a
nominal and dependable performance, the developed controller employs D-K iteration in
the synthesis.
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3.3. Robust Synthesis: µ-Controller

A µ-controller can be designed using the previously discussed D-K iteration technique.
As previously mentioned, this method approximates the µ-value and offers bounds [29–32].
To facilitate comparisons with the controller, we will apply equivalent constraints for the
uncertainty. In all the simulations, we apply, at the free end of the beam, the second
mechanical force of 10 N.

For the case of mp = 0 and kp = 0.9: this represents the stiffness matrix K to a ±90%
deviation from the nominal value.

As stated earlier, the necessary commands for performing this procedure in MAT-
LAB are:

beam_u = ss(A0_u, eye(2 × nd), C, zeros(nd/2, 2 × nd));
M = iconnect;
nn = icsignal(4);
d = icsignal(8);
u = icsignal(4);
y = icsignal(4);
M.Equation{1} = equate(y, beam_u × [B0_u × u + G0_u ×Wd × d]);
M.Input = [d; nn; u];
M.Output = [We × y; Wu × u; y + Wn × nn];
qbeam_w_o = M.System;
[K, qbeam_w_c_m, gam_miu] = dksyn(qbeam_w_o, m, r);
Where G0_u, B0_u and A0_u are uncertain matrix objects.
The execution of this command yields a robust controller with an order of 42. However,

despite this being acknowledged in the literature, it has not been adequately addressed
and is, indeed, a limitation. To our knowledge, there is not a simple approach to reducing
the order, unless a laborious and tedious manual approach is employed [33–35]. Figure 14
illustrates the µ-values of the calculated controller. It is evident that the controller exhibits
robustness across a wide range of frequencies [36].
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In Figure 15, a comparison is drawn between the performances of the µ-controller and
the H∞ controller at the free end, encompassing the overall performance. It is evident that
the H∞ controller outperforms the µ-controller, albeit at the expense of requiring more
demanding control efforts. This observation is supported by Figure 16, which demonstrates
that the H∞ controller performs more effectively at the extreme value. This variation could
potentially stem from numerical challenges during the µ-controller’s computation due
to the plant’s low condition number. The high controller order might also contribute to
this disparity. For the scenario where mp = 0.9 and kp = 0.9: this equates to a substantial
±90% variation from the nominal values of both the mass matrix M and stiffness matrix K
(Equation (16)), which means M = 1.9 ×M0, K = 1.9 × K0 or M = 0.1 ×M0, K = 0.1 × K0.

This paper offers novel methods for incorporating uncertainty into simulation models
and damping structural oscillations using mass and stiffness matrices. A major technical
novelty is the suppression of oscillations even with extremely significant modifications
to the model’s starting matrixes. The starting mass and stiffness vary by plus or minus
90% of the nominal value, meaning that the model varies excessively. Nevertheless, the
oscillations are dampened within the piezoelectric patches’ resistance limitations. This
variance might be the result of model failures and modeling uncertainty.
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4. Discussion

A µ-analysis can improve the accuracy of the singular value function of a closed-loop
system by using the structured uncertainty of the real plant. The structured singular value
function is taken into consideration during the so-called D-K iteration, which may be
employed in the µ-synthesis to enhance the controller. In this method, the weighting factor
and controller are created through iterative steps. The joint optimization, or D-K iteration,
is not convex, and global convergence is not guaranteed, yet this approach still works. The
purpose of this work was to present a Hinfinity-based control design approach that provided
a nominal performance and dependable stability. Since it was essential for the controller,
a number of nominal performance and strong stability parameters were provided. This
paper’s objective was to introduce a control design technique based on Hinfinity that offered
a nominal performance and reliable stability. Several nominal performance and robust
stability parameters were offered since it was critical for the controller design that these
two types of criteria be specified. However, given that an identification procedure led to
the nominal model of the inverted pendulum, this issue was more challenging. A controller
that uses this model must be created in such a way that it satisfies the demands for nominal
performance and robust stability for both the recognized model and the real plant. The
controller design process was built around two basic elements. One situation required that
high uncertainty and high-performance conditions be satisfied. Numerous design choices
were offered for the selection of the strong stability and nominal performance requirements.
Although the created Hinfinity controller in this study fulfilled the required high-stability
criteria, it performed poorly. The created controller used D-K iteration in the µ-synthesis
to guarantee a nominal and reliable performance. Control has a crucial role in structural
engineering, and the use of smart materials in the sciences has been the subject of several
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investigations. About these kinds of applications, there is a wealth of literature. Below are
a few well-known and recent publications [11–13].

In this study, new techniques for dampening structural oscillations and adding un-
certainty to simulation models using mass and stiffness matrices were provided. The
suppression of oscillations was achieved even for very large changes in the initial matrices
of a model, which is a great innovation in engineering. The initial mass and stiffness
changed by ±90% of the nominal value, that is, the model changed too much, and despite
this, the oscillations were damped within the resistance limits of the piezoelectric patches.
This variation may have been due to modeling uncertainties and model failures.

By demonstrating the use of Hinfinity control and µ-analysis and synthesis in both
the state space and frequency domain, the essay explored the benefits of robust control
in intelligent architectures. It took into consideration a dynamic model for intelligent
constructions subject to excitations caused by the wind. The design was made possible
by a robust controller handling uncertainties in the dynamical system and inaccurate
data observations. The effectiveness of the suggested strategies for reducing vibrations in
piezoelectric smart structures was demonstrated by numerical simulations. The strategy
guaranteed a thorough and unified process for creating and verifying reliable control
systems. The development of intelligent structures has been made easier by Hinfinity robust
controllers and µ-analysis since these take into account a dynamic system’s uncertainties
and inadequate data. The numerical simulation confirmed that the general techniques,
provided in an instructional format, are effective at attaining good results.

5. Conclusions

This paper developed a precise model of a homogeneous smart structure with unique
boundary conditions. The enhanced uncertain plant was created after modeling multi-
plicative uncertainty; utilizing µ-synthesis and Hinfinity, an ideal robust controller was then
constructed. Based on the enlarged plant made up of the nominal model and its accom-
panying uncertainty, a strong controller was created. For perturbed plants, the developed
controllers attained robust and nominal performances, and the outcomes were compared.
Two distinct methods of robust controller designs were used to manage the vibration of
a smart structure with a collocated piezoelectric actuator and sensor as a generic smart
structure. For both the normal and damaged laminated plates, the design of the piezo-
electric active control utilizing the µ-analysis and Hinfinity control theory was investigated.
The outcomes demonstrated the utility of the suggested model and methodology, and
the control behavior of the beam conformed to expectations. After performing a system
analysis, we evaluated the system’s performance and resilient stability. The introduction of
uncertainty enabled us to maintain the structure in use within predetermined uncertainty
bounds. The essay explored the merits of robust control within intelligent structures by
highlighting the implementation of H∞ control in both the frequency domain and state
space. The following are benefits of this work: the modeling of intelligent constructs and
the execution of control in oscillation suppression, results in the frequency domain as
well as the time–space domain, the introduction of the uncertainties in the construction’s
mathematical model, an introduction to µ-analysis and µ-synthesis in smart structures.
Future research will concentrate on two areas, first applying these control strategies to
actual intelligent structures in an experimental setting and next employing different control
methods for structural noise and vibration suppression.
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