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Abstract: Wind energy has become a trend in Brazil, particularly in the northeastern region of the
country. Despite its advantages, wind power generation has been hindered by the high volatility of
exogenous factors, such as weather, temperature, and air humidity, making long-term forecasting a
highly challenging task. Another issue is the need for reliable solutions, especially for large-scale wind
farms, as this involves integrating specific optimization tools and restricted-access datasets collected
locally at the power plants. Therefore, in this paper, the problem of forecasting the energy generated
at the Praia Formosa wind farm, an eco-friendly park located in the state of Ceará, Brazil, which
produces around 7% of the state’s electricity, was addressed. To proceed with our data-driven analysis,
publicly available data were collected from multiple Brazilian official sources, combining them into a
unified database to perform exploratory data analysis and predictive modeling. Specifically, three
machine-learning-based approaches were applied: Extreme Gradient Boosting, Random Forest,
and Long Short-Term Memory Network, as well as feature-engineering strategies to enhance the
precision of the machine intelligence models, including creating artificial features and tuning the
hyperparameters. Our findings revealed that all implemented models successfully captured the
energy-generation trends, patterns, and seasonality from the complex wind data. However, it was
found that the LSTM-based model consistently outperformed the others, achieving a promising
global MAPE of 4.55%, highlighting its accuracy in long-term wind energy forecasting. Temperature,
relative humidity, and wind speed were identified as the key factors influencing electricity production,
with peak generation typically occurring from August to November.

Keywords: wind energy; forecasting; wind farms; machine learning; data science

1. Introduction

Wind power is one of the fastest-growing forms of green energy production worldwide.
According to the Global Wind Report (2023) [1], global wind power capacity grew by
9% in 2022 compared to 2021, adding 77.6 GW of fresh production while bringing the
total installed capacity to 906 GW for the entire renewable energy industry. Unlike other
conventional resources such as fossil fuel and even hydroelectric generation, the kinetic
energy continually induced by circulating air is considered an inexhaustible source of
power, which is abundant and widely distributed, making it a scalable source that can
meet a variety of demands. Moreover, the adverse effects caused by wind plants do
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not drastically impact local fauna and flora, resulting in a clean and sustainable energy
generation [2,3]. Another plus is that wind energy is economically competitive with other
forms of generation, especially for countries and businesses seeking to reduce their carbon
footprint and dependence on fossil fuels [4,5].

Despite the benefits and advances promoted by wind-driven generation, electricity
produced in wind farms may undergo high volatility. For example, wind speed does not
always follow a regular behavior over time. As a consequence, assessing and forecasting
energy generation amid the incessant demand of consumption centers is not a straightfor-
ward task. In addition, the diversity of technologies and conversion systems used in wind
turbines that coexist in large-scale power complexes contribute to generation volatility,
thus imposing the necessity of using data-driven tools to keep power production constant,
predictable, and reliable for dispatch and consumption. Another issue is that the weather
conditions such as the airspeed, relative humidity, air temperature, atmospheric pressure,
and precipitation can influence the trend and seasonality of the day-to-day-generated
power, especially in large wind farms, resulting in irregular and highly non-linear data,
which need to be handled when fitting machine learning models [6–8]. Lastly, the elec-
tricity load from wind power plants can affect the law of supply and demand in the
energy wholesale market [9], rendering data-driven learning approaches crucial for gaining
more-assertive insights for decision-making in this business sector.

In general, the problem of assessing and forecasting the power generation in large
wind farms involves investigating the trend and seasonality of combined time series data.
According to Quian and Sui [10], renewable energy prediction planning horizons can be
categorized into three groups: (i) short-term (one hour to seven days), (ii) medium-term
(one week to one month), and (iii) long-term (one month to one year). Long-term forecasting
is crucial for achieving grid balance, infrastructure construction and maintenance, as well
as strategic energy planning [10]. Since the prediction is usually computed by assuming a
specific forecast horizon, the long-term case is more challenging due to the high variability
of wind power over an extended period, making the forecast task by machine learning
models difficult in real-world scenarios [11–13].

In the specialized literature, various machine-learning-based approaches have been
proposed to estimate energy generation in wind farms. For example, Zheng et al. [7]
employed a Feature Selection Engineering (FSE) step using k-means clustering to build a
learning methodology based on the XGBoosting (XGB) algorithm for short-term power
forecasting. To train their model, the authors took weather-type features such as temper-
ature, air humidity, and precipitation data. Paula et al. [12] also applied FSE to improve
the discriminative performance of machine learning methods, including Artificial Neural
Networks (ANNs), Random Forest (RF), and Gradient Boosting (GB), to estimate wind-
related features, while Demolli et al. [8] utilized XGB, RF, Support Vector Machine (SVM),
and Lasso Regression (LG) to compute daily power predictions by inputting wind speed
data. Along the same line, Singh et al. [14] employed a GB-based regression approach to
explore the problem of power generation forecasting in Turkish wind farms, delivering
short-term predictions. Wind power forecasting was also the goal of Optis and Perr-
Sauer [15], where the stability of the machine learning algorithms Multilayer Perceptron
(MLP), Extremely Randomized Trees (ERT), GB, and SVM was assessed by considering
the effect of atmospheric turbulence during the problem modeling. Similarly, Li et al. [16]
took the SVM algorithm together with a recent swarm-based optimization method called
dragonfly to predict wind power over a short-term period.

The combination of machine learning and statistical analysis is another effective ap-
proach that offers an in-depth examination of wind farm data, including forecasts. In this
domain, Malska and Damian [17] conducted an immersive statistical analysis of energy
production in a wind farm located in the Subcarpathian region, Poland. Adopting a similar
methodology, Shabbir et al. [18] implemented a recurrent neural network architecture
combined with advanced statistical methods to estimate energy generation in an Estonian
wind farm. Najeebullah et al. [19] also applied a statistical framework for wind power pre-
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diction, obtaining short-term forecasts through a hybrid modeling based on ANN models.
Puri and Nikhil [20] investigated the availability of wind energy in highly mountainous
regions, specifically in the Himalayan Range. Their study employed data on wind speed,
temperature, and air density to predict wind energy using ANN-based algorithms, with the
goal of enhancing future planning for wind electricity production. Solari et al. [21] covered
forecast horizons restricted to a few days by taking geostrophic wind data to infer wind
speed for port safety purposes. In a similar way, Cheng et al. [22] aimed at achieving
short-term outputs by predicting wind-related features based on anemometer data.

Finally, Long Short-Term Memory (LSTM) networks have recently been used to tackle
time series prediction applications. In this context, Vaitheeswaran and Ventrapragada [23]
employed a hybrid approach integrating LSTM and Genetic Algorithms (GAs) for wind
power prediction, aiming to achieve both short-term and medium-term forecasts. Jaseena
and Kovoor [24] demonstrated that their LSTM-based method outperforms the classic
ARIMA technique in short-term wind speed forecasting. Sowmya et al. [25] also addressed
the wind forecasting problem, by applying stacked LSTM architectures instead. Papazek
and Schicker [26] explored different application scenarios by integrating time series data
from diverse sources using LSTM, underscoring the importance of customized pre- and
post-processing methods in renewable energy prediction. Ziaei and Goudarzi [27] devel-
oped LSTM-driven models specifically for short-term wind estimation, showcasing their
effectiveness in capturing wind characteristics with satisfactory accuracy. In a similar fash-
ion, Kumar et al. [28] applied LSTM and Recurrent Neural Networks (RNNs) for predicting
wind speed and solar irradiance. The forecasted renewable energy data were then utilized
to analyze the load frequency behavior in an isolated microgrid.

As pointed out by Wilczak et al. [29] and Mesa et al. [30], wind power estimation has
always been of interest to the energy community; however, the main focus has been on
improving short-term wind forecasts instead. Moreover, according to Wang et al. [31], most
regular- and long-term wind power forecasts are primarily designed for individual sites
and suffer from certain shortcomings, such as ignoring regional characteristics. Another
concern related to extended-range forecasts is that obtaining a computationally robust
solution for large-scale wind farms in practice may require the unification of customized
tuning approaches, sophisticated optimization models, and accurate machine learning
models, as well as the availability of extensive, restricted-access datasets locally acquired
from the power plants [13,32]. These datasets include not only energy-related data collected
from the wind farms, but also the systematic assessment of local meteorological variables.

Therefore, in this paper, the focus was on providing an effective data-driven method-
ology for assessing and predicting the electricity generated at one of the largest renewable
energy farms in South America: the Praia Formosa wind complex, located in the munici-
pality of Camocin, in the state of Ceará, Brazil, with an installed capacity of 104.4 MW. To
tackle most of the issues raised above, an integrated database was built using open data
repositories to train three machine intelligence models: Random Forest, Extreme Gradi-
ent Boosting, and Long Short-Term Memory Network, enabling accurate and consistent
long-term forecasts. Specifically, public data from both regional weather stations and the
National Electric Systems Operator were collected in an effort to improve the model’s
predictability by exploiting external factors that may influence wind power generation in
this region. As a result, the formulated holistic framework not only enhanced the fore-
casting accuracy, but also provided valuable insights into the interplay between regional
weather conditions and local energy production throughout different periods of the year.
Additionally, data-driven strategies, including the use of feature engineering tools, were
employed to optimize the accuracy of the machine intelligence models while evaluating
the influence of meteorological variables on wind farm power generation.

In summary, the key contributions of this paper are:

• The design of three accurate, well-behaved machine learning approaches for long-term
forecasting: the RF-, XGB-, and LSTM-based models. Unlike most predictive proposals
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in the wind energy context, which focus on short-term results, the designed models
excel in delivering precise long-range wind power outputs.

• The creation of a comprehensive database sourced from multiple open platforms,
enabling a thorough analysis of the regional characteristics of the wind farm.

• The implementation of customized tuning strategies to optimize the machine intelli-
gence models, leading to significant improvements in long-range predictions.

• An in-depth data-driven study of key meteorological variables that most influence
wind power generation throughout different seasons and months, providing detailed
insights and contextualization for local grid operators and power plant owners.

2. Materials and Methods
2.1. Study Area

As our study area, the Praia Formosa wind complex was chosen due to its status as
having one of the largest installed capacities in Brazil [33]. Initiating its operations on
26 August 2009, the Praia Formosa wind park comprises 50 Suzlon S-88 wind turbines,
collectively generating a total capacity of 104.4 MW [34]. This power complex is situated
in Camocim, a picturesque coastal town situated in the state of Ceará, Brazil, that offers
an ideal setting for wind energy generation. Influenced by strong ocean-derived currents,
this east coastal region experiences an annual average wind speed ranging between 7 and
10 m/s [35]. Moreover, wind speed intensifies during the second half of the year, especially
due to the phenomenon of the maximum high-pressure center in the South Atlantic basin,
known as the South Atlantic Anticyclone (SAA) [36]. The Brazilian Northeast region
accounts for 86% of the total wind energy generated in the country [37]. The average wind
distribution across Brazil, as measured and mapped by the Global Wind Atlas, is illustrated
in Figure 1.

Figure 1. Wind speed average in Brazil (Source: Global Wind Atlas [38]).
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Conducting data-driven investigations on well-established large-scale power plants,
such as the one selected for this study, aims to gather findings, insights, and technical data
to support the expansion of renewable sources in Brazil. This includes providing data-
driven assistance for both wind farms under construction and those already announced,
thus advancing sustainable energy solutions in this key region. The location of the studied
wind farm in the Brazilian northeast is shown in Figure 2.

N

Generators

Ceará

Brazil

South America

Ocean

  

Elevation (m):  

Legend:

Figure 2. Location of the Praia Formosa wind complex and its aerogenerators.

2.2. Data Repositories

In order to build a representative database for investigating and predicting wind gen-
eration at the Praia Formosa wind complex, open data from multiple Brazilian government
agencies were taken. In particular, both energy-related and meteorological datasets were
collected from the following public repositories: (i) the National Electric Systems Operator
(ONS—acronym in Portuguese) [39], which is the core body responsible for coordinating
and controlling the energy generation and transmission in Brazil, and (ii) the National
Institute of Meteorology (INMET—acronym in Portuguese) [40], which is the agency that
measures and monitors the country’s weather conditions in all Brazilian localities.

The ONS provides wind energy generation data and other power-related features
of wind farms in Brazil, including the Praia Formosa one. The raw data can be collected
as time series and arranged into specific time horizons such as hourly, daily, monthly,
or annually. In our approach, time series comprising daily instances of wind energy-related
data were taken as input. The data collected spans from 1 January 2016, to 31 December
2022, a full seven-year period totaling 2.557 data samples (see Supplementary Materials).
Meteorological data were also gathered on a daily basis from the Sobral’s city weather
station, which is located in the Praia Formosa wind farm region. For better readability of
the acquired data, Table 1 summarizes the main features used to drive our data analysis
and machine learning predictions.
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Table 1. Main set of collected data, arranged on a daily basis.

Feature Description Unity Repository

Date Day, month, year and season - -
Temperature Average temperature ◦C INMET
Relative humidity Average relative humidity % INMET
Pressure Average pressure hPa INMET
Precipitation Average precipitation rate mm/d INMET
Wind speed Average wind speed m/s INMET
Max energy demand Wind energy load demand peak MWmed ONS
Wind energy generation Total generated by the power plants MWmed ONS

2.3. Machine Learning Algorithms for Wind Energy Prediction

In this section, the theoretical aspects of the three machine learning methods used
in our wind power prediction assessments, namely RF, XGB, and LSTM, are provided.
The selection of these methods was shaped by [8,41], where the authors emphasized the
effectiveness of RF, XGB, and LSTM in accurately forecasting long-term wind power when
compared to other long-horizon algorithms.

2.3.1. Extreme Gradient Boosting-Based Model

The Extreme Gradient Boosting (XGBoosting or XGB) method is a tree-based machine
learning approach that aims to enhance gradient boosting while handling various differen-
tiable loss functions [42].

Similar to the well-established Gradient Boosting (GB) method [43], the XGBoosting
technique adopts weak learners through the application of the gradient descent method.
However, XGB improves the GB architecture in terms of regularization and gradient ap-
proximation, as well as effectively handling missing values, ensuring high customizability.
Technically, the weights taken in the decision trees are non-uniform, which reduces overfit-
ting in the trained model.

To leverage the varying weights while training the XGB model, the algorithm mini-
mizes the following loss function:

Lt = ∑ l(yi ŷ
(t−1)
i + ft(xi)) + Ω( ft), (1)

where yi is the target feature, ŷ(t−1)
i is the predicted value at t − 1 time, ft(xi) is the

prediction of tree t on the training sample i, and Ω( ft) is the regularization term used
to prevent overfitting. The goal of XGB is to minimize Equation (1) to determine the
optimal parameters of the model, which are the set of trees ft that collectively contribute to
decreasing the loss function. Another advantage offered by the XGB-based learning process
is the incorporation of regularization terms such as reg_lambda and reg_alpha [44]. These
terms assign varying weights to the leave nodes, allowing the model to remove or split trees
of small importance during the training stage, thus improving overall performance [44].

Computationally, the algorithm involves the choice of the following parameters during
its implementation:

• The cost function, Equation (1), to be optimized.
• The predictive models, which are defined as decision trees.
• Weak learners, to improve the minimization of the cost function.
• Regularization terms.

Notice that the configurations and the selection of the model’s hyperparameters will
be discussed in the implementation section.
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2.3.2. Random Forest-Based Model

The Random Forest (RF) algorithm is a robust and highly successful machine learning
approach that produces predictions from a set of estimators. It takes into account both
learning and modeling strategies based on regression or classification trees [45]. The RF
algorithm relies on the principle of constructing a random subset during the nodes’ selec-
tion. As a result, the randomization allows the inclusion of variables that most influence
the model, regardless of correlation, thereby substantially improving the algorithm’s per-
formance [46].

In summary, the Random Forest method consists of applying the following steps:

• Generate X sets of bootstrap samples for the training dataset.
• For each sample, build a regression tree (without adjustment) with the following

modification: at each node, generate a random sample P of the input variables from
the training dataset and choose the best split of these, where P < V, and V is the
number of variables in the dataset.

• Predict the new output, from averaging the outputs of M regression trees when new
variables are inserted into the model.

2.3.3. Long Short-Term Memory-Based Model

Long Short-Term Memory (LSTM) networks are very effective, memory-enhanced neural
architectures designed for modeling and learning complex temporal patterns in sequen-
tial data. In particular, LSTM-based models rely on a sophisticated neuro-mathematical
paradigm, employing a recurrent neural structure that captures and retains information
over extended time intervals. In contrast to classical artificial neural networks, LSTM-
inspired approaches are purpose-built for coping with time-varying samples, learning
long-term dependencies among data [47].

Mathematically, a prototype of the LSTM-type network can be described by the
following equations:

ft = σ(W f · [ht−1, xt] + b f ) (2)

it = σ(Wi · [ht−1, xt] + bi) (3)

ot = σ(Wo · [ht−1, xt] + bo) (4)

c̃t = tanh(Wc · [ht− 1, xt] + bc) (5)

ct = ft � ct−1 + it � c̃t (6)

ht = ot � tanh(ct) (7)

In Equations (2)–(7), xt represents the input at time t, ht−1 is the previous hid-
den state, σ is the activation function, � denotes element-wise multiplication, and the
set {W f , Wi, Wo, Wc, b f , bi, bo, bc} gathers the parameters of the network [48]. In short,
Equations (2)–(7) describe the process of updating the memory cell (ct) and the hidden
state (ht) at each time step, making LSTM networks effective at capturing temporal patterns
in sequential data.

In this study, a novel methodology tailored to the specific challenges posed by power
prediction at the Praia Formosa wind complex was designed. Leveraging the rich dataset
provided by the ONS, the Brazilian energy agency, our LSTM-based approach combines
the power of recurrent neural network models with meteorological data to create a ro-
bust forecasting framework. Moreover, the trained model is capable of capturing both
short-term fluctuations and long-term trends in energy generation, which is crucial for
accurate forecasting.
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2.4. Data Preparation and Standardization

To construct our machine intelligence models for the forecasting task, the acquired
data was divided into training and testing subsets. More specifically, approximately 86%
of the collected data (daily records ranging from 1 January 2016, to 31 December 2021,
totaling 2192 instances) were used to train the models, while the remaining 14% of the
data, covering the 365 days of 2022, were employed for long-term prediction validation.
Prior research has indicated that a one-year time frame is considered a suitable choice
when performing long-term predictions in the renewable energy context. Particularly,
such a forecasting horizon is crucial for grid planning, scheduling, understanding seasonal
effects, and ensuring the availability of valid data, as discussed in [10,49,50]. All features
were scaled to a common range of [0, 1] to mitigate the impact of different units and scales
between variables, thus reducing the scalability bias imposed by the collected data.

The machine learning models, as well as the KDD analysis codes related to the results
exploded in Section 3.1 were implemented using the routines and functions available in the
Scikit-learn library [51], a robust and well-established Python implementation tool.

2.5. Evaluation Metrics

In this section, the evaluation metrics used to quantitatively assess the predictive
performance of our machine learning models are introduced. These include as validation
metrics the Mean Absolute Percentage Error (MAPE) [52,53], the Mean Squared Error
(MSE) [12], and the Mean Absolute Error (MAE) [11,12], which are mathematically com-
puted by Equations (8)–(10):

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣× 100 , (8)

MSE =
n

∑
i=1

(Yi − Ŷi)
2 , (9)

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ , (10)

where Yi and Ŷi denote the actual and predicted values for the target variable, respectively.
In our validation results, a threshold of 10% was defined for MAPE [11,54], establishing a
“high level” of predictive accuracy for the outputs.

2.6. Model’s Design, Implementation Schemes, and Tuning Strategies

In this section, the modeling steps to generate our machine learning models are given.
Moreover, the strategies used for tuning the hyperparameters of these models are outlined,
ensuring they are finely calibrated for optimal predictive performance.

2.6.1. Artificially Created Features

In order to computationally improve the performance of the machine learning models,
a set of artificial features was created by systematically performing potential combinations
among the ordinary variables and by conducting Knowledge Data Discovery (KDD Anal-
ysis), as discussed in Section 3.1. After a thorough data-driven investigation, seven new
features were selected:

• Log return (Z) in the daily horizon, computed as follows: Zi = log(Xi/Xi−1),
i = 2, 3, ..., n, where Xi accounts for the i − th value of the wind power and n is
the total number of instances. For more details, see [11,55].

• Moving average (MA) in the weekly, monthly and quarterly horizons. In more
mathematical terms: MAi = 1

p ∑
p
j=1 Xi−j−1, where p stands for the given horizon.

For more details, see [11,56].
• Sum (S) of temperature (T) and humidity (H): Si = Ti + Hi.;
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• Subtraction (D) of temperature and humidity: Di = Ti − Hi;
• Division (Q) of temperature by wind speed (W): Qi = Ti/Wi;
• Moving subtraction (MS) of wind power: MSi = Xi − Xi−1;
• Moving subtraction of temperature.

Additionally, from the daily energy generation data as analyzed in the KDD step,
a cyclical feature capturing the generation trends throughout the weeks and a categorical
attribute computed via the One-Hot encoding technique [57] to cover categorical data
as a binary representation were introduced. Specifically, twelve binary variables were
created, one for each month, to indicate whether a data point belongs to that month or
not. These variables act as indicators, enabling the machine learning models to recognize
the presence or absence of each month in the data. Moreover, they allow the models
to consider seasonality and monthly patterns in energy generation, which are critical
features for accurate forecasting and understanding how different months influence wind
energy production.

After generating the set of newly crafted features, attribute selection was performed
using a forest of trees, i.e., by employing a Random-Forest-based classifier to compute
the impact of the features as part of the forecasting task. The Random Forest algorithm
determines the feature importance through the application of the Gini Index, which can be
formulated in its binary classification form as follows [58]:

Gini = p1(1− p1) + p2(1− p2), (11)

where p1 and p2 are the probabilities of classes 1 and 2. Features that result in substantial
reductions in the Gini Index are deemed more important to the model because they signifi-
cantly contribute to reducing impurity in the tree nodes and, consequently, to the accuracy
of predictions [59].

The RF-based feature importance process was then applied to identify the top 7 variables,
as listed in Figure 3.

Figure 3. Feature importance using a Random-Forest-based approach.

2.6.2. Machine Learning Hyperparameters’ Optimization

One of the main challenges when applying machine learning algorithms is to ad-
equately calibrate their set of hyperparameters. These include the optimization of the
learning rates, regularization coefficients, and the fine-tuning of feature engineering step,
all of which significantly impact the model’s performance and generalization ability.

To tackle this issue, the Random Search (RS) method [60] was applied, which is an
effective technique for hyperparameter tuning. RS efficiently explores the hyperparameter
space, facilitating the discovery of optimal settings while enhancing the model’s overall
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effectiveness. Moreover, unlike other hyperparameter tuning techniques such as the well-
known Grid Search, RS significantly reduces processing time by randomly sampling from
a predefined set of values or features.

Tables 2–4 summarize the hyperparameter ranges found for each exploited machine
learning model and the corresponding best set of values obtained.

Table 2. Optimal hyperparameters and their search spaces for the XGBoosting model.

Hyperparameter Description Tuning Universe Optimal Parameter

max_depth Maximum tree depth 2, 3, 4, 5, 6, 7, 10 4
subsample Subsample ratio of the training instances 0.1, 0.5, 0.7, 0.8, 0.9, 1 0.7

colsample_bytree Subsample ratio of feature-like columns when
constructing each tree 0.1, 0.4, 0.7, 0.8, 0.9, 1 1

n_estimators Number of trees generated 25, 50, 100, 200, 300, 500 300
learning_rate Learning rate of the model 0.01, 0.1, 0.2, 0.3 0.1

Table 3. Optimal hyperparameters and their search spaces for the Random Forest model.

Hyperparameter Description Tuning Universe Optimal Parameter

n_estimators Number of trees generated 25, 50, 100, 200, 500, 1K 50
max_depth Maximum tree depth 2, 5, 10, 20, 30 20
min_samples_split Minimum number of samples to split an internal node 2, 4, 6, 10 4
min_samples_leaf Minimum number of samples for a leaf node 1, 2, 4, 6, 8 2

max_features Maximum number of features for each split when
constructing a decision tree auto, sqrt, log2, none log2

Table 4. Optimal hyperparameters and their search spaces for the LSTM model.

Hyperparameter Description Tuning Universe Optimal Parameter

num_units_list Number of units (or neurons) in the LSTM layer 32, 64, 128 64
activation Activation function identity, logistic, sigmoid, relu sigmoid
solver Mathematical solver for weight optimization lbfgs, sgd, adam adam
learning_rate_list Manages weight update size during training 0.001, 0.01, 0.1 0.001

window_size_list Number of past time steps LSTM considers for
predicting the next step 5, 10, 15, 20 15

3. Results

In this section, the quantitative analysis was conducted to explore the insights and
findings from the Praia Formosa wind farm data, allowing for a deeper understanding of
the energy generation trends while measuring the performance of our predictive models.

3.1. Knowledge Data Discovery

For a more comprehensive understanding of the Praia Formosa wind complex data,
extensive Knowledge Data Discovery (KDD Analysis) was performed, including descrip-
tive statistics, wind energy-related histograms and weekly/monthly boxplots concerning
the full period of collected data, i.e., 1 January 2016, to 31 December 2022.

To address missing and erroneous data, the so-called missForest method [61] was taken,
which trains the Random Forest algorithm on observed values within a data matrix to
predict and impute the missing values [61]. Conceptually, the method builds an ensemble
of decision trees to predict missing values based on the available information from other
attributes within the dataset [62]. For a more comprehensive explanation of the missForest
method, we refer to the seminal work by Stekhoven and Buhlmann [61].

First, measures of the central tendency for energy generation were computed so as to
inspect its overall behavior. The measurements listed in Table 5 revealed that the power
generation did not exhibit a normal distribution, as evidenced by the mean value exceeding
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the median (50%). This deviation from normality is further illustrated in Figure 4, which
depicts the normalized distribution regarding the analyzed period (from 2016 to 2022).
Furthermore, the plot highlights the presence of outliers that are skewed towards the higher
end of the distribution. One can observe a few instances where the generation exceeds the
baseline levels, centered around the mean and median over time.

Table 5. Descriptive statistics analysis of the Praia Formosa’s Wind Farm.

Statistics Wind Energy Generated (MWmed)

Average 23.98
Standard Deviation 15.27
25% 10.11
50% 23.85
75% 36.56

Figure 4. Energy generation histogram and the Kernel Density Estimate curve. The x-axis groups the
energy generated (in MWmed), while the y-axis quantifies the probability density values.

Improving our understanding of how wind power generation correlates with factors
such as wind speed and other meteorological variables is crucial for achieving more accurate
predictions. In order to verify the linearity degree between the predictor variables and
energy generation, in Figure 5, the Pearson correlation was computed. As observed in
the heat bar plot, the target variable exhibits a strong negative correlation with relative
humidity and a strong positive correlation with temperature and wind speed. These results
are in line with the findings previously reported in the scientific literature. Particularly,
according to [63], where the authors exploited over 40 papers on wind power forecasting,
the most frequently used variables include wind speed, temperature, and relative humidity.
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Figure 5. Correlation computed for the main collected variables.

Figures 6 and 7 display weekly and monthly boxplots of energy generation, allowing
us to verify how wind energy varies over weeks and months, identifying patterns and
potential outliers more clearly. By analyzing Figure 6, one can observe that the daily
averages in the weekly boxplots remain consistent throughout the period of analysis.

Figure 6. Boxplot of energy generated per day of the week.

Figure 7. Boxplot of energy generated per month.
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In contrast, Figure 7 reveals that the average values in the monthly boxplots tend to be
higher in the second half of the year, specifically from July to December, where a parabolic
behavior of ascent and descent is observed. Furthermore, one can verify that there are a
few outliers present in the distributions, especially during the months of June and July,
coinciding with the onset of energy generation records.

The violin plot as displayed in Figure 8 presents the probability density of the electricity
generated at the Praia Formosa wind complex (with a 95% confidence interval). From the
plotted graph, it can be seen that there was a clear change in symmetry throughout the
series. For instance, in March, a positive skewness was evident, indicating a clustering
of values accumulated between 0 and 20 MWmed, while in the second semester, e.g., in
October, the skewness reverses, with a concentration of values towards the higher end.

Finally, Figure 9 displays a facetgrid plot featuring density subplots organized by
month. This plot effectively captures the nuances in the distributions of energy generation
across the months of the year, revealing particular transitions and trends. January exhibits a
wide dispersion of values between 0 and 40 MWmed, while from February to May, the val-
ues remain more consistent, mainly clustering in the range of 0 to 10. From June to August,
there is a clear transition, with generation shifting from the 0–20 to 30–50 range. In contrast,
the months of September to November are the ones that hold a high concentration of
generation, with values predominantly above 40 MWmed, contrasting with December,
which shows greater dispersion in generation.

Figure 8. Violin plot of the energy generated (MWmed) in a whole year, highlighting the asymmetric
distribution of the data across different months.

Figure 9. Facetgrid plot, composed of the stacked density plots of energy generated (MWmed)
arranged by month.



Inventions 2023, 8, 126 14 of 20

3.2. Application of the Machine Learning Models for Wind Energy Forecasting

In this section, the focus is on the practical applications involving the implemented
machine intelligence models supported by multiple data sources for the task of forecasting
long-term predictions of energy generated at the Praia Formosa wind park.

In Figure 10, the evaluation metrics were computed for all the trained machine
intelligent-based models as part of our quantitative analysis, where the optimized ap-
proaches were applied to predict the full period of testing, i.e., the whole year of 2022. By
numerically inspecting the results delivered by the ensemble-built models XGB and RF, one
can conclude that both approaches produced satisfactory results when evaluated via the
MAPE and MSE metrics. Moreover, when considering only the MAPE evaluation metric,
XGB reaches the 10% threshold of high accuracy, while RF slightly exceeded this baseline
value by approximately 2%.

Despite the satisfactory results, a more accurate forecast was obtained by applying the
LSTM-based framework. In fact, the trained recurrent neural network-based model was
capable of effectively capturing the intricate temporal dependencies within the data, leading
to high scores across all three evaluation metrics. For example, if one takes the MAPE as
a baseline, the LSTM-based model achieved a surprising score of 4.55%, demonstrating
robust consistency with the reference data. In general, good predictive performance was
attained due to the combination of feature engineering step (including the creation of new
features), hyperparameter optimization, and the strong correlations between predictor
variables and the target one.

Figure 10. MAPE, MAE and MSE over the test data for the machine learning-based models built with
optimized hyperparameters.

Figure 11 shows the forecasting plot of the wind energy generation for the last 30 days
of 2022, as delivered by our tuned machine intelligence models, while Figure 12 displays
the deviation (residue) between the actual and predicted values. Despite the usual high
fluctuations in the actual energy generation time series, the forecasts closely mirror the
real data in most of the instances, accurately capturing the cyclic patterns observed in
the ground-truth curve, including the tendencies and the local extremes. This was more
prominent for the trained LSTM-based model, which outperformed the others in terms of
fitting capability and accuracy level, as evidenced by its residues being closer to zero.
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Figure 11. Energy generated predictions for the last 30 days of 2022.

In Figure 13, the evaluation metrics were listed for the same 30-day period as illustrated
in Figure 11. Notably, when examining MSE, it is evident that LSTM achieved the lowest
value at 1.59, indicating its superior ability to minimize prediction errors. In contrast, RF
and XGB yielded higher MSE scores, suggesting relatively less precision in their forecasts.
A similar trend persisted when considering the MAE and MAPE. However, it’s important
to note that all three machine learning models achieved MAPE scores below 10%, indicating
high accuracy in the prediction task. In summary, while all three implemented models
produced satisfactory results, these metrics collectively suggest that LSTM outperforms RF
and XGB in terms of prediction performance.

Figure 12. Energy generated residues for the last 30 days of 2022.
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Figure 13. MAPE, MAE and MSE over the last 30 days of 2022.

Finally, Table 6 provide insights into the computational efficiency of the models during
both the training and testing phases. During training, the XGBoosting method exhibited
the fastest processing time, requiring only 1.66 s to complete the task, followed by Random
Forest at 2.8 s, and LSTM at 55.8 s. The higher training time of LSTM can be attributed to
its intricate architecture and the intensive computations involved in processing sequential
data, as expected. In contrast, during the testing stage, the computational demands were
notably reduced for all methods. In particular, XGBoosting completed the testing step in
just 1.21 s, followed closely by Random Forest at 1.05 s, while LSTM displayed the best
computational cost, finishing the task in a mere 0.95 s. In summary, all methods exhibited
high computational efficiency in both the training and testing phases, emphasizing the swift
performance of the designed machine learning models for the long-term forecasting task.

Table 6. Training and testing time costs (in seconds).

Models Training Testing

XGBoosting 1.66 1.21
Random Forest 2.80 1.05
LSTM 55.80 0.95

4. Discussion and Limitations

The comparisons presented in Section 3.2 demonstrated the high performance of
our machine learning-based models in predicting the wind power energy for the entire
year of 2022. The ensemble-built models, XGB and RF, yielded satisfactory results both
visually and in terms of quantitative metrics, including the MAPE and MSE. XGB reached
high accuracy with a MAPE score below 10%, while RF slightly exceeded this threshold.
However, LSTM outperformed both of them by effectively capturing complex temporal
dependencies, resulting in impressive scores across all validation metrics. Notably, LSTM
achieved a remarkable MAPE score of 4.55%, demonstrating robust consistency with the
reference data. These results can be explained by LSTM’s capability to better capture
intricate temporal dependencies, retain remote information, and autonomously extract
pertinent features from high-dimensional weather data. Although XGB and RF achieved
satisfactory error scores for all the assessments, LSTM’s aptitude in modeling non-linearities
while managing irregular data and long-term patterns gave it a distinctive advantage when
forecasting wind energy generation over extended durations.
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Concerning the computational efficiency, the rapid processing speed achieved by all
methods in both the training and testing phases further emphasizes the swift execution of
our machine intelligence framework for long-term predictions, as discussed in Table 6.

Despite the accurate results, there are some important aspects to be observed before
using our approach. First, the applicability of the proposed methodology to other wind
farms depends on the availability of representative data. In our analysis, data from multiple
sources were taken, including regional weather stations and the Brazilian National Electric
Systems Operator (ONS). Ensuring similar data collection is the first step if one intends
to extend our approach to explore other wind complexes. However, the versatility of the
implemented machine learning models still stands out as a significant advantage, as they
demonstrated high performance in handling various input features simultaneously, as dis-
cussed in Section 3. Such a customization aspect facilitates their adaptation to different
wind farm scenarios or even serves as a starting point for further research. Second, it is
recommended to broaden the scope of potential contributing factors for wind speed and
power fluctuations, thereby improving the interpretability of the results and predictabil-
ity. Features such as topography could also be incorporated to provide a more accurate
description of changes in wind speed and power generation. Finally, there is no consensus
on an optimal methodology for capturing the exact behavior of wind generation due to the
stochastic nature of wind. Therefore, it is necessary to apply distinct algorithms to establish
a standardized reference model.

5. Conclusions

In this paper, a comprehensive and effective data-driven framework for assessing
and predicting the wind energy generation at the Praia Formosa park, a large-scale wind
complex located in the northeastern region of Brazil, was presented. By integrating data
from multiple open sources, including regional weather stations and the National Electric
Systems Operator, three machine intelligence models capable of delivering accurate and
stable long-term forecasts were implemented and tuned. The implemented machine
learning-based models, Random Forest, Extreme Gradient Boosting and Long Short-Term
Memory Network, combined with new features, as well as the selection of the best features
(K-Best) and hyperparameters (Random Search), resulted in highly accurate predictions,
as shown by the validation analysis.

The knowledge data discovery study unlocked valuable insights into the relationship
between regional weather conditions and local energy generation. By exploiting the
correlation of weather-type features with wind energy, the convergence of the machine
intelligence models was enhanced, while still comprehending the role of each variable in
power generation. In particular, it was found that temperature, relative humidity and wind
speed are the features that have the most significant impact on electricity production at the
Praia Formosa wind complex. Another finding is that the generation at the investigated
wind park is higher from August to November.

Wind power forecasting conducted over long-term windows, as explored in this
paper, can assist power dispatch control not only in the northeastern region, but also
throughout the whole country, such as through the National Interconnected System [64],
as the machine intelligence models demonstrated a good accuracy rate over a full year.
While both ensemble-type models, XGB and RF, delivered satisfactory results in terms of
the MAPE and MSE metrics, LSTM stands out as the superior choice. The LSTM-based
framework exhibited high accuracy, achieving a MAPE score of 4.55%. The forecasting
plots for the last month of 2022 attested to the models’ capability to closely mirror actual
energy generation, with LSTM excelling in capturing complex patterns.

Concerning the computational efficiency of the implemented models, it was observed
that XGB reached the fastest processing time among the evaluated methods during the
training phase. However, in the testing stage, the computational demand was notably
reduced for all methods, with the LSTM-based model displaying the fastest inference
time, completing the task in only 0.95 s. These results highlighted the potential use of
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the implemented machine intelligence methods for further applications in wind energy
forecasting, contingent upon the availability of relevant data and tailored adjustments for
different wind farm scenarios.

Apart from introducing a new methodological framework for forecasting energy
generation in large-scale wind farms and conducting in-depth analyses of the gathered data,
this study offers a comprehensive database sourced from multiple official Brazilian agencies.
It caters to the needs of both the industry and researchers interested in investigating wind
generation in large-scale parks, with a particular focus on the Brazilian context.
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9. Acaroğlu, H.; Márquez, F.P.G. Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy.
Energy Convers. Manag. 2021, 14, 7473. [CrossRef]

10. Qian, W.; Sui, A. A novel structural adaptive discrete grey prediction model and its application in forecasting renewable energy
generation. Expert Syst. Appl. 2021, 186, 115761. [CrossRef]

11. Leme, J.V.; Casaca, W.; Colnago, M.; Dias, M.A. Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and
Ensemble Learning Models. Energies 2020, 13, 1407. [CrossRef]

12. Paula, M.; Colnago, M.; Fidalgo, J.N.; Wallace, C. Predicting Long-Term Wind Speed in Wind Farms of Northeast Brazil:
A Comparative Analysis Through Machine Learning Models. IEEE Lat. Am. Trans. 2020, 18, 2011–2018. [CrossRef]

13. Li, J.; Armandpour, M. Deep Spatio-Temporal Wind Power Forecasting. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 4138–4142.

14. Singh, U.; Rizwan, M.; Alaraj, M.; Alsaidan, I. A machine learning-based gradient boosting regression approach for wind power
production forecasting: A step towards smart grid environments. Energies 2021, 14, 5196. [CrossRef]

https://www.mdpi.com/article/10.3390/inventions8050126/s1
https://www.mdpi.com/article/10.3390/inventions8050126/s1
https://scikit-learn.org/stable/
http://doi.org/10.1016/j.ijhydene.2020.05.195
http://dx.doi.org/10.3390/su15054641
https://www.irena.org/publications/2021/Apr/Renewable-Power-Costs-in-2020
https://www.irena.org/publications/2021/Apr/Renewable-Power-Costs-in-2020
http://dx.doi.org/10.3390/resources12080096
http://dx.doi.org/10.3390/app9153019
http://dx.doi.org/10.1016/j.enconman.2019.111823
http://dx.doi.org/10.3390/en14227473
http://dx.doi.org/10.1016/j.eswa.2021.115761
http://dx.doi.org/10.3390/en13061407
http://dx.doi.org/10.1109/TLA.2020.9398643
http://dx.doi.org/10.3390/en14165196


Inventions 2023, 8, 126 19 of 20

15. Optis, M.; Perr-Sauer, J. The importance of atmospheric turbulence and stability in machine-learning models of wind farm power
production. Renew. Sustain. Energy Rev. 2019, 112, 27–41. [CrossRef]

16. Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved
dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [CrossRef]

17. Malska, W.; Mazur, D. Electric energy production in a wind farm—The statistical analysis of measurement results using the time
series. In Proceedings of the Progress in Applied Electrical Engineering (PAEE), Koscielisko, Poland, 25–30 June 2017; pp. 1–5.

18. Shabbir, N.; Kütt, L.; Jawad, M.; Amadiahanger, R.; Iqbal, M.N.; Rosin, A. Wind Energy Forecasting Using Recurrent Neural Net-
works. In Proceedings of the Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 21–22 November
2019; pp. 1–5.

19. Najeebullah, A.Z.; Khan, A.; Javed, S.G. Machine Learning based short term wind power prediction using a hybrid learning
model. Comput. Electr. Eng. 2015, 45, 122–133. [CrossRef]

20. Puri, V.; Kumar, N. Wind energy forecasting using artificial neural network in Himalayan region. Model. Earth Syst. Environ. 2022,
8, 59–68. [CrossRef]

21. Solari, G.; Repetto, M.P.; Burlando, M.; De Gaetano, P.; Pizzo, M.; Tizzi, M.; Parodi, M. The wind forecast for safety management
of port areas. J. Wind. Eng. Ind. Aerodyn. 2012, 104–106, 266–277. [CrossRef]

22. Cheng, W.Y.; Liu, Y.; Bourgeois, A.J.; Wu, Y.; Haupt, S.E. Short-term wind forecast of a data assimilation/weather forecasting
system with wind turbine anemometer measurement assimilation. Renew. Energy 2017, 107, 340–351. [CrossRef]

23. Vaitheeswaran, S.S.; Ventrapragada, V.R. Wind Power Pattern Prediction in time series measuremnt data for wind energy
prediction modelling using LSTM-GA networks. In Proceedings of the International Conference on Computing, Communication
and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–5.

24. Jaseena, K.; Kovoor, B.C. Deep learning based multi-step short term wind speed forecasts with LSTM. In Proceedings of the
International Conference on Data Science, E-Learning and Information Systems, Dubai, United Arab Emirates, 2–5 December
2019; pp. 1–6.

25. Sowmya, C.; Kumar, A.G.; Kumar, S.S. Stacked LSTM recurrent neural network: A deep learning approach for short term
wind speed forecasting. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India,
25–27 June 2021; pp. 1–7.

26. Papazek, P.; Schicker, I. A deep learning LSTM forecasting approach for renewable energy systems. EGU Gen. Assem. 2021,
2021, 19–30.

27. Ziaei, D.; Goudarzi, N. Short-Term Wind Characteristics Forecasting Using Stacked LSTM Networks. In Proceedings of the ASME
Power Conference, Virtual, 20–22 July 2021; Volume 85109, p. V001T09A013.

28. Kumar, D.; Mathur, H.; Bhanot, S.; Bansal, R.C. Forecasting of solar and wind power using LSTM RNN for load frequency control
in isolated microgrid. Int. J. Model. Simul. 2021, 41, 311–323. [CrossRef]

29. Wilczak, J.; Finley, C.; Freedman, J.; Cline, J.; Bianco, L.; Olson, J.; Djalalova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; et al.
The Wind Forecast Improvement Project (WFIP): A Public–Private Partnership Addressing Wind Energy Forecast Needs. Bull.
Am. Meteorol. Soc. 2015, 96, 1699–1718. [CrossRef]

30. Mesa-Jiménez, J.; Tzianoumis, A.; Stokes, L.; Yang, Q.; Livina, V. Long-term wind and solar energy generation forecasts, and
optimisation of Power Purchase Agreements. Energy Rep. 2023, 9, 292–302. [CrossRef]

31. Wang, X.; Liu, Y.; Hou, J.; Wang, S.; Yao, H. Medium- and Long-Term Wind-Power Forecasts, Considering Regional Similarities.
Atmosphere 2023, 14, 430. [CrossRef]

32. Jørgensen, K.L.; Shaker, H.R. Wind Power Forecasting Using Machine Learning: State of the Art, Trends and Challenges. In Pro-
ceedings of the IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August
2020; pp. 44–50.

33. EPE Brazil. Empresa de Pesquisa Energetica. 2022. Available online: https://www.epe.gov.br/en/publications/publications/
brazilian-energy-balance (accessed on 8 January 2023).

34. SIIF Praia Formosa Wind Farm. Global Wind Power Tracker Project. 2023. Available online: https://www.gem.wiki/SIIF_Praia_
Formosa_wind_farm (accessed on 3 February 2023).

35. Ribeiro, R.; Fanzeres, B. Identifying Representative Days of Wind Speed in Brazil Using Machine Learning Techniques. In Pro-
ceedings of the 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2022; pp. 1–5.

36. Gilliland, J.M.; Keim, B.D. Position of the South Atlantic Anticyclone and its impact on surface conditions across Brazil. J. Appl.
Meteorol. Climatol. 2018, 57, 535–553. [CrossRef]

37. de Almeida Yanaguizawa Lucena, J.; Lucena, K.A.A. Wind energy in Brazil: An overview and perspectives under the triple
bottom line. Clean Energy 2019, 3, 69–84. [CrossRef]

38. GWA. Global Wind Atlas. 2023. Available online: https://globalwindatlas.info/ (accessed on 8 January 2023).
39. ONS Brazil. National Electrical System Operator. 2022. Available online: http://ons.org.br (accessed on 3 November 2022).
40. INMET Brazil. National Institute of Meteorology. 2023. Available online: http://www.inmet.gov.br/portal/index.php?r=home2

/index (accessed on 3 January 2023).
41. Lee, J.; Wang, W.; Harrou, F.; Sun, Y. Wind power prediction using ensemble learning-based models. IEEE Access 2020, 8,

61517–61527. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2019.05.031
http://dx.doi.org/10.1016/j.jclepro.2019.118447
http://dx.doi.org/10.1016/j.compeleceng.2014.07.009
http://dx.doi.org/10.1007/s40808-020-01070-8
http://dx.doi.org/10.1016/j.jweia.2012.03.029
http://dx.doi.org/10.1016/j.renene.2017.02.014
http://dx.doi.org/10.1080/02286203.2020.1767840
http://dx.doi.org/10.1175/BAMS-D-14-00107.1
http://dx.doi.org/10.1016/j.egyr.2022.11.175
http://dx.doi.org/10.3390/atmos14030430
https://www.epe.gov.br/en/publications/publications/brazilian-energy-balance
https://www.epe.gov.br/en/publications/publications/brazilian-energy-balance
https://www.gem.wiki/SIIF_Praia_Formosa_wind_farm
https://www.gem.wiki/SIIF_Praia_Formosa_wind_farm
http://dx.doi.org/10.1175/JAMC-D-17-0178.1
http://dx.doi.org/10.1093/ce/zkz001
https://globalwindatlas.info/
http://ons.org.br
http://www.inmet.gov.br/portal/index.php?r=home2/index
http://www.inmet.gov.br/portal/index.php?r=home2/index
http://dx.doi.org/10.1109/ACCESS.2020.2983234


Inventions 2023, 8, 126 20 of 20

42. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]
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