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Abstract: The signal detection problem for cyclostationary signals is addressed within the fraction-
of-time probability framework, where statistical functions are constructed starting from a single time
series, without introducing the concept of stochastic process. Single-cycle detectors and quadratic-
form detectors based on measurements of the Fourier coefficients of the almost-periodically time-
variant cumulative distribution and probability density functions are proposed. The adopted fraction-
of-time approach provides both methodological and implementation advantages for the proposed
detectors. For single-cycle detectors, the decision statistic is a function of the received signal and the
threshold is derived using side data under the null hypothesis. For quadratic-form detectors, the
decision statistic can be expressed as a function of the received signal without using side data, at
the cost of some performance degradation. The threshold can be derived analytically. Performance
analysis is carried out using Monte Carlo simulations in severe noise and interference environments,
where the proposed detectors provide better performance with respect to the analogous detectors
based on second- and higher-order cyclic statistic measurements.

Keywords: cyclostationarity; weak-signal detection; fraction-of-time probability

1. Introduction

Cyclostationarity is a property exhibited by almost all modulated signals adopted in
communications, radar/sonar, and telemetry [1,2]. Cyclostationary signals exhibit statistical
functions, such as the cumulative distribution, probability density, autocorrelation, moments,
and cumulants that are periodic functions of time. More generally, these statistical functions
can be almost periodic [3]; that is, they can be expressed by the superposition of sine waves
with possibly incommensurate frequencies. In such a case, the signals are referred to as almost
cyclostationary (ACS). The statistical properties of ACS signals are suitably described by the
Fourier coefficients, referred to as cyclic statistics, of these almost-periodic functions. The
frequencies of the (generalized) Fourier series expansions are related to signal parameters such
as the carrier frequency, baud rate, and sampling or scanning frequency. Thus, the frequencies
of the harmonics, referred to as cycle frequencies, are a characteristic of a signal. In particular,
signals having different abovementioned parameters exhibit different cycle frequencies. This
fact has been exploited for the design of detection and estimation algorithms that are signal
selective. In fact, in the presence of a mixture of signal of interest (SOI) and disturbance,
characteristics of the SOI alone can be estimated, provided that a cycle frequency of the SOI
exists, which is not shared with the disturbance signal, regardless of the temporal and spectral
overlap of the SOI and disturbance [1] (Chapter 14), [2] (Section 9.2).

Several cyclostationarity-based detectors have been presented in the literature. Single-
cycle and multi-cycle detectors are proposed in [4–6], with reference to second-order
statistics, and in [7], with reference to higher-order statistics. A statistical test for the
presence of cyclostationarity is proposed in [8] and its application to signal detection is
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discussed in [2] (Section 8.4), [9]. A statistical test for the presence of spectral coherence
is proposed in [10]. Spectral coherence is also exploited in [11,12]. Detection strategies
based on the estimated confidence interval of estimated cyclic statistics are presented
in [2] (Section 8.7). They are based on the results in [13]. Applications to cognitive radio
are presented in [14–18]. The case of an unknown cyclostationarity period is addressed
in [19,20]. The case of irregular cyclicity is treated in [21–24].

All the of abovementioned cyclostationarity-based detectors exploit measurements
of second- or higher-order cyclic statistics. In this paper, a new class of cyclic detectors is
proposed. Specifically, detectors based on measurements of the Fourier coefficients of the
almost-periodically time-variant cumulative distribution function (CDF) and probability
density function (pdf) are introduced. Numerical results presented here show that perfor-
mance gains can be obtained by constructing cyclostationarity-based detectors that exploit
these cyclic statistical functions.

In practical detection problems, a single realization of the received signal is available
and a decision on the hypothesis “SOI not present” (null hypothesis) or “SOI present” (al-
ternative hypothesis) must be taken on the basis of this unique observed signal. That is, no
ensemble of realizations is available for making the decision. For this reason, in this paper,
the statistical characterization of the received signal and of its cyclic statistical function
measurements is made using the fraction-of-time (FOT) probability approach. In such an
approach, a signal is modeled as a single function of time, rather than a realization of a
stochastic process [1,25–28]. Then, statistical functions such as distribution, autocorrelation,
moments, and cumulants are constructed, starting from this unique function of time. This
approach has the methodological advantage that the statistical characterization of the mea-
surements of the cyclic statistical functions of the received signal can be performed without
resorting to any abstract stochastic process. The advantage is not only methodological but
also in the detector implementation. In fact, a class of detectors is presented here such that
the decision statistic is derived exclusively from the received signal, with no aid from side
data under the null hypothesis, and the threshold is analytically determined.

Two classes of cyclostationarity-based detectors are considered: single-cycle (SC)
detectors, and quadratic-form (QF) detectors. For each class, the decision statistic is
constructed using measurements of the Fourier coefficients of the almost-periodically time-
variant CDF and pdf. Moreover, for comparison purposes, analogous detectors based on
measurements of second- and higher-order cyclic statistic are also considered.

Performance analysis in a very severe noise and interference environment is carried
out via Monte Carlo simulations.

The novel contributions of this paper are (i) the proposal of new cyclostationarity-
based detection tests that exploit the almost-periodicity of the first-order FOT CDF and pdf;
(ii) the proposal of new kernel-based cyclic CDF and pdf estimators; (iii) the exploitation of
the FOT approach to statistically characterize the decision statistic, in order to analytically
derive the detection threshold; and (iv) the presentation of the cyclostationarity-based
detectors in a unified framework that accommodates both existing and new detectors.

The paper is organized as follows: The materials and methods are presented in
Section 2. Specifically, in Section 2.1, the signal decomposition into an almost-periodic
component and a residual term is considered; in Section 2.2, the definitions and notation for
signal analysis in the FOT approach for almost-cyclostationary signals are briefly reviewed.
In Section 2.3, estimators for FOT cyclic statistical functions are presented. Specifically,
the estimator for the cyclic CDF (Section 2.3.1), the new proposed kernel-based estimators
for the cyclic CDF and pdf (Section 2.3.2), estimators for cyclic autocorrelation (Section 2.3.3),
the cyclic spectrum (Section 2.3.4), and the 4th-order cyclic moment (Section 2.3.5) are con-
sidered. The detection problem is stated in Section 2.4 and cyclostationarity-based detectors
are presented in a unified general formalism that accommodates several detection strategies.
Single-cycle detectors are treated in Section 2.5, and quadratic-form detectors in Section 2.6.
QF detectors based on measurements of the cyclic autocorrelation, spectrum, and moment
are addressed in Section 2.6.1. A new class of QF detectors based on measurements of the
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cyclic CDF and pdf is presented in Section 2.6.2. For QF detectors, the detector structure is
presented in Section 2.6.3. A statistical test for the presence of cyclostationarity is described
in Section 2.6.4. The numerical results are reported in Section 3. The simulation setup is
described in Section 3.1. The cases of threshold determined using Monte Carlo simula-
tion and of analytically derived threshold are treated in Sections 3.2 and 3.3, respectively.
Performance analysis is carried out in Section 3.4, in terms of the probability of missed
detection versus data-record length, and in Sections 3.5 and 3.6, in terms of the receiver
operating characteristic (ROC). For the QF detectors, the match or mismatch between the
Monte Carlo probability of false alarm and the nominal or design probability of false alarm
is analyzed in Section 3.7. A conclusive discussion is given in Section 4.

2. Materials and Methods
2.1. Signal Decomposition

Let us denote by

〈z(t)〉t , lim
T→∞

1
T

∫ t0+T/2

t0−T/2
z(t) dt (1)

the continuous-time infinite-time average of the signal z(t), provided that the limit in the
right-hand side exists. When such a limit exists, it does not depend on t0. In notation 〈·〉t,
subscript t emphasizes that the average is made with respect to t.

A signal z(t) can be decomposed into its almost-periodic component zap(t) and a
residual term zr(t) not containing any finite-strength additive sine-wave component [2]
(Section 2.3.1)

z(t) = zap(t) + zr(t) (2)

where
zap(t) = ∑

α∈A
zα ej2παt (3)

is the (generalized) Fourier series of the almost-periodic component whose convergence
can be uniform, or in a generalized sense [2] (Appendix B.4), [3] (Chapter 2),

zα =
〈

zap(t) e−j2παt
〉

t
=
〈

z(t) e−j2παt
〉

t
∀α ∈ A (4)

are the Fourier coefficients, and〈
zr(t) e−j2παt

〉
t
= 0 ∀α ∈ R (5)

is the residual term. In (3), A is a countable set of possibly incommensurate frequencies.
The almost-periodic component extraction operator is defined as [2] (Definition 2.14)

E{α}{z(t)} , zap(t) (6)

that is, the operator E{α}{·} extracts all the finite-strength additive sine-wave components of
its argument. This turns out to be the expectation operator in the FOT probability framework.

2.2. Fraction-of-Time Probability

In this section, a brief review of the FOT approach is provided, in order to introduce
the essential definitions and notation. In the FOT approach, signals are modeled as single
functions of time rather than as realizations of an ensemble of functions, namely a stochastic
process. All time-invariant statistical functions such as the distribution, autocorrelation,
moments, and cumulants can be constructed starting from the unique available signal by
resorting to the concept of relative measure [29,30], which plays a role analogous to the
probability measure in the classical stochastic approach [25]. In such a case, the infinite-time
average turns out to be the expectation operator that allows one to construct time-invariant
statistical functions. The time-invariant FOT approach can be extended to accommodate
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periodically or almost-periodically time-variant statistical functions, in order to provide a
suitable FOT probabilistic description for time series that exhibit cyclostationarity. In such
a case, the expectation operator is the almost-periodic component extraction operator (6).
For comprehensive treatments, see [1], [2] (Chapter 2), [31,32]. For extensions, see [33,34].

Let x(t) be a continuous-time real-valued signal. The almost-periodic FOT cumulative
distribution function (CDF) of x(t) is defined as [2] (Equation (2.33))

F{α}x (ξ; t) , E{α}{u(ξ − x(t))} (7a)

= ∑
γ∈Γ1

Fγ
x (ξ) ej2πγt (7b)

where

u(ξ) ,
{

1 ξ > 0
0 ξ < 0

(8)

is the unit-step function, Γ1 is a countable set of possibly incommensurate cycle frequencies,
and the Fourier coefficients [2] (Equation (2.34))

Fγ
x (ξ) ,

〈
u(ξ − x(t)) e−j2πγt

〉
t

γ ∈ Γ1 (9)

are referred to as cyclic CDFs.
If the CDF is differentiable with respect to ξ, the almost-periodic FOT probability

density function (pdf) of the real-valued signal x(t) can be defined. This can be formally
expressed (in the sense of generalized functions [35]) as [2] (Equation (2.37))

f {α}x (ξ; t) ,
d

dξ
F{α}x (ξ; t) (10a)

= E{α}{δ(ξ − x(t))} (10b)

= ∑
γ∈Γ1

f γ
x (ξ) ej2πγt (10c)

where the Fourier coefficients are formally expressed as

f γ
x (ξ) ,

〈
δ(ξ − x(t)) e−j2πγt

〉
t

(11a)

=
d

dξ
Fγ

x (ξ) γ ∈ Γ1 (11b)

and are referred to as cyclic pdfs. In (10b) and (11a), δ(·) denotes Dirac delta.
The following fundamental theorem of expectation holds [31]:

E{α}{x(t)} ,
∫
R

ξ dF{α}x (ξ; t) (12a)

=
∫
R

ξ f {α}x (ξ; t) dξ (12b)

= ∑
η∈A1

xη ej2πηt (12c)
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where the Fourier coefficients of the almost-periodic component of x(t) can be expressed as

xη ,
〈

x(t) e−j2πηt
〉

t
(13a)

=
∫
R

ξ dFη
x (ξ) (13b)

=
∫
R

ξ f η
x (ξ) dξ η ∈ A1 (13c)

with
A1 ⊆ Γ1 (14)

The function defined in (12a) is the almost-periodic mean (in the FOT sense) of the
signal x(t) and (12b) is the FOT counterpart of the fundamental theorem of expectation in
the stochastic approach. The Fourier coefficients defined in (13a) are referred to as cyclic
means.

The second-order characterization of a time series x(t) is based on the almost-periodic
joint FOT CDF of x(t + τ) and x(t) [2] (Theorem 2.34), [31]

F{α}x (ξ1, ξ2; t, τ) , E{α}{u(ξ1 − x(t + τ)) u(ξ2 − x(t))} (15a)

= ∑
γ∈Γ2

Fγ
x (ξ1, ξ2; τ) ej2πγt (15b)

where Γ2 is a countable set of possibly incommensurate cycle frequencies, and the Fourier
coefficients

Fγ
x (ξ1, ξ2; τ) ,

〈
u(ξ1 − x(t + τ)) u(ξ2 − x(t)) e−j2πγt

〉
t

γ ∈ Γ2 (16)

are referred to as cyclic joint CDFs.
If the joint FOT CDF is differentiable with respect to both ξ1 and ξ2, the almost-periodic

joint FOT pdf of x(t + τ) and x(t) can be defined. This can be formally expressed as [2]
(Equation (2.50))

f {α}x (ξ1, ξ2; t, τ) ,
∂2

∂ξ1 ∂ξ2
F{α}x (ξ1, ξ2; t, τ) (17a)

= E{α}{δ(ξ1 − x(t + τ)) δ(ξ2 − x(t))} (17b)

= ∑
γ∈Γ2

f γ
x (ξ1, ξ2; τ) ej2πγt (17c)

where the Fourier coefficients

f γ
x (ξ1, ξ2; τ) ,

〈
δ(ξ1 − x(t + τ)) δ(ξ2 − x(t)) e−j2πγt

〉
t

(18a)

=
∂2

∂ξ1 ∂ξ2
Fγ

x (ξ1, ξ2; τ) γ ∈ Γ2 (18b)

are referred to as cyclic joint pdfs.
The following fundamental theorem of expectation holds [2] (Theorem 2.35), [31]:

E{α}{x(t + τ) x(t)} =
∫
R

ξ1 ξ2 dF{α}x (ξ1, ξ2; t, τ) (19a)

=
∫
R

ξ1 ξ2 f {α}x (ξ1, ξ2; t, τ) dξ1 dξ2 (19b)

= ∑
α∈A2

Rα
x(τ) ej2παt (19c)
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where the function E{α}{x(t + τ) x(t)} has all the properties of an autocorrelation function
and the Fourier coefficient

Rα
x(τ) ,

〈
x(t + τ) x(t) e−j2παt

〉
t

(20a)

=
∫
R

ξ1 ξ2 dFα
x (ξ1, ξ2; τ) (20b)

=
∫
R

ξ1 ξ2 f α
x (ξ1, ξ2; τ) dξ1 dξ2 (20c)

is referred to as cyclic autocorrelation function at cycle frequency α. It results that

A2 ⊆ Γ2 . (21)

The second-order characterization of a time series x(t) in the spectral domain is made
in terms of the cyclic spectrum Sα

x( f ). This is defined as the correlation between the spectral
components of the signal at frequencies f and f − α, where α ∈ A2 is one of the cycle
frequencies of the signal x(t) [1] (Chapter 11), [2] (Chapter 2). For this reason, Sα

x( f ) is
also referred to as spectral correlation density. It is linked to the cyclic autocorrelation by
Gardner’s relation [2] (Section 2.3.1.10)

Sα
x( f ) =

∫
R

Rα
x(τ) e−j2π f τ dτ (22)

also referred to as the cyclic Wiener–Khinchin relation.
Higher-order statistics of almost-cyclostationary signals in the FOT probability frame-

work were introduced in [7,32]. In this paper, only the 4th-order reduced-dimension cyclic
temporal moment function

Rα
x(τ1, τ2, τ3) ,

〈
x(t + τ1) x(t + τ2) x(t + τ3) x(t) e−j2παt

〉
t

(23)

referred to as, in short, 4th-order cyclic moment, is considered to build a higher-order
cyclostationarity (HOCS)-based detector.

2.3. Cyclic Statistical Functions Estimators

In this section, estimators for the FOT cyclic statistical functions considered in
Section 2.2 are presented. These estimators are obtained by considering finite time-
averages in place of the infinite-time averages present in the definitions of the FOT
statistical functions [1] (Chapter 13), [2,36] (Section 5.6). Moreover, for the cyclic CDF
and the cyclic pdf, kernel-based estimators are proposed here for the first time.

In the FOT approach, the randomness (variability) of the estimate depends on the
choice of the central point of the finite observation interval (i.e., t0 in (1) with T finite;
that is, without the limit operation) [36], [2] (Section 5.6). In the almost-periodic case,
one estimates the Fourier coefficients of almost-periodic functions. Thus, z(t) in (1) is a
sinusoidally weighted version of the second-order lag-product x(t + τ) x(t) or of the indi-
cator function u(ξ − x(t)). Statistical functions of estimates for t ∈ [t0 − T/2, t0 + T/2] are
built considering estimates in smaller observation intervals [u− b/2, u + b/2], with b� T,
and averaging these estimates when u ranges within [t0 − T/2 + b/2, t0 + T/2− b/2] [36].
An example is provided in Section 2.6.3.

2.3.1. Cyclic CDF

The natural estimator of the cyclic CDF (9) is

F(T)
x (γ, ξ; t0) ,

1
T

∫ t0+T/2

t0−T/2
u(ξ − x(t)) e−j2πγt dt (24)
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Under [36] (Assumptions 3.4 and 3.5), with x(t) replaced by u(ξ − x(t)) e−j2πγt, ac-
cording to [36] (Theorem 3.7), the function in (24) is a mean-square consistent estimator of
the Fourier coefficient (9), and the normalized estimation error

√
T
[

F(T)
x (γ, ξ; t0)− Fγ

x (ξ)
]

(25)

is asymptotically (T → ∞) complex normal.
Note that [36] (Assumptions 3.4 and 3.5), with x(t) replaced by u(ξ − x(t)) e−j2πγt,

correspond to assuming asymptotic independence, in the FOT sense, for the signal x(t).

2.3.2. Cyclic CDF and pdf (Kernel-Based Estimators)

Kernel-based estimators of the cyclic CDF and the cyclic pdf are proposed here for
the first time. They are obtained by generalizing the definitions for time-invariant CDF
and pdf. However, only early results are so far available for these estimators, and their
properties are still under investigation.

The kernel-based estimators of the FOT cyclic pdf (11b) and of the FOT cyclic CDF (9)
of a continuous-time signal x(t) are a generalization of the continuous-time counterparts
of the kernel-based estimators of the pdf and CDF proposed for discrete-time processes
in [37,38], [39] (Section 2.1.8, pp. 64–65). They are given by

f (T,bT)
x (γ, ξ; t0) =

1
T

∫ t0+T/2

t0−T/2

1
bT

W
(

ξ − x(t)
bT

)
e−j2πγt dt (26)

and

F(T,bT)
x (γ, ξ; t0) =

∫ ξ

−∞
f (T,bT)
x (γ, s; t0) ds (27a)

=
1
T

∫ t0+T/2

t0−T/2
Wc

(
ξ − x(t)

bT

)
e−j2πγt dt (27b)

respectively, where W(s) is a unit-area smoothing window,

Wc(ξ) ,
∫ ξ

−∞
W(s) ds (28)

and bT is the smoothing parameter. When t0 = 0 or the dependence on t0 is not of interest,
in the left-hand sides of (26) and (27a) such a dependence is omitted for the sake of brevity.

In the special case γ = 0, the discrete-time counterparts of the estimators (26) and (27b)
are characterized in the stochastic approach in [37,38], [39] (Section 2.1.8, pp. 64–65) (in
which case, t0 = 0 and the variability (randomness) of the estimate is considered on the
ensemble of realizations of a stochastic process). Specifically, under mild assumptions,
f (T,bT)
x (0, ξ) and F(T,bT)

x (0, ξ) are shown to be mean-square consistent estimators of the pdf
f 0
x (ξ) and the CDF F0

x (ξ), respectively, provided that [38] the following conditions hold:

T → ∞ bT → 0 TbT → ∞ (29)

In addition, for γ = 0, Silverman’s rule of thumb

bT = (4/3)1/5 σx T−1/5 (30)

where σx is the standard deviation of x(t), assures the minimum mean-squared error of
the CDF and pdf estimates [38] (Equation (20)). Furthermore, for γ = 0, the normalized
estimation errors √

TbT

[
f (T,bT)
x (0, ξ)− f 0

x (ξ)
]

(31)
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and √
TbT

[
F(T,bT)

x (0, ξ)− F0
x (ξ)

]
(32)

are asymptotically normal, provided that Tb3
T → ∞ as T → ∞ [38] (p. 1822). See [40] for

the case of continuous-time processes.
Numerical experiments have shown that, for γ 6= 0, the estimators (26) and (27b)

provide reliable estimates (i.e., exhibiting small bias and variance) of the cyclic pdf and the
cyclic CDF, respectively, as the data record length T increases and the smoothing parameter
bT decreases. This fact suggests that, under appropriate conditions, the mean-square
consistence can be proved. In contrast, the asymptotic normality property does not seem to
hold. The plausibility of this conjecture is corroborated by the results presented in Section 3.

An alternative technique for FOT pdf estimation based on linear interpolation of time
series is presented in [41].

2.3.3. Cyclic Autocorrelation

The natural estimator of the cyclic autocorrelation Function (20a) is the cyclic correlo-
gram [2] (Definition 5.1)

R(T)
x (α, τ; t0) ,

1
T

∫ t0+T/2

t0−T/2
x(t + τ) x(t) e−j2παt dt (33)

Under mild assumptions, the cyclic correlogram (33) is a mean-square consistent
estimator of the cyclic autocorrelation (20a) [2] (Theorem 5.15), [42] and the normalized
estimation error √

T
[

R(T)
x (α, τ; t0)− Rα

x(τ)
]

(34)

is asymptotically (T → ∞) complex normal [2] (Theorem 5.18), [43].
The results in [2] (Theorems 5.15 and 5.18) are derived with the classical stochastic

approach. Their FOT counterpart can be obtained by using [36] (Theorem 3.7) for the
time-average of the function of time

t 7→ x(t + τ) x(t) e−j2παt (35)

2.3.4. Cyclic Spectrum

The cyclic spectrum (22) can be consistently estimated using the frequency-smoothed
cyclic periodogram [1], [2] (Section 5.2.3), [44] (Chapter 13), [45] (Section 4.6) or with the
time-smoothed cyclic periodogram [1] (Chapter 13), [2] (Section 5.2.4), [45] (Section 4.5), [46].

Let ∆ f be the spectral frequency resolution of the cyclic spectrum estimator. This is
coincident with the width of the frequency-smoothing window for the frequency-smoothed
cyclic periodogram and with the reciprocal of the block-length for the time-smoothed
cyclic periodogram. For both estimators, under mild assumptions, the normalized error
estimates are asymptotically (T → ∞) complex normal , provided that ∆ f = ∆ fT → 0 and
T∆ fT → ∞.

2.3.5. 4th-Order Cyclic Moment

The natural estimator of the 4th-order cyclic moment (23) is the 4th-order cyclic
correlogram [2] (Definition 5.1)

R(T)
x (α, τ1, τ2, τ3; t0) ,

1
T

∫ t0+T/2

t0−T/2
x(t + τ1) x(t + τ2) x(t + τ3) x(t) e−j2παt dt (36)

Asymptotic results similar to those valid for the cyclic correlogram (33) can be derived [2]
(Section 5.7) [7,47,48]. Moreover, their counterpart in the FOT approach can be obtained
using [36] (Theorem 3.7).



Inventions 2023, 8, 152 9 of 23

2.4. Detection

Let us consider the hypothesis test

H0 : r(t) = n(t)
H1 : r(t) = x(t) + n(t)

t ∈ [−T/2, T/2] (37)

where x(t) is the signal-of-interest (SOI) and n(t) is noise.
The detection problem consists in deciding which hypothesis holds true on the basis

of the observation of the (unique) received signal r(t) observed in the finite time interval
t ∈ [−T/2, T/2]. If this unique observed signal is modeled as a segment of an infinitely
long time series, the natural framework for its statistical characterization is the FOT proba-
bility framework.

If the joint FOT probability density functions of x(t + τi) and n(t + τi) for t + τi ∈
[0, T], i = 1, . . . , N, is unknown or complicated, then the likelihood ratio test (LRT) or the
generalized likelihood ratio test (GLRT) cannot be derived. However, sub-optimal receivers
can be adopted which use cyclic statistical function measurements as front end data.

In this section, several cyclostationarity-based detectors; that is, that adopt cyclic
statistical function measurements as front end data, are presented by a unified notation.
Specifically, let us denote by zα

r (θ) any of the cyclic statistical functions introduced in
Section 2.2. Thus, θ represents any of the parameters τ, f , or ξ. In the case of the 4th-order
cyclic moment, θ is the three-dimensional vector of lags (τ1, τ2, τ3). Let ẑr(α, θ; t0) be an
estimator of zα

r (θ) obtained by observing r(t) for t ∈ [t0 − T/2, t0 + T/2] (see Section 2.3).
In order to simplify the notation, the dependence on t0 in ẑr(α, θ; t0) is omitted when
unnecessary, if this does not create ambiguity.

As discussed in Section 2.3, under mild assumptions, the normalized estimation error

νT [ẑr(α, θ; t0)− zα
r (θ)] (38)

is asymptotically (T → ∞) complex normal. In (38), the normalizing factor νT is given
by νT =

√
T for the estimators of the cyclic CDF (Section 2.3.1), cyclic autocorrelation

(Section 2.3.3), and cyclic 4th-order moment (Section 2.3.5), by νT =
√

T∆ fT for the es-
timators of the cyclic spectrum (Section 2.3.4), and by νT =

√
TbT for the kernel-based

estimators of the cyclic CDF and pdf with γ = 0 (Section 2.3.2). Furthermore, the normal-
ized estimation errors

νT
[
ẑr(αk, θk; t0)− zαk

r (θk)
]

(39)

at pairs (αk, θk), k = 1, . . . , K can be shown to be asymptotically jointly complex normal
(see [2] (Sections 5.2 and 5.7), [45] (Sections 2.4 and 4.7) and [47,48] for results with the
stochastic approach).

All the considered cylostationarity-based detectors have the following structure:

T
H1
≷
H0

λ (40)

where the decision statistics T are built from cyclic statistical function measurements
ẑr(α, θ) and possibly their FOT statistics as the autocovariance matrix. The thresholds λ
are derived analytically when the FOT distribution of T |H0 can be derived from the FOT
asymptotic properties of ẑr(α, θ; t0). Otherwise, the thresholds are derived by Monte Carlo
trials using side data under H0.

Although the structure and parameters of the proposed detectors are derived in the
FOT approach—that is, considering the received signal as a unique time series, without in-
terpreting this time series as a realization of a stochastic process—the detector performances
are defined in terms of classical probabilities computed over an ensemble of realizations. In
fact, the advantage of some of the FOT-based detector structures considered here consists
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in not exploiting side data such as other realizations under the null hypothesis. In contrast,
the detector performance is of interest when checked through multiple experiments.

The performance analysis is carried out in terms of the probability of detection

Pd = P[T > λ |H1] (41)

and probability of false alarm
Pfa = P[T > λ |H0] (42)

See [36] for the interpretation of Pd and Pfa in the FOT approach.

2.5. Single Cycle (SC) Detectors

Let α be a cycle frequency of the SOI. The structure of a single-cycle detector is

T ,
∫

Θ
|ẑr(α, θ)|2 dθ

H1
≷
H0

λ (43)

where Θ is a set of values of θ where zα
r (θ) is significantly non zero.

The cases where ẑr(α, θ) is the cyclic correlogram (Section 2.3.3) or the frequency-
smoothed cyclic periodogram (Section 2.3.4) are addressed in [4–6,49], where the optimal
choices for the corresponding sets Θ are also discussed. Single-cycle detectors based on
cyclic higher-order statistics are presented in [7].

A simplified SC detector based on the 4th-order cyclic moment is obtained by con-
sidering fixed two lag parameters and integrating with respect to the remaining variable.
That is,

T =
∫ τM

−τM

∣∣∣R(T)
x (α, τ1, τ̄2, τ̄3)

∣∣∣2 dτ1 (44)

with τ̄2, τ̄3 fixed.
A new class of single-cycle detectors is proposed here for the first time. Specifically, those

where ẑr(α, θ) is any of the cyclic CDF or cyclic pdf estimators of Sections 2.3.1 and 2.3.2. The
advantages of these new SC detectors and their better performance with respect to the other
SC detectors are analyzed in Section 3.

2.6. Quadratic Forms (QF) Detectors

In this section, detectors whose structure is a quadratic form that is compared with
a threshold are presented in a unified framework. First, the case of quadratic forms
constructed from measurements of cyclic autocorrelation, cyclic spectrum, and 4th-order
cyclic moment are presented (Section 2.6.1). Then, a new class of detectors is introduced
here for the first time, where quadratic forms are constructed from measurements of cyclic
CDF and pdf (Section 2.6.2). Since the derived detector structures (Section 2.6.3) require
the availability of side data under H0, to estimate the quadratic-form covariance matrix,
a suboptimum detector is derived where such a matrix is estimated using the available
data (Section 2.6.4).

2.6.1. QF Detectors Based on Measurements of the Cyclic Autocorrelation, Spectrum,
and Moment

Let us consider a zero-mean real-valued SOI x(t) and a zero-mean noise signal n(t).
Let zα

r (θ) be any of the cyclic statistical functions Rα
r (τ), Sα

r ( f ), and Rα
r (τ1, τ2, τ3), and

let us denote by zα
xn(θ) the corresponding cyclic cross statistic between x(t) and n(t).

Let the following Assumptions be satisfied:

1. x(t) exhibits cyclostationarity at (α, θ): zα
x(θ) 6≡ 0;

2. n(t) does not exhibit cyclostationarity at (α, θ): zα
n(θ) ≡ 0;

3. x(t) and n(t) do not exhibit joint cyclostationarity at (α, θ): zα
xn(θ) ≡ zα

nx(θ) ≡ 0.
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Thus, this results that

H0 : zα
r (θ) = zα

n(θ) = 0
H1 : zα

r (θ) = zα
x(θ) + zα

nx(θ) + zα
xn(θ) + zα

n(θ)
= zα

x(θ)
(45)

Equations (37) and (45) suggest the following ad hoc (non-optimum and not equivalent
to (37)) binary hypothesis test for discriminating between the hypotheses H0 and H1 when
r(t) is observed for t ∈ [−T/2, T/2] [2] (Section 8.4):

H0 : ẑr(α, θ) = ε
(T)
0 (α, θ)

H1 : ẑr(α, θ) = zα
x(θ) + ε

(T)
1 (α, θ)

(46)

In (46), ε
(T)
i (α, θ) denotes the estimation error on zα

r (θ) using the measurement r(t)
observed for t ∈ [−T/2, T/2], under hypothesis Hi.

The decision test (46) can be generalized considering measurements in multiple pairs
(αk, θk), k = 1, . . . , K. Under the Assumptions,

1. x(t) exhibits cyclostationarity at (αk, θk): zαk
x (θk) 6≡ 0;

2. n(t) does not exhibit cyclostationarity at (αk, θk): zαk
n (θk) ≡ 0;

3. x(t) and n(t) do not exhibit joint cyclostationarity at (αk, θk): zαk
xn(θk) ≡ zαk

nx(θk) ≡ 0.

The test (46) for several pairs (αk, θk), k = 1, . . . , K is

H0 : ẑr(αk, θk) = ε
(T)
0 (αk, θk)

H1 : ẑr(αk, θk) = zx(αk, θk) + ε
(T)
1 (αk, θk)

k = 1, . . . , K (47)

Let us define the normalized measurement column vector

Z , {νT ẑr(αk, θk); k = 1, . . . , K} . (48)

Due to the asymptotic joint complex normality of the normalized measurement er-
rors (39), for T sufficiently large the column random vector Z is (practically) complex
normal under both hypotheses

Z |Hi ∼ N (µi, Σi, Σ
(c)
i ) i = 0, 1 (49)

with mean vectors

µ0 = E{Z |H0} = 0
µ1 = E{Z |H1} = {νT zαk

r (θk); k = 1, . . . , K} (50)

asymptotic covariance matrix Σi with entries

Σi(k1, k2) = lim
T→∞

cov
{

Zk1 , Zk2 |Hi
}

= lim
T→∞

ν2
T cov

{
ε
(T)
i (αk1 , θk1), ε

(T)
i (αk2 , θk2)

}
i = 0, 1 (51)

and asymptotic conjugate covariance matrix Σ
(c)
i with entries

Σ(c)
i (k1, k2) = lim

T→∞
cov
{

Zk1 , Z∗k2
|Hi

}
= lim

T→∞
ν2

T cov
{

ε
(T)
i (αk1 , θk1), ε

(T)∗
i (αk2 , θk2)

}
i = 0, 1 , (52)

where superscript ∗ denotes complex conjugation.
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Complex-valued random vectors can be suitably described and characterized by
introducing the augmented random vector

ζ ,
[

Z
Z∗

]
(53)

the augmented mean vector

µζ|Hi
,
[

E{Z |Hi}
E{Z∗ |Hi}

]
=

[
µi
µ∗i

]
(54)

and the augmented covariance matrix

Γi , E
{
(ζ − µζ|Hi

)(ζ − µζ|Hi
)H |Hi

}
=

[
Σi Σ

(c)
i

Σ
(c) ∗
i Σ∗i

]
(55)

where superscript H denotes the Hermitian transpose.
Due to the asymptotic complex normality of Z, the joint probability density function

of the real and imaginary parts of the components Zk of Z can be written in the complex
form as [50]

fζ|Hi
(ζa) =

1
πK|detΓi|1/2 exp

[
−1

2
(ζa − µζ|Hi

)HΓ−1
i (ζa − µζ|Hi

)

]
(56)

The case where ẑr(α, θ) is the cyclic correlogram R(T)
r (α, τ) is addressed in [2]

(Section 8.4), [8,9].

2.6.2. QF Detectors Based on Measurements of the Cyclic CDF and pdf

Let x(t) and n(t) be independent time-series in the FOT sense; that is, the joint almost-
periodic FOT distribution of x(t + τ1), . . . , x(t + τN), n(t + τN+1), . . . , n(t + τN+M) factor-
izes into the product of the joint almost-periodic FOT distributions of x(t + τ1), . . . , x(t +
τN) and of n(t+ τN+1), . . . , n(t+ τN+M), for every τ1, . . . , τN , τN+1, . . . , τN+M and for every
N and M [31].

Let

f {α}x (ξ, t) = ∑
γx∈Γx

f γx
x (ξ) ej2πγxt (57)

f {α}n (ξ, t) = ∑
γn∈Γn

f γn
n (ξ) ej2πγnt (58)

be the 1st-order almost-periodic FOT pdf of x(t) and n(t), respectively. With reference to
the SOI-noise additive model in the hypothesis test (37), under hypothesis H0, one has

f {α}r|H0
(ξ, t) = f {α}n (ξ, t) (59)

and under hypothesis H1, one obtains

f {α}r|H1
(ξ, t) = f {α}x (ξ, t) ⊗

ξ
f {α}n (ξ, t) (60a)

= ∑
γx∈Γx

∑
γn∈Γn

[
f γx
x (ξ) ⊗

ξ
f γn
n (ξ)

]
ej2π[γx+γn ]t (60b)
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where ⊗ξ denotes convolution with respect to the variable ξ. Therefore, from (59) it follows
that

f β

r|H0
(ξ) ,

〈
f {α}r|H0

(ξ, t) e−j2πβt
〉

t
(61a)

= f β
n (ξ) (61b)

and from (60b), one has

f β

r|H1
(ξ) ,

〈
f {α}r|H1

(ξ, t) e−j2πβt
〉

t
(62a)

= ∑
γx∈Γx

[
f γx
x (ξ) ⊗

ξ
f β−γx
n (ξ)

]
(62b)

Let the following Assumptions be satisfied:

1. x(t) exhibits 1st-order cyclostationarity at (β, ξ): β ∈ Γx and f β
x (ξ) 6= 0;

2. β− γx 6∈ Γn/{0} ∀γx ∈ Γx.

Condition 2 is satisfied, for example, if n(t) is a stationary time series.
Thus, for β ∈ Γx, it results that

H0 : f β

r|H0
(ξ) = f β

n (ξ) = 0

H1 : f β

r|H1
(ξ) = f β

x (ξ) ⊗
ξ

f 0
n(ξ)

(63)

or, equivalently,
H0 : Fβ

r|H0
(ξ) = Fβ

n (ξ) = 0

H1 : Fβ

r|H1
(ξ) =

∫
R

Fβ
x (ξ − s) dF0

n(s)
(64)

Equations (37) and (63) suggest the following ad hoc (non-optimum and not equivalent
to (37)) binary hypothesis test to discriminate between hypotheses H0 and H1 when r(t) is
observed for t ∈ [−T/2, T/2]:

H0 : f̂ β

r|H0
(ξ) = ε

(T)
0 (β, ξ)

H1 : f̂ β

r|H1
(ξ) = f β

x (ξ) ⊗
ξ

f 0
n(ξ) + ε

(T)
1 (β, ξ)

(65)

or, equivalently,

H0 : F̂β

r|H0
(ξ) = η

(T)
0 (β, ξ)

H1 : F̂β

r|H1
(ξ) =

∫
R

Fβ
x (ξ − s) dF0

n(s) + η
(T)
1 (β, ξ)

(66)

where f̂ β

r|Hi
(ξ) and F̂β

r|Hi
(ξ) denote estimates of f β

r|Hi
(ξ) and Fβ

r|Hi
(ξ), respectively, for i = 0, 1

(see Sections 2.3.1 and 2.3.2). In (66) and (65), ε
(T)
i (β, ξ) and η

(T)
i (β, ξ), i = 0, 1, represent

estimation errors.
If f 0

n(ξ) is unimodal around ξ = 0 (e.g., zero-mean Gaussian), then the magnitude of

the convolution product f β
x (ξ) ⊗

ξ
f 0
n(ξ) has the same point of maximum as the magnitude

of f β
x (ξ). This fact is exploited for the choice of the value of ξ to be used in the quadratic-

form detector.
In those cases where the estimation errors can be modeled as Gaussian, the pdf (56)

of augmented measurement vectors ζ can be constructed by following the guidelines of
Section 2.6.1.
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2.6.3. QF Detector Structure

If in (56) the augmented mean vectors and covariance matrix are unknown, the hy-
pothesis test can be performed using the generalized log-likelihood ratio test (GLLRT) [51]
(Section 2.5)

ln
fζ|H1

(ζa; µ̂ζ|H1
, Γ̂1)

fζ|H0
(ζa; µ̂ζ|H0

, Γ̂0)

H1
≷
H0

λ (67)

where the estimated parameters are maximum likelihood estimates. If the parameter
estimates happen to not be maximum likelihood estimates, then the test is no longer GLLRT.
However, if such estimates are consistent, the test can still be applied as an ad hoc test for
the considered problem [52].

In (67), ζa is the measurement of Z made on the whole observation interval [−T/2,+T/2],
µ̂ζ|H0

= 0, µ̂ζ|H1
= ζa, and the estimates Γ̂1, and Γ̂0 can be obtained using an FOT-

subsampling procedure. For example, if zα
r (θ) is the cyclic autocorrelation function, then

by defining

R(b,u)
rr(∗)

(α, τ) ,
1
b

∫ u+b/2

u−b/2
r(t + τ) r(∗)(t) e−j2παt dt

=
1
b

∫ b/2

−b/2
r(t′ + u + τ) r(∗)(t′ + u) e−j2πα(t′+u) dt′ (68)

with b� T, one has

Σ̂i(k1, k2) =

〈√
b R(b,u)

rr
(∗)k1

(αk1 , τk1)
√

b R(b,u)∗
rr

(∗)k2
(αk2 , τk2) |Hi

〉
u

−
〈√

b R(b,u)

rr
(∗)k1

(αk1 , τk1) |Hi

〉
u

〈√
b R(b,u)∗

rr
(∗)k2

(αk2 , τk2) |Hi

〉
u

(69)

where 〈·〉u is the time average made on the whole observation interval u ∈ [−T/2 +
b/2,+T/2− b/2] and the convergence conditions are T → ∞, b→ ∞, with T/b→ ∞.

Therefore, with these estimates substituted into, the decision test (67) reduces to
comparing a quadratic form Q̂(ζa) with a threshold [2] (Sections 8.4–8.5), [9]:

Q̂(ζa) , ζH
a Γ̂
−1
0 ζa

H1
≷
H0

λ (70)

The detector (70) is not optimum. However, if one assumes as front-end data the cyclic
statistic measurements Z, then such a detector is optimum in the sense of Neyman–Pearson.

In (70), the estimate Γ̂
−1
0 of the inverse of the covariance matrix Γ0 must be obtained using

the available side data under H0. If these data are not available, one should resort to the
statistical test for presence of cyclostationarity (Section 2.6.4). When such a test is adopted for
signal detection, this results in a sub-optimum detector with respect to (70) [2] (Section 8.4.3), [9].

The quadratic forms Q(ζ) and Q̂(ζ) have asymptotically the same central χ2
2K distri-

bution Fχ2
2K
(·) (over the ensemble of realizations) [39] (Section 4.1.2, p. 140). Therefore, for a

desired false-alarm rate

Pfa = P[Q̂ > λ |H0] = 1− Fχ2
2K
(λ) (71)

the threshold λ can be analytically derived

λ = F−1
χ2

2K
(1− Pfa) . (72)
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2.6.4. Statistical Test for Presence of Cyclostationarity

Let us consider the following statistical test for the presence of cyclostationarity:

H′0 : (α, θ) 6∈ supp{zα
r (θ)}

H′1 : (α, θ) ∈ supp{zα
r (θ)}

(73)

where supp{·} denotes the support of the argument in the brackets.
If the signal r(t) is observed for t ∈ [−T/2, T/2], from (73), it follows that

H′0 : ẑr(α, θ) = ε(T)(α, θ)

H′1 : ẑr(α, θ) = zα
r (θ) + ε(T)(α, θ)

(74)

where ε(T)(α, θ) denotes the measurement error (not depending on the hypothesis). By
reasoning as Section 2.6, the test (73) reduces to

Q̂′(ζa) , ζH
a Γ̂
−1

ζa

H′1
≷
H′0

λ′ (75)

where Γ̂
−1

is an estimate of the inverse augmented covariance matrix obtained from the
observed data.

If this statistical test for the presence of cyclostationarity is adopted to perform a detec-
tion test (identifying H′0 with H0 and H′1 with H1), then one obtains a detector with some
performance degradation with respect to the test (70), but with the advantage that side data
(under H0) are no longer needed to estimate the covariance matrix [2] (Section 8.4.3), [9].

Note that, in such a case, the decision-statistic parameter (the covariance matrix) is
computed from the uniquely observed received signal r(t) with t ∈ [−T/2,+T/2] and
the threshold is derived analytically. Thus, no side data have been required to make
the decision.

A version of the statistical test for the presence of cyclostationarity based on a vector of
real and imaginary parts of cyclic autocorrelations or higher-order moments was originally
presented in [8] in the stochastic process framework. However, in [8], a different estimator
for the covariance matrix is proposed.

3. Results

In this section, numerical results are reported aimed at corroborating the effectiveness
of the new proposed cyclic detectors. Performance analysis is carried out in terms of Monte
Carlo probability of missed detection Pmd versus data-record length T (Sections 3.4); Monte
Carlo Pd versus nominal Pfa (Section 3.5); and Monte Carlo probability of detection Pd
versus Monte Carlo probability Pfa (Section 3.6). These performances are compared with
those of competitive cyclostationarity-based detectors and the energy detector.

In order to check the effectiveness of the assumptions made on the distribution of
the decision statistics, the Monte Carlo Pfa versus the nominal Pfa is computed for those
detectors whose threshold is derived analytically (Section 3.7).

3.1. Simulation Setup

Let Ts denote the sampling period and fs = 1/Ts the sampling frequency. The signal
of interest (SOI) is the complex envelope of a binary frequency-shift-keyed (FSK) signal
with bit period Tp = 8Ts, frequency shifts ±∆ ffsk/2, with ∆ ffsk = 1/(2Tp), and a binary
white modulating sequence.

In all cyclostationarity-based detectors, a cycle frequency of the SOI which is not
shared with the disturbance is known (see Section 2.5, Section 2.6.1 (Assumption 1), and
Section 2.6.2 (Assumption 1)). Thus, it is convenient to choose a sampling period Ts
commensurate with the period of cyclostationarity of the continuous-time SOI, in order
to obtain a cyclostationary, rather than an almost-cyclostationary, discrete-time SOI [2]
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(Section 3.6.2). The continuous-time FSK SOI is cyclostationary with period Tp and the
sampled SOI is cyclostationary with period Tp/Ts = 8.

FSK modulation is adopted in satellite communications due to its constant-envelope
property, which minimizes the effect of nonlinear amplification in the high-power amplifier.
In addition, FSK radars are used for a highly accurate range detection.

The disturbance is constituted by additive colored circular Gaussian noise and narrow-
band interference. The colored circular Gaussian noise has power spectral density (PSD)
proportional to sinc2( f /Bn), with Bn = 3/(2Tp). The noise power fluctuates from one
realization to another. The average (over all realizations) signal-to-noise ratio (SNR) is
−20 dB. Thus, the noise PSD completely overlaps the PSD of the SOI. The interference is
constituted by three tones. The amplitudes, frequencies, and phases of the tones change
randomly from one realization to the other. The signal-to-interference ratio (SIR) for each
realization is −20 dB.

NMC = 104 Monte Carlo trials are made to compute the sample statistics for data-
record lengths T = 2kTs with k = 15, . . . , 19.

For cyclic spectra estimates, the width of the frequency-smoothing window is
∆ fT = T−2/3. Such a rate assures the asymptotic complex normality of the frequency-
smoothed cyclic periodogram (see [45] (Theorem 4.7.11) applied to the special case
of ACS signals). Single-cycle detectors and quadratic-form detectors based on cyclic
spectrum estimates have a performance similar to those of the corresponding detectors
based on cyclic autocorrelation estimates. Thus, in order to avoid crowded figures,
the results for detectors based on cyclic spectrum estimates are not reported in the
following sections.

Cyclic statistical functions are estimated at cycle frequency α = 1/Tp. For the
quadratic-form detectors, only one value of the parameter θ is considered (K = 1 in (47)).
The chosen value is the one that maximizes the magnitude of the considered cyclic statistic.
The cyclic CDF and pdf are evaluated for the real part of the complex-valued received signal.

3.2. Threshold Determined by Monte Carlo Simulations

Let T0(i) be the decision statistic under H0 for the ith Monte Carlo trial, i = 1, . . . , NMC.
Assigned a value of probability of false alarm Pfa, the threshold λMC is computed such that

Pfa =
#(T0(i) > λMC)

NMC
(76)

where #(·) denotes the number of occurrences of the event in parentheses. Then, let T1(i) be
the decision statistic under H1 for the ith Monte Carlo trial, i = 1, . . . , NMC. The probability
of detection is computed as

Pd =
#(T1(i) > λMC)

NMC
(77)

The computation of the threshold λMC requires the availability of T0(i); that is, of side-
data under H0.

The threshold is derived via Monte Carlo simulations for the single-cycle detectors
(Section 2.5) and the energy detector (radiometer).

3.3. Threshold Derived Analytically

If the distribution of the decision statistic under H0, T0, is known, then the threshold
λan can be derived analytically from an assigned value of the probability of false alarm Pfa0
(referred to as nominal or design Pfa). For example, from (72), we have

λan = F−1
χ2

2K
(1− Pfa0) . (78)
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Then, starting from this analytically derived threshold λan, from data under H0,
the effective probability of false alarm Pfa (referred to as Monte Carlo Pfa) is computed using
Monte Carlo simulations as

Pfa =
#(T0(i) > λan)

NMC
(79)

If the statistical description of T0 is correct, then one should expect that the Monte
Carlo Pfa is approximately equal to the nominal Pfa0.

From data under H1, the probability of detection Pd (Monte Carlo Pd) is computed
using Monte Carlo simulations as

Pd =
#(T1(i) > λan)

NMC
(80)

The computation of λan does not require the availability of T0(i); that is, of side-data
under H0.

Detectors whose decision statistic is a quadratic form with known distribution (see
Section 2.6) have a threshold that can be determined analytically.

3.4. Monte Carlo Pmd versus T

In this experiment, the Monte Carlo probability of missed detection Pmd versus
the data-record length T is computed for the energy detector, quadratic-form detectors,
and single-cycle detectors. The results are reported in Figure 1.

Figure 1. Monte Carlo Pmd versus T. Energy detector (black): (∗). Quadratic form detectors (blue)
and single-cycle detectors (green): (5) cyclic pdf (kernel-based estimator); (�) cyclic CDF (Fourier
coefficient of the indicator); (©) cyclic autocorrelation (cyclic correlogram); (♦) cyclic CDF (kernel-
based estimator); (?) cyclic 4th-order moment.

The results show that the best performance was obtained by the SC detectors based
on estimates of the cyclic pdf (kernel-based estimator) and the cyclic CDF (Fourier coeffi-
cient of the indicator). A good performance was obtained by the QF detectors based on
estimates of the cyclic CDF (kernel-based estimator) and the cyclic CDF (Fourier coefficient
of the indicator).

The poor performance of the energy detector was the consequence of the severe
noise and interference environment. In fact, due to the very low values of SNR and SIR
and the fluctuation of the noise power from one Monte Carlo realization to the other,
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the estimated threshold of this detector, which was obtained from measurements under H0,
was not reliable.

Detectors based on cyclic statistic measurements benefit from the signal selectiv-
ity property of cyclostationarity-based algorithms and are intrinsically immune to the
effect of noise and interference, regardless of the temporal and spectral overlap of SOI
and disturbance, provided that a sufficiently long data-record length is adopted for the
measurements [1] (Chapter 14), [2] (Section 9.2). The stationary noise only affects the cyclic
statistic measurements due to the leakage phenomenon, and the performance degradation
decreases as the data record increases [2] (Section 9.7). The narrow-band interference can
degrade the cyclic detector performance only in the rare case in which the double of the
carrier frequency of one of the three tones (which randomly changes from one realization
to the other) is equal to the cycle frequency 1/Tp within an error of the order of 1/T.
Therefore, all the cyclostationarity-based detectors are potentially able to counteract the
effects of noise and interference, provided that a sufficiently long observation interval is
available. For the FSK signal considered here, the strength of the sine wave regenerated by
computing the cyclic CDF and cyclic pdf, compared with the corresponding continuous
component, is higher than that obtained by computing the second- and fourth-order cyclic
statistics, and this constitutes an advantage at very low values of SNR and SIR. In particular,
for the considered values of T, these detectors provide satisfactory performance, while
larger values of T are needed to obtain the same performance with SC and QF detectors
based on second- and fourth-order statistic measurements.

The CS detectors exhibit better performance than the QF detectors, since the former
exploit side information for the threshold computation.

The results obtained for moderate or high values of SNR and SIR are not presented here,
since they showed that all cyclostationarity-based methods exhibit comparable performance.

3.5. Receiver Operating Characteristic (ROC): Monte Carlo Pd versus Nominal Pfa

In this experiment, the receiver operating characteristic (Monte Carlo Pd versus nomi-
nal Pfa, in short MC-Pd vs. nominal-Pfa) is computed for the energy detector, quadratic-form
detectors, and single-cycle detectors. The results are reported in Figure 2.

Figure 2. ROC: Monte Carlo Pd versus nominal Pfa. (Left) T = 215Ts; (Right) T = 219Ts. Energy
detector (black): (∗). Quadratic form detectors (blue) and single cycle detectors (green): (5) cyclic
pdf (kernel-based estimator); (�) cyclic CDF (Fourier coefficient of the indicator); (©) cyclic autocor-
relation (cyclic correlogram); (♦) cyclic CDF (kernel-based estimator); (?) cyclic 4th-order moment.

These results confirm those of Section 3.4.
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3.6. Receiver Operating Characteristic (ROC): Monte Carlo Pd versus Monte Carlo Pfa

In this experiment, the receiver operating characteristic (Monte Carlo Pd versus Monte
Carlo Pfa, in short MC-Pd vs. MC-Pfa) is computed for quadratic-form detectors. The results
are reported in Figure 3.

For SC detectors and for the energy detector, the nominal Pfa is practically coincident
with the Monte Carlo Pfa, since the threshold is obtained using Monte Carlo simulation
under H0. Therefore, the results were practically coincident with those of Section 3.5 and
are not reported here. In contrast, for QF detectors, the nominal Pfa is practically coincident
with the Monte Carlo Pfa only if the assumed distribution for the decision statistic T0 under
H0 is correctly predicted.

Figure 3. ROC: Monte Carlo Pd versus Monte Carlo Pfa. (Left) T = 215Ts; (Right) T = 219Ts.
Quadratic form detectors (blue): (5) cyclic pdf (kernel-based estimator); (�) cyclic CDF (Fourier
coefficient of the indicator); (©) cyclic autocorrelation (cyclic correlogram); (♦) cyclic CDF (kernel-
based estimator); (?) cyclic 4th-order moment.

By comparing the curves in Figure 3 with the corresponding ones in Figure 2, it follows
that, when the data-record length increases from T = 215 to T = 219, the ROCs MC-Pd
vs. MC-Pfa are practically coincident with the ROCs MC-Pd vs. nominal-Pfa for the QF
detectors based on estimates of second- and 4th-order cyclic statistics or based on estimates
of the cyclic CDF (Fourier coefficient of the indicator). In contrast, the ROC MC-Pd vs.
MC-Pfa for the QF detectors based on estimates of the cyclic CDF (kernel-based estimator)
presents irregularly spaced points and based on estimates of the cyclic pdf (kernel-based
estimator) does not fit the corresponding ROC MC-Pd vs. nominal-Pfa. Such a behavior
for the ROCs of the detectors based on the cyclic CDF and pdf kernel estimators suggests
that for these estimators the normalized estimation error is not Gaussian and, consequently,
the threshold determined by (78) is not correct.

3.7. Monte Carlo Pfa versus Nominal or Design Pfa

For detectors whose threshold is determined using Monte Carlo simulations (Section 3.2)
we have, as expected, that the Monte Carlo (effective) Pfa is practically equal to the nominal
or design Pfa.

For detectors whose threshold is derived analytically, it make sense to check how far
the effective Monte Carlo Pfa is from the nominal or design Pfa.

In this experiment, the Monte Carlo Pfa versus the nominal Pfa is computed for the QF
detectors. The results are reported in Figure 4.
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Figure 4. Monte Carlo (effective) Pfa is versus nominal or design Pfa. (Left) T = 215Ts; (Right)
T = 219Ts. Quadratic form detectors (blue): (5) cyclic pdf (kernel-based estimator); (�) cyclic CDF
(Fourier coefficient of the indicator); (©) cyclic autocorrelation (cyclic correlogram); (♦) cyclic CDF
(kernel-based estimator); (?) cyclic 4th-order moment. Black line: Monte Carlo Pfa = nominal Pfa.

According to the results of Section 3.6, when the data-record length increases from
T = 215 to T = 219, the MC-Pfa approaches the nominal-Pfa for the QF detectors based on
estimates of second- and 4th-order cyclic statistics or based on estimates of the cyclic CDF
(Fourier coefficient of the indicator). Moreover, for the QF detectors based on estimates of
the cyclic CDF (kernel-based estimator) and the cyclic pdf (kernel-based estimator), the
effective Monte Carlo Pfa is far from the nominal or design Pfa. Therefore, according to the
results of Section 3.6, this fact could suggest that, for these detectors, the normalized esti-
mation errors are not asymptotically complex normal. At least if the smoothing parameter
b is chosen according to Silverman’s rule (30).

4. Discussion

The problem of cyclostationary signal detection is addressed in the fraction-of-time
probability approach. In this approach, signals are modeled as single functions of time,
rather than realizations of a stochastic process. Two classes of detectors are considered:
the single-cycle detectors, and the quadratic-form detectors. The single-cycle detectors
have a decision statistic that only depends on the received signal. Such a decision statistic
is compared with a threshold that is derived from the available side data in the null
hypothesis. In contrast, quadratic-form detectors have a decision statistic that depends
on the received signal and side data in the null hypothesis and the threshold that can be
derived analytically, provided that the decision statistic has a chi-squared fraction-of-time
distribution under the null hypothesis. However, at the price of a modest performance
degradation, the decision statistic can be computed using the received signal only, with no
need of side data. For quadratic-form detectors, the covariance matrix is estimated with
a subsampling procedure that is naturally derived in the fraction-of-time approach. For
both single-cycle and quadratic-form detectors, a new class of cyclic statistical function
measurements are considered: the cyclic cumulative distribution function, and the cyclic
probability density function. The simulation results showed that these measurements can
allow one to gain in performance with respect to measurements of cyclic autocorrelation,
cyclic spectrum, and cyclic 4th-order moment. The advantage is particularly evident
when the almost-periodically time-variant cumulative distribution and probability density
functions exhibit harmonics whose strength is comparable with that of the continuous
component. The effectiveness of the proposed detectors was tested on a FSK signal-of-
interest in a severe noise and interference environment. Specifically, both additive stationary
noise and narrow-band interference were present, with a power spectral density that
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completely overlapped that of the signal-of-interest. The SNR and SIR were both −20 dB.
By operating at a cycle frequency equal to the symbol rate, a performance analysis was
carried out using Monte Carlo simulations for the new proposed single-cycle and quadratic-
form detectors based on measurements of the cylic CDF and pdf. Specifically, the probability
of missed detection versus the data-record length and the receiver operating characteristics
were estimated. Moreover, the performances were compared with those of analogous
detectors based on measurements of cyclic autocorrelation, cyclic spectrum, and cyclic
4th-order moment measurements. The simulation results showed the better performance
of the new proposed detectors. A further analysis was carried out to check the assumption
made on the quadratic-form distribution that was exploited to analytically derive the
detector threshold. Specifically, for all considered quadratic-form detectors, the nominal or
design probability of false alarm (adopted to derive the threshold) was compared with the
effective probability of false alarm obtained using Monte Carlo simulations. By increasing
the data-record length, the values of the two probabilities of false alarm tended to be
equal, except for the case of quadratic forms of measurements of cyclic CDF and pdf
obtained using kernel-based estimators. Such a mismatch suggests that, unlike the case
of zero cycle frequency, the normalized estimation error for kernel-based estimators is
not asymptotically complex normal. Therefore, although the derived threshold provides
satisfactory performance, this is not the best choice and better performances are expected
to be obtained by properly modeling the distribution of the normalized estimation error
and, hence, that of the quadratic-form detection statistic. Finally, note that the performance
advantage of one detector over another strongly depends on the kind of signal-of-interest
and its cyclic statistical functions. For example, for a pulse-amplitude-modulated signal
with 50% duty-cycle rectangular pulse, detectors based on the cyclic autocorrelation and
the 4th-order cyclic moment measurements outperformed those based on the cyclic CDF
and pdf measurements.
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25. Leśkow, J.; Napolitano, A. Foundations of the functional approach for signal analysis. Signal Process. 2006, 86, 3796–3825.
[CrossRef]

26. Gardner, W.A. Cyclostationarity.com. 2018. Available online: https://cyclostationarity.com (accessed on 1 October 2023).
27. Napolitano, A.; Gardner, W.A. Fraction-of-time probability: Advancing beyond the need for stationarity and ergodicity

assumptions. IEEE Access 2022, 10, 34591–34612. [CrossRef]
28. Gardner, W.A. Transitioning away from stochastic process models. J. Sound Vib. 2023, 565, 117871. [CrossRef]
29. Kac, M.; Steinhaus, H. Sur les fonctions indépendantes (IV) (Intervalle infini). Stud. Math. 1938, 7, 1–15. [CrossRef]
30. Kac, M. Statistical Independence in Probability, Analysis and Number Theory; The Mathematical Association of America: Washington,

DC, USA, 1959.
31. Gardner, W.A.; Brown, W.A. Fraction-of-time probability for time-series that exhibit cyclostationarity. Signal Process. 1991,

23, 273–292. [CrossRef]

http://doi.org/10.1016/C2017-0-04240-4
http://dx.doi.org/10.1109/26.3769
http://dx.doi.org/10.1109/26.126716
http://dx.doi.org/10.1109/26.231913
http://dx.doi.org/10.1109/78.340776
http://dx.doi.org/10.1109/78.317857
http://dx.doi.org/10.23919/EUSIPCO.2018.8553311
http://dx.doi.org/10.1111/j.1467-9892.1991.tb00088.x
http://dx.doi.org/10.1109/ICASSP.1995.480668
http://dx.doi.org/10.1016/j.jspi.2014.02.012
http://dx.doi.org/10.1109/DYSPAN.2007.35
http://dx.doi.org/10.1109/JSAC.2008.080103
http://dx.doi.org/10.1109/JPROC.2009.2015711
http://dx.doi.org/10.1109/TSP.2009.2025152
http://dx.doi.org/10.1109/TSP.2017.2684743
http://dx.doi.org/10.3103/S0735272712080018
http://dx.doi.org/10.1016/j.dsp.2013.12.002
http://dx.doi.org/10.1186/s13634-018-0564-6
http://dx.doi.org/10.1109/TSP.2017.2728499
http://dx.doi.org/10.1109/TSP.2021.3057268
http://dx.doi.org/10.1109/TIM.2021.3069381
http://dx.doi.org/10.1016/j.sigpro.2006.03.028
https://cyclostationarity.com
http://dx.doi.org/10.1109/ACCESS.2022.3162620
http://dx.doi.org/10.1016/j.jsv.2023.117871
http://dx.doi.org/10.4064/sm-7-1-1-15
http://dx.doi.org/10.1016/0165-1684(91)90005-4


Inventions 2023, 8, 152 23 of 23

32. Gardner, W.A.; Spooner, C.M. The cumulant theory of cyclostationary time-series. Part I: Foundation. IEEE Trans. Signal Process.
1994, 42, 3387–3408. [CrossRef]

33. Izzo, L.; Napolitano, A. The higher-order theory of generalized almost-cyclostationary time-series. IEEE Trans. Signal Process.
1998, 46, 2975–2989. [CrossRef]

34. Miao, H.; Zhang, F.; Tao, R. A general fraction-of-time probability framework for chirp cyclostationary signals. Signal Process.
2021, 179, 107820. [CrossRef]

35. Zemanian, A.H. Distribution Theory and Transform Analysis; Dover: New York, NY, USA, 1987.
36. Dehay, D.; Leśkow, J.; Napolitano, A. Time average estimation in the fraction-of-time probability framework. Signal Process. 2018,

153, 275–290. [CrossRef]
37. Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
38. Rosenblatt, M. Curve Estimates. Ann. Math. Stat. 1971, 42, 1815–1842. [CrossRef]
39. Serfling, R.J. Approximation Theorems of Mathematical Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1980.
40. Castellana, J.; Leadbetter, M. On smoothed probability density estimation for stationary processes. Stoch. Process. Their Appl.

1986, 21, 179–193. [CrossRef]
41. Shevgunov, T.; Napolitano, A. Fraction-of-time density estimation based on linear interpolation of time series. In Proceedings of

the 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 16–18 March
2021. [CrossRef]

42. Dehay, D. Spectral analysis of the covariance of the almost periodically correlated processes. Stoch. Process. Their Appl. 1994,
50, 315–330. [CrossRef]
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