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Abstract: Photovoltaic (PV) systems play a crucial role in clean energy systems. Effective maximum
power point tracking (MPPT) techniques are essential to optimize their performance. However,
conventional MPPT methods exhibit limitations and challenges in real-world scenarios characterized
by rapidly changing environmental factors and various operating conditions. To address these
challenges, this paper presents a performance evaluation of a novel extended grey wolf optimizer
(EGWO). The EGWO has been meticulously designed in order to improve the efficiency of PV systems
by rapidly tracking and maintaining the maximum power point (MPP). In this study, a comparison is
made between the EGWO and other prominent MPPT techniques, including the grey wolf optimizer
(GWO), equilibrium optimization algorithm (EOA), particle swarm optimization (PSO) and sin cos
algorithm (SCA) techniques. To evaluate these MPPT methods, a model of a PV module integrated
with a DC/DC boost converter is employed, and simulations are conducted using Simulink-MATLAB
software under standard test conditions (STC) and various environmental conditions. In particular,
the results demonstrate that the novel EGWO outperforms the GWO, EOA, PSO and SCA techniques
and shows fast tracking speed, superior dynamic response, high robustness and minimal power
fluctuations across both STC and variable conditions. Thus, a power fluctuation of 0.09 W could be
achieved by using the proposed EGWO technique. Finally, according to these results, the proposed
approach can offer an improvement in energy consumption. These findings underscore the potential
benefits of employing the novel MPPT EGWO to enhance the efficiency and performance of MPPT in
PV systems. Further exploration of this intelligent technique could lead to significant advancements
in optimizing PV system performance, making it a promising option for real-world applications.

Keywords: PV system; MPPT; EGWO; GWO; EOA; PSO; SCA

1. Introduction
1.1. Motivations

Solar energy has emerged as one of the most promising renewable energy sources,
offering sustainable and eco-friendly solutions to meet the ever-growing global energy de-
mand over conventional fossil fuel-based sources [1]. Among the various solar technologies,
photovoltaic (PV) systems have garnered significant attention due to their direct conver-
sion of sunlight into electricity [2]. As concerns about climate change and environmental
sustainability intensify, the adoption of PV systems continues to grow in various sectors [3].
PV systems are widely deployed in residential, commercial and industrial applications, as
well as in smart microgrids, contributing to a cleaner and greener future [4,5]. However,
the efficiency of PV systems is strongly influenced by dynamic environmental conditions,
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such as varying solar irradiance and temperature [6]. The maximum power point tracking
(MPPT) technique plays a pivotal role in optimizing the energy extraction from PV modules
under fluctuating conditions [7]. In particular, those techniques enable the PV system to
operate at its maximum power output, ensuring enhanced energy efficiency and increased
power generation [8]. One of the most common devices to integrate MPPT into a PV system
is a DC/DC converter. The boost converter is a type of DC/DC converter that raises the
voltage from the solar panels to a higher level, making it suitable for charging batteries or
feeding power into the grid [9]. The combination of MPPT and a boost converter allows
for real-time tracking of the MPP and an efficient power conversion ratio, optimizing the
system’s energy output and increasing its overall cost-effectiveness [10].

1.2. State of the Art

As the demand for renewable energy sources continues to increase, researchers and
engineers have been actively working to improve the output power of PV systems by
refining MPPT algorithms and other control techniques. The following describes the re-
search progress in recent years. Conventional MPPT methods, such as perturb and observe
(P&O) [11], incremental conductance (INC) [12], fractional open circuit voltage (FOCV) [13],
fractional short circuit current (FSCC) [14] and hill climbing (HL) [15], have been widely
studied and adopted due to their simplicity and effectiveness. These methods employ algo-
rithms that continuously track and adjust the operating point of the PV system to maintain
it at the MPP, thus optimizing its energy conversion efficiency. Although conventional
MPPT techniques have shown satisfactory performance under standard conditions, they
face challenges in real-world scenarios with rapidly changing environmental factors, such
as solar irradiation, temperature and shading [16]. As a result, researchers and engineers
have focused on improving the adaptability, accuracy and robustness of MPPT algorithms
to ensure consistent performance under varying conditions. One of the most popular
classes of optimization algorithms used by researchers is swarm intelligence (SI) or smart
techniques. Those algorithms draw inspiration from the social behavior of various species
and have shown promising results in finding the MPP in solar PV systems. Some notable SI
algorithms include particle swarm optimization (PSO) [17], artificial bee colony algorithm
(ABC) [18], genetic algorithm (GA) [19], ant colony optimization (ACO) [20], firefly algo-
rithm (FA) [21], grey wolf optimizer (GWO) [22], whale optimization algorithm (WOA) [23],
cuckoo search (CS) algorithm [24], artificial fish swarm algorithm (AFSA) [25] and so on.
These swarm MPPT techniques leverage the collective behavior and self-organization of
agents in a swarm to efficiently explore the solution space and find the optimal solution
presented in the operating point of PV systems [26]. Their ability to adapt to changing envi-
ronmental conditions and global optimization make them promising tools for improving
the efficiency of solar energy harvesting. Among the existing research, Mohanty et al. [27]
presented a comparative study evaluating the performance of different MPPT techniques
currently used in solar PV systems. Their work provides valuable insights into the strengths
and weaknesses of these techniques, aiding in the selection of the most appropriate MPPT
method for specific application scenarios. Calvinho et al. [28] proposed a PSO MPPT
technique with a variable step size in order to reduce unwanted power oscillations. Hence,
the results showed that the proposed technique effectively reduces the power oscillation
around the MPP. Rajkumar et al. [29] implemented a GWO MPPT-controlled DC/DC
converter linked to a PV system. The proposed approach effectively addresses certain
drawbacks, such as reduced tracking efficiency, sustained oscillations at the steady state
and transient issues typically encountered in the P&O and PSO methods. Based on the
results obtained from simulations and experimental tests, it is evident that the proposed
MPPT algorithm outperforms both P&O and PSO-based MPPT systems. Soufyane et al. [30]
designed a new MPPT-based ABC optimization technique. The innovative algorithm not
only overcomes the limitations commonly associated with traditional MPPT methods
but also provides a straightforward and robust MPPT solution. The effectiveness of this
method is verified using a co-simulation approach, combining Matlab/Simulink and Ca-
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dence/Pspice, to compare its performance with the PSO-based MPPT algorithm under
dynamic weather conditions. Additionally, experimental validation is conducted using
a laboratory setup. Both simulation and experimental results confirm the effectiveness
of the proposed approach. Compared to the PSO-based MPPT algorithm, the new ABC
demonstrated superior tracking performance in locating the global MPP, especially under
partially shaded and dynamic weather conditions. Notably, the ABC is not sensitive to ini-
tial conditions and does not require knowledge of the PV array characteristics. Furthermore,
experimental results affirm its ability to accurately track the MPP of the PV array under par-
tial shading conditions. Priyadarshi et al. [31] implemented a hybrid solar–wind standalone
power system equipped with an MPPT to generate electrical power for residential applica-
tions in rural areas. To efficiently harness power from the wind energy system, an ACO
algorithm is employed. In contrast to classical proportional-integral (PI) control, the study
adopts a fuzzy logic control (FLC) inverter control strategy. The MPPT functionality is
executed using a single cuk converter acting as an impedance power adapter, eliminating
the need for additional voltage and current circuits, thereby enhancing the conversion
efficiency of the converter and maximizing power output stages. According to the results,
the proposed ACO facilitates rapid battery charging and efficient power distribution within
the hybrid PV–wind system. Notably, the ACO demonstrated a sevenfold faster conver-
gence rate compared to the PSO technique in achieving the MPP and tracking efficiency.
Ahmed et al. [32] outlined the concept of CS MPPT by highlighting the significance of
Lévy flight in influencing the algorithm’s convergence. This, finally, explained the main
equations that govern the behavior of the search. To justify CS as a viable MPPT option,
a comprehensive assessment was carried out against two well-established methods, P&O
and PSO. The evaluations included: gradual irradiance and temperature changes, step
changes in irradiance, and finally, rapid changes in both irradiance and temperature. These
tests were conducted for both large and medium-sized PV systems. Furthermore, the ability
of the algorithm to handle the partial shading condition was demonstrated. The results
showed that CS was capable of tracking MPP within 100–250 ms under various types of
environmental changes. Additionally, the power loss in steady state due to MPP mismatch
was only 0.000008%. Furthermore, it could handle the partial shading condition very effi-
ciently. As a result, CS outperformed both P&O and PSO with respect to tracking capability,
transient behavior and convergence. However, some MPPT systems combine multiple
algorithms or employ adaptive techniques to switch between algorithms based on specific
conditions. Hybrid methods can optimize the MPPT performance under different weather
and environmental conditions. In the pursuit of further improving the performance of
conventional MPPT techniques, researchers have explored innovative hybrid approaches.
For instance, an improved P&O algorithm, ABC, was proposed by [33], which combines the
simplicity of the P&O method and the intelligent search capabilities of the ABC algorithm.
This integration results have faster convergence and increased accuracy in tracking the MPP,
overcoming some of the limitations of the traditional P&O technique. Figueiredo et al. [34]
introduced a hybrid P&O-PSO MPPT technique and evaluated its performance against
traditional methods, including P&O and the standard PSO. Simulation outcomes demon-
strated that the proposed hybrid algorithm excelled in tracking the global MPP under
both uniform and partial shading conditions, with a tracking time 50% shorter than the
standard PSO technique. Additionally, the proposed method extracted 0.3% more power
from the photovoltaic system compared to the P&O-PSO hybrid approach, highlighting its
effectiveness in improving energy generation. Chao et al. [35] combined two sequential
convex methods (SCMs), GA and ACO, in order to enhance the robustness and speed of the
MPPT technique. In the simulation conducted using Matlab, a GA-ACO MPPT controller
was employed, utilizing four SunPower SPR-305NE-WHT-D PV modules connected in
series, each with a maximum power rating of 305.226 W. These tests were performed under
partial shade conditions to assess the performance of the newly proposed MPPT controller.
The results were subsequently analyzed and compared with those obtained from P&O
MPPT and conventional ACO MPPT techniques. The proposed GA-ACO emerged as the
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swiftest performer, occasionally approaching the global MPP as early as the first iteration.
In contrast, both the P&O MPPT and ACO MPPT algorithms required over 20 iterations to
find a solution, and they often fell short of reaching the global MPP altogether. Addition-
ally, the GA-ACO achieved its objectives in just 10 iterations, sometimes even fewer. This
translated to a speed advantage of at least 50% over the other two algorithms. Furthermore,
the GA-ACO exhibited accuracy, stability and robustness, consistently reaching the global
MPP quickly, even under challenging conditions. In line with the quest for enhanced
performance and adaptability in renewable energy systems, the optimization techniques
mentioned above have showcased their potential to bolster the effectiveness of PV systems
and microgrids. These advancements have primarily centered around improving control
strategies, robustness and frequency stability. However, an equally crucial aspect that
demands attention is the scalability of these methods to accommodate diverse system
sizes and configurations, given the growing prevalence of large-scale PV installations and
high-res renewable energy penetration in microgrids. The ability to seamlessly adapt
to varying scales is a fundamental requirement for these techniques to be effective in
real-world applications, from small residential PV arrays to expansive utility-scale solar
farms and complex microgrid networks. Hence, Kerdphol et al. [36] introduced H∞ ro-
bust control to enhance frequency stability in high-RES-penetration islanded microgrids,
overcoming issues of weakened system inertia. The comparative analysis demonstrates
superior frequency tracking and disturbance attenuation, making the H∞-based virtual
inertia controller a robust solution for such microgrids. Carli et al. [37] addressed an energy
scheduling in a network of users sharing a renewable energy source. It combines social
welfare optimization for energy allocation and cost optimization for user appliances under
time-varying pricing. A decentralized optimization algorithm, using Gauss–Seidel decom-
position and competitive games is proposed. Case studies in various scenarios show that
this approach leverages renewable energy sharing to reduce individual costs, manage peak
loads and meet customer energy needs effectively.

1.3. Contributions

This paper focuses on implementing an innovative extended grey wolf optimizer
(EGWO) MPPT for PV systems. Hence, the EGWO is employed to address the control
problem that conventional population-based algorithms face due to their limited ability
to efficiently handle uncertainty and nonlinear systems, as well as their inflexibility in
adapting to changing environmental conditions. The objective is to explore and validate the
effectiveness of the proposed technique in order to improve the performance of PV systems.
Hence, a comparative study was conducted under four techniques: the conventional grey
wolf optimizer (GWO), particle swarm optimization (PSO), equilibrium optimization algo-
rithm (EOA) and sin cos algorithm (SCA). The proposed EGWO-based MPPT algorithm is
designed to dynamically adjust the duty cycle of the DC/DC boost converter, regulating
the voltage and current to achieve the MPP of the PV system. By optimizing the duty cycle
in real-time, the PV system can continuously track the MPP, irrespective of changes in
environmental conditions, leading to improved energy harvesting efficiency. Through com-
prehensive simulations, the aim was to compare the performance of the MPPT techniques
in terms of efficiency and minimal power fluctuations. The comparative results shed light
on the superior capabilities of the EGWO algorithm in achieving higher energy conversion
efficiency and stability under dynamic operating conditions.

1.4. Structure Overview

This paper is divided into three sections. Section 2 describes the PV system plant
modeling. Section 3 is devoted to the MPPT control technique. Section 4 presents simulation
results and the conclusions.
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2. PV System Plant Modeling
2.1. PV Mathematical Model

In the context of PV systems, a mathematical model is used in order to describe
the behavior and performance of a PV module or array under varying environmental
conditions. This model helps predict the electrical output of the PV system based on
factors, such as solar irradiance, temperature and the characteristics of the PV components.
The fundamental equation governing the output current Iout of a PV system is given by
the following Equation [38]:

Iout = Iph − Id − Ish (1)

where Ish refers to the shunt or parallel resistance current, which is given by the follow-
ing [38]:

Ish =
V + I · Rs

Rsh
(2)

where V is the voltage across the PV cell, I is the current of the PV cell (output current), Rs
is the resistance of the cell in series and Rsh is the resistance of the shunt.

The current generated by light (Iph) in a photovoltaic cell is a critical parameter that
represents the amount of current produced by the cell when exposed to light. It is directly
proportional to the incident light intensity on the solar cell. The mathematical equation to
calculate Iph is given as follows [39]:

Iph = [Isc + KI(Tc − Tr)]×
G

GSTC
(3)

where Isc represents the short-circuit current, which is the current produced by the pho-
tovoltaic cell when its terminals are short-circuited, and the voltage across the terminals
is zero, KI is the temperature coefficient of the short-circuit current. It describes how the
short-circuit current varies with changes in temperature, Tc refers to the cell temperature,
Tr denotes the reference temperature in degrees (◦C), which is a standard temperature
used as a reference point for calculating the temperature-dependent parameters, G and
GSTC represents the actual irradiance or light intensity falling on the photovoltaic cell and
the standard test condition irradiance, which is a reference irradiance value used for stan-
dardizing photovoltaic cell performance measurements, respectively (W/m2). The diode
current Id in a PV system can be calculated using the diode equation, which describes the
current–voltage characteristic of a diode. The diode current can be expressed as follows [40]:

Id = Is

(
e

q·Vd
n·KTc − 1

)
(4)

where Is is the reverse saturation current of the diode, q is the electron charge (coulombs
(C)), n is the diode ideality factor, K is the Boltzmann constant (m2·kg·s−2·K−1) and Vd is
the voltage of the equivalent diode, which is calculated as follows [41]:

Vd = V + I·Rs (5)

Finally, the total current generated by the PV cell Ipv is given by [41]:

Ipv = Iph − I0

(
exp

(
q(V + I · Rs)

n · K · Tc · Ns

)
− 1

)
(6)

where Ns is the number of series-connected cells used to adjust the current based on the
cell configuration. The specification values of the PV array type (Sun Earth Solar Power
TDB156x156-60-P 215W) under standard test conditions (STC) considered in the simulation
are listed in Table 1.
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Table 1. Photovoltaic array model parameter values.

Specifications Value

Maximum power (W) 215.028
Cells per module (Ncell) 60

Open circuit voltage Voc (V) 36.8
Short-circuit current Isc (A) 7.92

Voltage at maximum power point Vmp (V) 29.7
Current at maximum power point Imp (A) 7.24
Temperature coefficient of Voc (%/deg.C) −0.34
Temperature coefficient of Isc (%/deg.C) 0.05

2.2. DC/DC Boost Converter

This study focuses on the modeling and control of a DC/DC converter, specifically a
step-up converter, in the context of a PV system. This type of converter has the ability to
step up a lower input voltage into a higher output voltage via a controlled pulse-width-
modulation (PWM) switching technique. In this context, the duty cycle (d) determines the
average output voltage. A higher duty cycle results in a higher average voltage, and a
lower duty cycle results in a lower average voltage. The PWM controllers use feedback
mechanisms to adjust the duty cycle of the converter to track the MPP of the PV module
under changing environmental conditions. DC/DC converters are essential components
in PV systems, allowing voltage step-up or step-down operations, depending on the load
requirements [42]. The boost converter duty cycle behavior is mathematically described by
Equation (7) [43].

d = 1− Vin
Vout

(7)

This work explores a closed-loop system (Figure 1) that includes the step-up converter
and the integration of an MPPT with the PV system. The primary objective is to enhance
the overall performance and efficiency of the PV system by accurately determining and
tracking the MPP of the PV module under varying environmental conditions. Such a
control approach can find applications in various large-scale systems [44–47], where the
high efficiency of conversion of power is crucial [48]. The study explores the effectiveness
of the proposed MPPT technique in optimizing the performance of the PV system and
ensuring reliable power delivery.

Figure 1. Closed-loop system.

3. MPPT Control Method
3.1. Extended and Grey Wolf Optimizers

The grey wolf optimizer (GWO) is a nature-inspired swarm intelligence algorithm
that draws inspiration from the cooperative hunting behavior of grey wolves. In the
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wild, wolves are known for their remarkable group dynamics and hierarchical leadership
structure during hunts. The GWO algorithm models this social hierarchy to search for
optimal solutions in complex optimization problems efficiently. The population of wolves
in GWO is divided into four groups: alpha (α), beta (β), delta (δ) and omega (ω). The α, β
and δ wolves are considered the most influential and dominant, while the ω wolves are the
weaker members guided by the top three in exploring promising regions of the solution
space. By mimicking the collaboration and leadership within a wolf pack, the GWO
algorithm effectively strikes a balance between exploration and exploitation, making it a
powerful optimization tool [49].

3.1.1. GWO Mathematical Model

The main stages of the GWO are based on the following behaviors [50]:

• Social Hierarchy: The social hierarchy of the wolves is represented by four positions:
Xα, Xβ, Xδ and Xω . These positions represent the best, second-best, third-best and the
rest of the wolves in the population, respectively.

• Encircling behavior: Entails the coordinated movement of group members toward a
specific target position while tightening the search area around it. The wolves con-
centrate their exploration around influential leaders (α, β, δ), optimizing the balance
between exploration and exploitation. This approach enables the algorithm to effec-
tively discover optimal or near-optimal solutions for complex optimization problems.
The encircling behavior equations are given as follows [49]:

−→
D = |−→C · −→Xp(t)−

−→
X (t)| (8)

−→
X (t + 1) = |−→Xp(t)−

−→
A · −→D | (9)

where
−→
X (t + 1) is the updated position of the i− th wolf at time step t + 1,

−→
X (t) is

the current position of the wolf,
−→
Xp is the position of the targeted wolf,

−→
A and

−→
C are

random coefficients vectors that determine the encircling behavior which lies in the
range [−1, 1]. The equation to generate the

−→
A and

−→
C vectors are given as follows [49]:

−→
A = 2−→a · −→r 1 −−→a (10)

−→
C = 2 · −→r 2 (11)

where −→a is a random coefficient vector with elements uniformly decreased from 2 to
0, and −→r 1, −→r 2 are random coefficient vectors with elements uniformly distributed in
[−1,1].

• Follow, hunt and approach the prey: The α, β, δ wolves guide the ω wolves toward
promising regions. The updated position for each omega wolf is determined by the
influence of the α, β and δ wolves as follows:

−→
Dα = |−→C1

−→
Xα(t)−

−→
X (t)|,−→X 1 =

−→
Xα −

−→
A1 ·
−→
Dα (12)

−→
Dβ = |−→C2

−→
Xβ(t)−

−→
X (t)|,−→X 2 =

−→
Xβ −

−→
A2 ·
−→
Dβ (13)

−→
Dδ = |

−→
C3
−→
Xδ(t)−

−→
X (t)|,−→X 3 =

−→
Xδ −

−→
A3 ·
−→
Dδ (14)

Therefore, the updated position of all search agents is given by [49]:

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(15)



Inventions 2023, 8, 142 8 of 20

3.1.2. EGWO Mathematical Model

In contrast, the EGWO introduces an array of enhancements to augment the algo-
rithm’s exploration–exploitation balance and convergence speed. These include the incor-
poration of three dynamic coefficients to control the exploration rate, a finer initialization
of the population for increased diversity and the utilization of the mean position of the
population for solution updates. Such modifications empower EGWO with enhanced
adaptability, making it particularly well-suited for complex optimization problems requir-
ing swift convergence and robust global search. The updated position of all search agents
using EGWO is given as follows [51]:

−→
X (t + 1) =

αem
−→
X1 + βem

−→
X2 + δem

−→
X3

3
(16)

where αem > βem > δem are called the emphasis coefficients.

3.1.3. EGWO and GWO Application for MPPT

The primary objective is to maximize the output power (P) from the PV array by
optimizing the duty cycle (d), which represents the fraction of time a power converter is on.
According to [52], the objective function is defined as follows:

dmin ≤ d ≤ dmax (17)

The sequential procedure for achieving the MPP using the EGWO and GWO MPPTs
algorithms unfolds as follows:

• Initialization: The optimization process starts with the initialization of a popula-
tion Np (represented by wolves) in the search space. The duty ratio di is initialized
(Equation (18)) randomly within the defined limits, ranging from 0.1 to 0.9.

di = rand(Np, 1)(dmax − dmin) + dmin (18)

• Evaluation: The fitness values, corresponding to the PV power output, are calculated
for each member of the population. The wolves with the highest PV power values are
assigned as dα (the best solution), dβ (the second-best solution) and dδ (the third-best
solution).

• Updating Positions: The positions di (duty ratios) of the wolves in the population are
updated based on the positions of dα, dβ and dδ, the best, second and the third-best
solutions, respectively. This update aims to explore the search space more effectively
and improve the duty ratios. The updated position of all search agents using GWO
and EGWO is given as follows [52]:

−→
Dα = |−→C1

−→
dα −

−→
di |,
−→
d 1 =

−→
dα −

−→
A1 ·
−→
Dα (19)

−→
Dβ = |−→C2

−→
dβ −

−→
di |,
−→
d 2 =

−→
dβ −

−→
A2 ·
−→
Dβ (20)

−→
Dδ = |

−→
C3
−→
dδ −

−→
di |,
−→
d 3 =

−→
dδ −

−→
A3 ·
−→
Dδ (21)

where
−→
d1 ,
−→
d2 ,
−→
d3 are the duty cycle direction vectors for the α, β and δ wolves,

respectively. In the EGWO and GWO algorithms with direct duty-cycle control for
MPPT in PV systems, the updated duty cycle vector d(t + 1) is determined based on
the power output of the wolves. Hence, using (15), (16), (19), (20) and (21), the duty
cycle update equation for GWO and EGWO are given as follows, respectively:

−→
di (t + 1) =

−→
d1 +

−→
d2 +

−→
d3

3
(22)



Inventions 2023, 8, 142 9 of 20

−→
di (t + 1) =

αem
−→
d1 + βem

−→
d2 + δem

−→
d3

3
(23)

• Termination: The termination condition is determined by the maximum number of
iterations reached or when the relative change in PV power compared to the previous
iteration’s power becomes negligible. The termination criterion is defined as follows:

|Ppv − Ppv,old|
Ppv,old

≥ ∆p (24)

where Ppv represents the PV power calculated for the current duty cycle, Ppv,old repre-
sents the PV power calculated for the previous duty cycle and ∆p is set to 10%, repre-
senting the predefined threshold for the relative change in the PV power. The EGWO
MPPT flowchart is given in Figure 2.

Figure 2. Extended grey wolf optimizer (EGWO) maximum power point tracking (MPPT)
flowchart [52].

4. Simulation Results

This research aims to extract the maximum power from a PV system. The application
involves using the EGWO algorithm for MPPT control. The primary goal is to ensure that
the PV system operates at the desired MPP, extracting the highest possible power output
under different scenarios applied to validate the MPPT technique robustness. The DC/DC
boost converter parameters used in the simulation are summarized in Table 2.
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Table 2. Boost converter parameters value.

Specifications Value

Inductance (L) 0.15 H
In capacitor (C) 100 × 10−6 F

Out capacitor (C) 470 × 10−6 F
Max fSW 10 kHz

Load 32 Ohm

Figure 3 illustrates the P–V curve of the PV array (Sun Earth Solar Power TDB156x156-
60-P 215W) under different irradiance levels and temperatures. Additionally, the proposed
MPPT parameters are listed in Table 3.

Figure 3. Photo–voltaic curve. (a): Temperature variations. (b): Irradiance variations.

Table 3. Parameters of maximum power point tracking (MPPT) algorithms.

Parameter EGWO GWO PSO EOA SCA

Population size (Np) 20 20 20 20 20
Maximum number of iterations (tmax) 100 100 100 100 100

A and C Random Random − − −
αem 1.5 − − − −
βem 1.2 − − − −
δem 1.1 − − −

winertia − − 0.7 − −
Ccognitive − − 1.4 − −

Csocial − − 1.4 − −
a1 − − − 2 −
a2 − − − 1 −

GP − − − 0.5 −
r1,2,3,4 − − − − Random in [0, 1]

4.1. First Scenario: Under Standard Test Conditions (STC)

In this condition, the solar irradiance is set to a constant value of 1000 W/m2, repre-
senting the solar radiation intensity on a clear day. The cell temperature is maintained at
25 ◦C, which is often referred to as the module temperature and represents the typical oper-
ating temperature of PV cells during testing. Figure 4 shows the PV system power under
EGWO, GWO, PSO, EOA and SCA. The results indicate that EGWO exhibits outstanding
performance, demonstrating a rapid response time and minimal power fluctuations around
the MPPT point, with a power oscillation (OS) of approximately 0.09 W. On the other hand,
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the GWO ranks as the second-best performer among the algorithms tested, with a power
oscillation of 0.266 W, highlighting its ability to maintain stable power output near the
MPPT point under the specified conditions. However, it is important to note that the power
oscillations, such as those observed with PSO, SCA and EOA algorithms (0.731 W, 0.729 W,
and 1.044 W, respectively), can have significant consequences. These oscillations can lead
to efficiency losses, decreased PV system lifespan, reduced energy yield and adverse effects
on systems with energy storage.

Figure 4. Photovoltaic power under standard test conditions.

4.2. Second Scenario: Variable Irradiance and Constant Temperature

Figure 5 represents the second scenario. In this scenario, variable irradiance is applied
from a lower value of 850 W/m2 to 1000 W/m2 at a constant temperature T = 25 ◦C.

Figure 6 shows the PV system power under EGWO, GWO, PSO, EOA and SCA.
The results indicate for the second time that the EGWO exhibits outstanding performance
in terms of minimal power fluctuations around the MPPT point, with a power oscillation
equal to 0.09 W. Meanwhile, at the application of the irradiance (period of 1.5 s and 2 s) the
GWO, PSO, SCA and EOA algorithms show a power oscillation equal to 0.266 W, 18.401 W,
15.796 W and 26.671 W, respectively. Although, at the period of 4 s and 5 s, the EGWO and
GWO keep the same performance in terms of low power osculation. On the other hand,
the PSO, EOA and SCA algorithms show a power oscillation equal to 15.902 W, 35.9121 W
and 33.963 W, respectively.
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Figure 5. Variable irradiance at a temperature of 25 ◦C.

Figure 6. Photovoltaic power under variable irradiance and fixed temperature.

4.3. Third Scenario: Variable Temperature and Constant Irradiance

Figure 7 represents the third scenario. In this scenario, temperature variations are
applied from a lower value of 25 ◦C to a higher value of 40 ◦C, while the irradiance is
considered fixed at whole.
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Figure 7. Variable temperature at actual irradiance (G) = 1000 W/m2.

Figure 8 shows the PV system power under EGWO, GWO, PSO, EOA and SCA. In this
scenario, the EGWO and GWO kept the same oscillation performance in different periods
when the change of temperature was applied. The application of the change of temperature
(period of 1.5 s and 2 s) for the PSO, SCA and EOA algorithms shows a power oscillation
equal to 1.919 W, 2.035 W, and 2.035 W, respectively. Otherwise, at the period of 2.5 s and
3.5 s, the PSO, SCA and EOA algorithms show a power oscillation equal to 4.795 W, 2.517 W
and 3.361 W, respectively. On the other hand, at the period of 4 s and 5 s, the PSO, SCA
and EOA algorithms show a power oscillation equal to 1.496 W, 5.448 W and 10.759 W,
respectively.

Figure 8. Photovoltaic power under variable temperature and fixed irradiance.

4.4. Fourth Scenario: Variable Temperature and Irradiance

Figure 9 represents the fourth scenario. In this scenario, variable temperature and
irradiance are applied at the same periods.
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Figure 9. Variable irradiance and temperature.

Figure 10 shows the PV system power under EGWO, GWO, PSO, EOA and SCA.
In this scenario, the EGWO and GWO again keep the same performance in different
periods when the change of temperature and irradiance are applied. The application of
the change of temperature and irradiance (period of 1 s and 5 s) in the PSO, SCA and
EOA algorithms shows a power oscillation equal to 37.901 W, 35.379 W, and 39.323 W,
respectively. According to these results, the increased oscillation observed in the PSO, SCA
and EOA algorithms when there is a change in irradiance and temperatures is attributed
to their slower response to sudden environmental changes. Hence, these algorithms
take some time to adapt to new conditions, causing power oscillations as they seek the
optimal operating point. Factors like algorithm complexity, parameter tuning, and transient
environmental conditions can all contribute to this behavior. To mitigate such oscillations
in dynamic environments, careful parameter tuning and consideration of algorithm design
are essential.
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Figure 10. Photovoltaic power under variable irradiance and temperature.

In summary, the performance of the various MPPT algorithms was assessed under dy-
namic environmental conditions across multiple scenarios. In the first scenario, wherein solar
irradiance was maintained at a constant value of 1000 W/m2, and cell temperature was held
at 25 ◦C, the superior performance of the EGWO algorithm was observed, characterized by
rapid response and minimal power fluctuations. The GWO was identified as the second-best
performer, as it demonstrated the ability to maintain a stable power output near the MPPT
point. Conversely, other algorithms, such as the PSO, EOA and SCA, exhibited power oscilla-
tions, highlighting the potential for efficiency losses and reduced energy yield. In the second
scenario, which introduced simultaneous changes in irradiance and temperature, heightened
oscillations were observed in the PSO, SCA and EOA algorithms, owing to their complex
responses to dynamic environmental conditions and interactions between variables. In the
third and fourth scenarios, involving temperature variations, EGWO and GWO consistently
maintained their performance, while varying levels of power oscillations were observed in
the PSO, SCA and EOA algorithms. These findings underscore the importance of selecting
appropriate MPPT algorithms tailored to specific environmental scenarios to minimize oscilla-
tions and optimize the overall efficiency of PV systems. Moreover, scalability plays a vital role
in extending the application of these techniques to diverse system sizes and configurations.
As we delve into the design and application of the proposed EGWO MPPT technique, it
is essential to recognize that scalability is a critical aspect to be considered. The ability to
optimally coordinate and share resources in large-scale PV systems is paramount, especially
in the evolving energy landscape. The EGWO-based MPPT approach is inherently designed
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for scalability, making it a versatile solution that efficiently adapts to systems of varying scales,
such as small residential PV installations or a large utility-scale solar farm. The performance
comparison of MPPT algorithms in different scenarios in terms of power fluctuations is
presented in Table 4.

Table 4. Performance comparison of maximum power point tracking algorithms in different scenarios.

Algorithm Scenario 1
(Oscillation)

Scenario 2
(Oscillation)

Scenario 3
(Oscillation)

Scenario 4
(Oscillation)

EGWO Excellent (0.09 W) Excellent (0.09 W) Excellent (0.09 W) Excellent (0.09 W)

GWO Good (0.266 W) Good (0.266 W) Good (0.266 W) Good (0.266 W)

PSO Poor (0.731 W) Poor (18.401 W) Poor (1.919 W) Poor (37.901 W)

EOA Poor (1.044 W) Poor (26.671 W) Poor (2.035 W) Poor (39.323 W)

SCA Poor (0.729 W) Poor (15.796 W) Poor (2.035 W) Poor (35.379 W)

5. Conclusions

In conclusion, this study provides valuable insights into the performance of MPPT al-
gorithms in PV systems integrated with DC/DC converters. The results reveal the strengths
and weaknesses of various MPPT techniques under diverse environmental scenarios. No-
tably, the EGWO stands out as a top-performing algorithm, consistently exhibiting swift
response times and minimal power fluctuations around the MPP. This robust performance
positions EGWO as a promising choice for real-world applications subject to variable envi-
ronmental conditions. The GWO also demonstrates commendable stability and efficiency,
making it a reliable alternative. However, this study underscores the limitations of other
techniques, like PSO, EOA and SCA, which exhibit undesirable power oscillations under
dynamic conditions, potentially leading to efficiency losses and reduced energy yield in PV
systems. Therefore, careful selection of an appropriate MPPT algorithm tailored to specific
operational requirements and environmental variability is of paramount importance.

Looking forward, this research offers several directions for future investigations.
Researchers can delve into the integration of advanced techniques to further enhance MPPT
adaptability in response to dynamic environmental changes. Exploring the performance of
these algorithms across various renewable energy sources can provide a comprehensive
understanding of their applicability. Additionally, in the managerial realm, the study
highlights the significance of algorithm selection in optimizing the performance of PV
systems, which can reduce operational costs and enhance energy conversion efficiency.

Nevertheless, it is important to recognize the limitations of this study. The performance
evaluation primarily relies on simulations, and real-world applications may introduce
additional complexities. Therefore, field studies and experimental validation are crucial
to bridge the gap between simulation results and practical implementations. Moreover,
this study predominantly focuses on a specific type of PV module, and it is important to
consider the diverse responses of various PV technologies to MPPT algorithms.

In summary, this research not only advances our understanding of MPPT algorithms
but also provides valuable insights for future research directions and managerial considera-
tions within the renewable energy industry. By addressing these avenues and acknowledg-
ing the study’s limitations, we can further enhance the efficiency and practical applicability
of PV systems.
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Abbreviations
The following abbreviations and nomenclatures are used in this manuscript:

MPPT Maximum power point tracking
MPP Maximum power point
EGWO Extended grey wolf optimizer
GWO Grey wolf optimizer
EOA Equilibrium optimization algorithm
PSO Particle swarm optimization
SCA Sin cos algorithm
P&O Perturb and observe
INC Incremental conductance
FOCV Fractional open circuit voltage
FSCC Fractional short circuit current
HL Hill climbing
ABC Artificial bee colony algorithm
GA Genetic algorithm
ACO Colony optimization
FA Firefly algorithm
WOA Whale optimization algorithm
CS Cuckoo search
AFSA Artificial fish swarm algorithm
PWM Pulse width modulation
d Duty cycle
P PV system power (W)
Iout Cell current
Iph Current generated by light
Id Diode’s current
Ish Current of the parallel resistance
I0 Reverse saturation current
V Voltage across the PV cell
Vd Voltage of the equivalent diode
Rs Series resistance
Rsh Parallel resistance
G Actual irradiance
GSTC Irradiance at standard rating conditions
K Boltzmann constant
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q Electron charge
Tc Cell temperature
Tr Reference temperature
n Diode ideality factor
Ns Number of series cells
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