
Citation: Ahmadi, F.; Abedi, O.;

Emadi, S. Enhancing Smart

Agriculture Monitoring via

Connectivity Management Scheme

and Dynamic Clustering Strategy.

Inventions 2024, 9, 10. https://

doi.org/10.3390/inventions9010010

Academic Editor: Xinqing Xiao

Received: 15 November 2023

Revised: 9 December 2023

Accepted: 11 December 2023

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inventions

Article

Enhancing Smart Agriculture Monitoring via Connectivity
Management Scheme and Dynamic Clustering Strategy
Fariborz Ahmadi , Omid Abedi * and Sima Emadi

Department of Computer Science, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran;
sanandajstudent@gmail.com (F.A.); emadi@iauyazd.ac.ir (S.E.)
* Correspondence: oabedi@uk.ac.ir

Abstract: The evolution of agriculture towards a modern, intelligent system is crucial for achieving
sustainable development and ensuring food security. In this context, leveraging the Internet of
Things (IoT) stands as a pivotal strategy to enhance both crop quantity and quality while effectively
managing natural resources such as water and fertilizer. Wireless sensor networks, the backbone
of IoT-based smart agricultural infrastructure, gather ecosystem data and transmit them to sinks
and drones. However, challenges persist, notably in network connectivity, energy consumption, and
network lifetime, particularly when facing supernode and relay node failures. This paper introduces
an innovative approach to address these challenges within heterogeneous wireless sensor network-
based smart agriculture. The proposed solution comprises a novel connectivity management scheme
and a dynamic clustering method facilitated by five distributed algorithms. The first and second
algorithms focus on path collection, establishing connections between each node and m-supernodes
via k-disjoint paths to ensure network robustness. The third and fourth algorithms provide sustained
network connectivity during node and supernode failures by adjusting transmission powers and
dynamically clustering agriculture sensors based on residual energy. In the fifth algorithm, an
optimization algorithm is implemented on the dominating set problem to strategically position a
subset of relay nodes as migration points for mobile supernodes to balance the network’s energy
depletion. The suggested solution demonstrates superior performance in addressing connectivity,
failure tolerance, load balancing, and network lifetime, ensuring optimal agricultural outcomes.

Keywords: smart agriculture; remote sensing; IoT-based agriculture; dynamic clustering; connectivity
restoration; optimal agricultural outcomes

1. Introduction

Remote sensing plays a vital role in smart agriculture. Using sensors, it collects
information about soil conditions, weather conditions, humidity, and crop health, and
contributes to food security and sustainable development [1,2]. Smart agriculture uses
a series of equipment, such as agricultural sensors, actuators, and drones, which are
connected through wireless communication. WSN is the most significant component in
smart agriculture, and is used in soil analysis, weather monitoring, determining yield
productivity, the early detection of disease, and crop monitoring. Figure 1 shows an
example of this architecture. In these systems, agricultural sensors should cover the entire
environment during network activity to fully monitor crops. Thus, network connectivity is
the primary challenge in this area. Each node failure can cause the disconnection of a series
of other sensors from the network, so fault tolerance in WSN-based smart agriculture is a
solution for high network connectivity. Additionally, other significant challenges, such as
data traffic unbalancing, energy consumption, node damping near sinks, and environment
factors lead to failure in these networks [3]. All the above challenges regarding high
network connectivity should be solved so they do not negatively affect the efficiency of the
smart agriculture system.

Inventions 2024, 9, 10. https://doi.org/10.3390/inventions9010010 https://www.mdpi.com/journal/inventions

https://doi.org/10.3390/inventions9010010
https://doi.org/10.3390/inventions9010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inventions
https://www.mdpi.com
https://orcid.org/0000-0002-7727-2560
https://doi.org/10.3390/inventions9010010
https://www.mdpi.com/journal/inventions
https://www.mdpi.com/article/10.3390/inventions9010010?type=check_update&version=1

Inventions 2024, 9, 10 2 of 33

Inventions 2023, 8, x FOR PEER REVIEW 2 of 34

connectivity should be solved so they do not negatively affect the efficiency of the smart
agriculture system.

Figure 1. Smart agriculture based on heterogenous wireless sensor network.

The preceding challenges can be overcome by developing a wireless sensor and ac-
tuator network (WSAN), where supernodes serve as alternative gateways that are the core
of the WSAN [4]. In addition to broader transmission ranges and more excellent batteries,
supernodes perform the decision making process and make specific reactions based on
their decisions. In many cases, data delivery from nodes to these supernodes is sufficient
to ensure the network functions correctly [5,6]. According to [7], optimizing the placement
of supernodes can extend the network lifetime by a factor of five. These networks can also
be used for different purposes, e.g., recognizing combustion in agriculture [8], under-
ground precision agriculture [9], and olive grove monitoring [10].

Studies indicate that traffic load and energy consumption distribution pose chal-
lenges for heterogeneous wireless sensor networks. Inefficient distributions result in a sit-
uation where, following the failure of the initial network node, 90% of the energy in live
nodes remains unused [11]. Many studies attempted to balance the energy consumption
of nodes so that they would discharge at a specific interval through different methods,
e.g., by using a dynamic transmission range and adjusting the transmission range [12].
Earlier works reported that balancing energy consumption can improve the network’s
lifetime by 30% since it helps balance the data traffic in the nodes adjacent to the sink [13].
Consequently, the proposed path construction method considers the residual energy of
path-forming nodes as a crucial parameter, with nodes of a lower energy contributing to
fewer paths.

Hotspots, or bottlenecks, are nodes that exist at a one-step distance from supernodes.
Their energy discharges much more rapidly than that of other nodes since they serve as
relay nodes for other nodes in addition to sending sensed data. Thus, hotspot failure is a
significant challenge for sensor networks since it disconnects many nodes from super-
nodes [14–16]. Numerous studies have analyzed supernode mobility [14,15,17,18] and
clustering [19–25] to overcome this challenge. The energy consumption of relay nodes can
be balanced through supernode mobility and the periodic change of relay nodes. How-
ever, a mobile supernode imposes a new challenge on the network since a new movement
and settlement change the network topology. Control messages are required to arrange a
new topology to provide network coverage and connectivity. Therefore, handling the
premature damping of relay nodes leads to the control message overhead in the network.

Figure 1. Smart agriculture based on heterogenous wireless sensor network.

The preceding challenges can be overcome by developing a wireless sensor and
actuator network (WSAN), where supernodes serve as alternative gateways that are the
core of the WSAN [4]. In addition to broader transmission ranges and more excellent
batteries, supernodes perform the decision making process and make specific reactions
based on their decisions. In many cases, data delivery from nodes to these supernodes is
sufficient to ensure the network functions correctly [5,6]. According to [7], optimizing the
placement of supernodes can extend the network lifetime by a factor of five. These networks
can also be used for different purposes, e.g., recognizing combustion in agriculture [8],
underground precision agriculture [9], and olive grove monitoring [10].

Studies indicate that traffic load and energy consumption distribution pose challenges
for heterogeneous wireless sensor networks. Inefficient distributions result in a situation
where, following the failure of the initial network node, 90% of the energy in live nodes
remains unused [11]. Many studies attempted to balance the energy consumption of nodes
so that they would discharge at a specific interval through different methods, e.g., by using
a dynamic transmission range and adjusting the transmission range [12]. Earlier works
reported that balancing energy consumption can improve the network’s lifetime by 30%
since it helps balance the data traffic in the nodes adjacent to the sink [13]. Consequently,
the proposed path construction method considers the residual energy of path-forming
nodes as a crucial parameter, with nodes of a lower energy contributing to fewer paths.

Hotspots, or bottlenecks, are nodes that exist at a one-step distance from supernodes.
Their energy discharges much more rapidly than that of other nodes since they serve as
relay nodes for other nodes in addition to sending sensed data. Thus, hotspot failure
is a significant challenge for sensor networks since it disconnects many nodes from su-
pernodes [14–16]. Numerous studies have analyzed supernode mobility [14,15,17,18] and
clustering [19–25] to overcome this challenge. The energy consumption of relay nodes can
be balanced through supernode mobility and the periodic change of relay nodes. However,
a mobile supernode imposes a new challenge on the network since a new movement and
settlement change the network topology. Control messages are required to arrange a new
topology to provide network coverage and connectivity. Therefore, handling the premature
damping of relay nodes leads to the control message overhead in the network. Furthermore,
finding optimal settlement points for a supernode is an NP-hard problem [26]. In [27],
a suboptimal heuristic algorithm was assessed to find settlement points. The preceding
techniques have the drawback of focusing primarily on the relay nodes while ignoring the
other nodes’ energy consumption.

Inventions 2024, 9, 10 3 of 33

Agriculture sensors may fail for various reasons, such as energy discharge, hardware
faults, and severe weather. This failure can disconnect a series of nodes from the network. It
is essential to design fault-tolerant methods for network re-connectivity. In the disjoint path
vector (DPV) method [6], each node is connected to a set of supernodes through k-disjoint
paths to enable a node to select other paths to transmit the sensed data in case of node
failure. DPV is aimed at reducing the total transmission range and maximum transmission
range in order to lengthen the network’s lifetime. It can maintain supernode connectivity at
a node failure rate of up to 5% [5,28]. In DPV, a node failure reduces k-vertex connectivity,
whereas a supernode failure disconnects a large number of nodes. In [5], the adaptive
disjoint path vector (ADPV) utilized r-restoration paths to maintain k-vertex connectivity.
Despite improved supernode connectivity, it had two significant disadvantages: (1) the
supernode layer was not fault-tolerant, and supernode failure disconnected a large number
of nodes; (2) hotspots were required to be much more than k in number to avoid bottlenecks
and premature death. In other words, ADPV was heavily dependent on the network
structure and node locations in an operating environment.

This paper introduces a scheme for connectivity restoration, a two-layered fault-
tolerant system, and a dynamic clustering method designed for heterogeneous wireless
sensor network-based smart agriculture. The primary aim is to enhance quality of service
(QoS) by improving connectivity restoration through the establishment of connections
between individual nodes and m-supernodes using k-disjoint paths. Additionally, the pro-
posal seeks to augment resilience to node and supernode failures by adjusting transmission
powers and dynamically clustering sensors based on residual energy. Furthermore, it aims
to prolong network lifetime by strategically positioning relay nodes as migration points for
mobile supernodes.

The following is an overview of this paper’s primary contributions:

• By considering residual energy levels in path-construction nodes, the design facilitates
efficient data transfer from low-energy to high-energy nodes. This approach aims to
optimize network lifetime and load balancing.

• By preventing the transmission of control messages that do not impact neighboring
path tables, the proposed method optimizes the use of control messages, leading to
improved network efficiency and lower congestion.

• By designing a distributed and energy-aware methodology, a robust topology is built
to tolerate up to k − 1 node failures and m − 1 supernode failures, greatly increasing
network connectivity.

• By dynamically reassigning nodes to secondary supernodes based on the longest path
lifetime, in the event of a primary supernode failure, the system ensures fault tolerance
and network connectivity.

• By implementing an optimal greedy algorithm to identify migration points from relay
nodes, this strategy relocates supernodes strategically. This design leads to distributing
traffic load, enhancing fault tolerance by preventing relay node failures, and improving
network lifetime through efficient supernode movement and settlement.

This study is divided into several sections. Section 2 reviews the study literature, and
Section 3 presents the suggested solution and algorithms. The evaluation findings are
presented in Section 4, and a conclusion is drawn in Section 5.

2. Literature Review

Based on the predictions, the world population will reach one billion people by
2050 [29]. This population growth requires a sustainable proportional increase in crops.
Also, it is estimated that the number of people with cancer will be about 26 million by
2030 [30], and 17 million people will die from this disease. Food security is one of the ways
to prevent this disease. Remote sensing plays a vital role in modern agriculture since it can
effectively provide and improve food security and sustainable crop growth by monitoring
the quality and quantity of crops. Moreover, the application of remote sensing, especially in
its water-related contexts, has the potential to furnish sustainable resolutions for addressing

Inventions 2024, 9, 10 4 of 33

the imminent challenge of irrigation water scarcity [31]. The infrastructure of these systems
is wireless sensor networks. The challenges of WSN-based smart agriculture should be
solved for better crop management. This section presents an overview of the recent studies
on fault tolerance topology control, clustering methods, mobile supernodes, heterogeneity,
and connectivity restoration.

Fault tolerance is an essential task in WSNs, ensuring uninterrupted data exchange. In
recent years, many studies have been conducted on fault tolerance topology control [32–35]
to reduce the residual energy consumption of nodes by adjusting the transmission power.
In [36], a distributed topology control method was proposed for a WSN to change its
topology dynamically through network coding. In [34], the game algorithm was employed
to design a fault-tolerant topology control scheme for underwater WSNs by reducing
unnecessary links and energy consumption. In [37], clustering was combined with fault
tolerance to reduce energy consumption by applying fault tolerance to inter-cluster links.
Fault tolerance and clustering were integrated in [38], using particle swarm optimization
(PSO) to connect the members of a failed cluster to the new cluster head. These methods
mainly focus on topology control and clustering to reduce node energy consumption. They
ensure fault tolerance by lowering energy consumption.

Designing clustering algorithms is a method of reducing energy consumption in
WSNs. Cluster head selection has been recently discussed in many studies. In [39], residual
energy, node density, and node distances from sinks were integrated, and a fuzzy system
was employed to calculate the probability of node selection as cluster heads. In addition
to these parameters, link lifetime was considered in [40], assigning specific weights to
each parameter. The residual energy had the highest weight, whereas the sink distance
had the lowest weight. In [41], a PSO-based method was adopted to find the optimal
cluster head by combining residual energy and sink distance to minimize the message
overhead. In [42], nodes were clustered before using energy-based paths to connect clusters.
In [43], the adaptive selfish optimization algorithm was utilized to select cluster heads,
and the k-medoids technique was used to determine the nodes of each cluster to lengthen
the network’s lifetime by preserving node energy. In [44], each UAV was considered a
cluster head by default, and hierarchical clustering was employed to transmit data to UAVs.
In actuality, clustering algorithms distribute network nodes over various zones; hence,
cluster heads and inter-cluster routes should include fault tolerance to prevent network
disconnectivity. These techniques only considered energy usage and lacked fault tolerance.

Mobile sinks are a standard method to distribute relay jobs between nodes since such
mobility can periodically change the relay nodes. In [45], the main focus was on reducing
the sink travel distance, and path planning was used to shorten the traveled distance of
sinks. In [46], the primary purpose was to lengthen the network’s lifetime. To balance traffic
load distribution, the relay nodes were periodically changed by utilizing sink movement
between clusters.

In [47], mobile sinks and clustering were integrated; the sink was mounted on the
cluster head with the highest traffic load in the subsequent migration. In [48], two important
parameters were measured: movement time and stop time. The sink moved to the next
migration at the movement time and remain there for the stop time. In [49], an ant colony
optimization-based algorithm was proposed, where each node selected a data-gathering
point via a random function. These data-gathering points determined the sink settlement
points. In [50], a bipartite graph was created to divide sensor nodes into two sets, and
the mobile sink calculated the nearest neighboring node using the breadth-first traversal
algorithm once it entered each set. Then, it visited the node in the next movement. These
methods focused mainly on collecting sensor data, decreasing energy consumption, and
neglecting fault tolerance.

Regarding connectivity restoration in WSAN, the DPV algorithm [6] is designed to
decrease the total transmission power in heterogeneous wireless sensor networks by main-
taining the k-vertex disjoint paths from each sensor to a group of supernodes. Generally,
this algorithm’s input is a k-vertex supernode-connected graph, and its output is a subgraph

Inventions 2024, 9, 10 5 of 33

with fewer edges composed of the same collection of sensors. This method finds the edges
that satisfy the following conditions:

1. Each node has a k-disjoint path to the supernode set;
2. ∑n

i=0 pi is minimized (pi is the weight of the maximum weighted edge).

ADPV [5] extends the DPV algorithm and uses the residual energy of sensor nodes to
generate a fault-tolerant topology. This method improves the network’s lifetime by balanc-
ing the energy consumption of sensor nodes and involving initialization and restoration
phases. In the first phase, the necessary information is collected, and the initial topology is
constructed. In ADPV, whenever a node failure disrupts the connectivity of the k-vertex
supernode, other k-disjoint paths are extracted for each sensor node during the restoration
phase. At the end of the restoration phase, the transmission power of each node is adjusted
in the generated topology. The disadvantage of the studies reviewed by [5,6] is that they
considered only node failures; however, network connectivity may also be affected by
supernode failures. In these methods, sensor nodes and supernodes are static; hence, they
are ineffective in prolonging the network’s lifetime. The suggested approach to increasing
network lifetime involves mobilizing supernodes and considering their failures.

3. The Proposed Method

This section introduces k-disjoint paths to m-mobile supernodes (KDPMS). In the worst
case, this approach can tolerate k − 1 node and m − 1 supernode failures and balance relay
jobs between the nodes. KDPMS also manages connectivity by changing the transmission
power of nodes and clustering the sensor nodes dynamically. It merely requires messaging
with one-step neighbors to construct a topology.

The flowchart in Figure 2 helps to describe the proposed algorithms and theorems. In
this method, three tables are required for each node, e.g., a local path table (LPT), disjoint
path table (DPT), and maintenance disjoint path table (MDPT). These tables are organized
into m + m′ ⊂ Ns segments, where Ns represents a set of supernodes, and each segment
details paths to a specific supernode with their respective lifetimes. Within each DPT
segment, k-disjoint paths are arranged by lifetime, leading to a designated supernode. DPTi
encompasses all paths in segment i, while DPTi. . .j includes segments i to j of the DPT.
Additionally, DPTi.d denotes the supernode ID in segment i, and DPTi,j signifies path j of
segment i. The initial m segments of the DPT establish connections to m supernodes, while
the subsequent m′ segments are employed for the preservation of m-supernode connectivity.
Notably, there are kλ nodes in DPTi, where λ denotes the longest path length. Furthermore,
the total numbers of paths and nodes in the DPT are k(m + m′) and kλ(m + m′), respectively.

Each segment of the MDPT contains k′-disjoint paths aimed at restoring k-vertex
connectivity. When a node failure removes a path from DPTi, the path of the longest
lifetime in MDPTi takes its place. It is crucial for proper network operation that for all of i,
DPTi.d equals MDPTi.d. In MDPTi, there are k′λ nodes, and the total numbers of paths
and nodes in the MDPT are represented as k′(m + m′) and k′λ(m + m′), respectively.

Upon receiving new path information from immediate neighbors with supernode
destination d, these paths are recorded in LPTi.d. Following the confirmation of their
disjoint nature, the paths are organized in descending order based on their lifetimes. The
initial k paths, possessing the longest lifetimes, are allocated to DPTi, while the remaining
k′ paths find placement in MDPTi. Subsequently, DPT organizes its segments by lifetime,
ensuring ∀i (lifetime (DPTi) > lifetime (DPTi+1)). DPT1 holds disjoint paths to the primary
supernode, while DPT2. . .m contains disjoint paths to secondary supernodes. The alterna-
tive supernodes are utilized to reinstate m-supernode connectivity from the ensuing m′

segments. The optimal disjoint paths are identified by determining the path lifetime based
on the residual energy of their nodes, as per Equation (A7).

Inventions 2024, 9, 10 6 of 33

Inventions 2023, 8, x FOR PEER REVIEW 6 of 34

ensuring ∀i (lifetime (DPTi) > lifetime (DPTi+1)). DPT1 holds disjoint paths to the primary
supernode, while DPT2..m contains disjoint paths to secondary supernodes. The alternative
supernodes are utilized to reinstate m-supernode connectivity from the ensuing m′ seg-
ments. The optimal disjoint paths are identified by determining the path lifetime based on
the residual energy of their nodes, as per Equation (A7).

Figure 2. A flowchart of the proposed method.

KDPMS is structured into five distributed algorithms. During Algorithm1 and Algo-
rithm2, denoted as path information collection, each node undertakes the extraction of k-
optimal disjoint paths and k′-optimal maintenance disjoint paths for individual segments.
This process involves the acquisition of path information from adjacent one-step neigh-
boring nodes, resulting in a topology characterized by k-disjoint paths to m-mobile super-
nodes. Inspired by the algorithms employed in DPV and ADPV, this study introduces a
nuanced yet impactful modification aimed at minimizing the number of control messages.
Within this framework, every supernode assumes the role of a cluster head, and each ag-
ricultural node is integrated as a member of the corresponding supernode cluster, as iden-
tified within DPT1.d. The algorithm is designed to optimize network lifetime, facilitate
load balancing, and enhance network connectivity.

Algorithm 3 is enacted in response to a node failure, disrupting k-vertex connectivity.
In such situations, k′-disjoint paths within MDPTi are utilized to restore k-vertex connec-
tivity. It is important to note that each node failure leads to adjustments in the DPT and

Figure 2. A flowchart of the proposed method.

KDPMS is structured into five distributed algorithms. During Algorithms 1 and 2,
denoted as path information collection, each node undertakes the extraction of k-optimal
disjoint paths and k′-optimal maintenance disjoint paths for individual segments. This
process involves the acquisition of path information from adjacent one-step neighboring
nodes, resulting in a topology characterized by k-disjoint paths to m-mobile supernodes.
Inspired by the algorithms employed in DPV and ADPV, this study introduces a nuanced
yet impactful modification aimed at minimizing the number of control messages. Within
this framework, every supernode assumes the role of a cluster head, and each agricultural
node is integrated as a member of the corresponding supernode cluster, as identified within
DPT1.d. The algorithm is designed to optimize network lifetime, facilitate load balancing,
and enhance network connectivity.

Algorithm 3 is enacted in response to a node failure, disrupting k-vertex connectivity.
In such situations, k′-disjoint paths within MDPTi are utilized to restore k-vertex connec-
tivity. It is important to note that each node failure leads to adjustments in the DPT and
MDPT of nodes with paths involving the failed node. In the event of a supernode failure,
Algorithm 4 is initiated, employing m′-alternative supernodes to preserve m-supernode
connectivity. In this approach, supernode i is designated as a cluster head, and the node
with the longest path lifetime to supernode i is assigned to cluster i. In the event of a
cluster head failure within a node, the imperative is for the node to dynamically designate
an alternate cluster head, guided by considerations of the path’s lifetime to the new clus-

Inventions 2024, 9, 10 7 of 33

ter head. These algorithms play a crucial role in ensuring fault tolerance and sustaining
network connectivity.

Algorithm 5 confronts the challenges of identifying optimal supernode migration
points and the supernode settlement time at these points, and establishing the next mi-
gration point. During this algorithm, an initial assumption is made that the locations of
supernodes are static, and migration points are determined through the implementation of
an optimal greedy algorithm applied to the dominating set problem. The migration points
are selected from the relay nodes, and the supernodes are mounted on these nodes during
their movements. This strategic process aims to mitigate the risk of relay node failures,
consequently enhancing fault tolerance and prolonging the network’s lifetime.

3.1. Problem Statement

Initiating our discourse, we present the formal elucidation of k-vertex to m-supernode
connectivity.

Definition 1. Disjoint Paths [6]: Disjoint paths are paths with common ends but distinct mid-
dle nodes.

Definition 2. k-Vertex to m-Supernode Connectivity [51]: Achieving k-vertex to m-supernode
connectivity in a heterogenous wireless sensor network depends on ensuring that removing k − 1
nodes will not disconnect any nodes from their respective supernodes. Similarly, the removal of
m − 1 supernodes will not disconnect any nodes from the overall network structure.

In the initial configuration, we are given a network characterized by k-vertex to
m-supernode connectivity, encompassing Ns supernodes and N sensor nodes. The transmis-
sion range of sensor nodes is subject to adjustment within the constraints of a predefined
constant denoted as Rmax. By incorporating models of node and supernode failures, the
count of active agriculture sensor nodes and supernodes diminishes over the network’s
operational duration. Notably, we employ N(t) to represent the set of active agriculture
sensor nodes and Ns(t) to denote active supernodes at a given time, t, measured in dis-
crete intervals. The primary objective lies in determining the transmission ranges of all
active sensor nodes at any temporal instance. This ensures that the network topology
maintains the k-vertex prescribed to m-supernode connectivity, thereby enhancing overall
network lifetime.

Definition 3. Connectivity Management Lifetime Maximization with Mobile Supernodes:
Let G = (V, E) be a k-disjoint path to m-supernode connected with a set Ns(t) ⊂ V of active

supernodes and a set, N(t) ⊂ V, of active agriculture nodes at time t, such that Ns(t) ∩ N(t) = ∅,
and Ns(t) ∪ N(t) = V(t). The goal is to find a set of edges (F ⊂ E) and a set of nodes (C ⊂ N(t)) as
the migration points such that the resulting graph, G (N(t)-C, E-F), meets the following conditions:

• Each node has k-disjoint paths to m-supernode connectivity;

• ∑
|n|
i=1 liis maximized (li is the path lifetime obtained from Equation (A7));

• N(t)-C is optimized so that ∑
|r|
i=1 rican be maximized (ri is relay node lifetime);

• ∑
|n|
i=1 tiis minimized (ti is the number of sensor node control messages).

The study aims to optimize network connectivity by establishing connections between
agriculture nodes and m-supernodes through k-disjoint paths with the longest lifetime.
Additionally, it seeks to improve tolerance to node and supernode failures by adjusting
transmission powers and dynamically clustering sensors based on residual energy levels.
The study further aims to prolong network lifetime by considering residual energy levels
in path construction nodes and strategically positioning relay nodes as migration points for
mobile supernodes. An additional objective is to minimize the usage of control messages
throughout these processes, contributing to the overall improvement of network lifetime.

Inventions 2024, 9, 10 8 of 33

3.2. Path Information Collection and Connectivity-Centric Topology Design in KDPMS

Algorithm 1 serves as the foundational algorithm of the KDPMS, which encapsulates
the pseudocode for collecting path information and constructing k-disjoint paths to m-
mobile supernode connectivity. The corresponding notations for this algorithm are shown
in Table 1. In this methodology, the algorithm designates the segment in LPT to the node
contingent upon the received path, I, under the condition that LPTi.d = I.d, where I.d
denotes the destination node of the received path or the supernode d. Subsequently, the
received path is integrated with the existing paths of LPTi. Following a confirmation
of their disjoint nature, the paths undergo sorting based on path lifetime in descending
order. The algorithm then allocates the first k paths with the longest lifetime to DPTi,
while the remaining paths are placed in MDPTi. A comprehensive description of this
algorithm follows.

Table 1. Notations used in KDPMS.

Notations Descriptions

I Received PathInfo message
I.d Destination supernode of received PathInfo message
k Disjoint connectivity degree
k′ Disjoint connectivity degree of maintenance disjoint path table
m Number of primary and secondary supernodes
m′ Number of alternative supernodes

D and D′ Set of disjoint paths
pl Lifetime of disjoint path according to Formula (A7)

Maxpli Maximum path lifetime of segment i
U Union of two path sets

NS Set of supernodes
ns Size of supernodes
Sr Supernode ratio
N Set of agriculture sensor nodes
n Size of agriculture sensor nodes
Id Supernode id
∆ Maximum degree of a node

RN Required neighbors
λ Maximum length of paths

DPT Disjoint path table
DPTi Disjoint path table’s segment i

DPTi.d Disjoint path table’s segment i’s destination supernode
DPTi, j jth path of disjoint path table’s segment i
MDPT Maintenance disjoint path table
MDPTi Maintenance disjoint path table of segment i

LPT Local path table
LPTi Local path table of segment i
RE Remaining energy of node
ei Total number of removed paths after ith failed node

ei, j Total number of removed paths after ith failed supernode and jth failed node
ri Total number of remaining paths after ith failed node
uli Total number of update path lifetime messages after ith failed node

uli, j
Total number of update path lifetime messages after ith failed supernode and
jth failed node

n0, n1, . . ., ni Number of sensor nodes remaining following each path elimination

Once the nodes and supernodes have settled in the operational environment, each
supernode sends an Init message containing the supernode ID and its lifetime across the
network. The one-step neighboring sensor nodes receive this message and build a new

Inventions 2024, 9, 10 9 of 33

segment, namely DPTi, MDPTi, and LPTi, for the Init-sender supernode. Each node that
receives the path sent through the Init message places the received path in LPTi. In this case,
since it includes only the supernode, this path is disjoint and is placed in DPTi. Once DPTi
has been updated, a node uses its maximum power to send a pathinfo message, including
DPTi and its path lifetime across the network.

Upon receipt of the pathinfo message, each node checks the I.d of the received paths.
If a segment corresponding to supernode d is identified in LPT, the paths are joined with
the existing paths of LPTi, where i is the corresponding segment of I.d. Subsequently,
non-disjoint paths are systematically eliminated following the execution of Algorithm A1,
in Appendix A. The surviving disjoint paths are then arranged in descending order based
on their lifetimes, with the first k paths being allocated to DPTi, while the subsequent k′

paths find placement in MDPTi. In instances where the I.d of the received paths is not
found within the LPT segments, an LPTi segment is meticulously constructed to satisfy
the condition LPTi.d = I.d. Once the paths are confirmed to be disjoint, the first k paths
exhibiting the longest lifetimes are positioned within DPTi, with the subsequent k′ paths
being designated to MDPTi.

Algorithm 1 Path information collection in KDPMS

Input: I, k, k′

Output: DPTi, MDPTi
LPT, DPT, MDPT← 0;
For every received pathinfo message I do

If I.d

Inventions 2023, 8, x FOR PEER REVIEW 13 of 34

 DPT1← DPT1 − p | {p ∩ δ.failednode ≠ 0}

 LPT1 ← DPT1 ⋃ MDPT1

 Update path lifetime (LPT1)

 Sort (LPT1)

 DPT1 ← {pi ∈ LPT1 | i ≤ k}

 MDPT1 ← {pi ∈ LPT1 | i > k}

 Execute Algorithm 2

 Else

 DPT1 ← DPT1 − p | {p ∩ δ.failednode ≠ 0}

 LPT1 ← DPT1 ⋃ MDPT1

 Sort (LPT1)

 DPT1 ← {pi ∈ LPT1 | i ≤ k}

 MDPT1 ← {pi ∈ LPT1 | i > k}

 Endif

 Endif

 Foreach (i > 1 && i ≤ m) // Failed node in segments 2 to m

 If δ.failednode ∈ DPTi,1

 DPTi ← DPTi − p | {p ∩ δ.failednode ≠ 0}

 LPTi ← DPTi ⋃ MDPTi

 Update path lifetime (LPTi)

 Sort (LPTi)

 DPTi ← {pj ∈ LPTi | j ≤ k}

 MDPTi ← {pj ∈ LPTi | j > k}

 Execute Algorithm 2

 Else

 DPTi ← DPTi − p | {p ∩ δ.failednode ≠ 0}

 LPTi ← DPTi ⋃ MDPTi

 Sort (LPTi)

 DPTi ← {pj ∈ LPTi | j ≤ k}

 MDPTi ← {pj ∈ LPTi | j > k}

 Endif

 Endfor

 Foreach (i > m && i ≤ m + m′) // Failed node in segments m + 1 to m

+ m′

 If δ.failednode ∈ DPTi

 DPTi← DPTi − p | {p ∩ δ.failednode ≠ 0}

 LPTi ← DPTi ⋃ MDPTi

 Sort (LPTi)

 DPTi ← {pj ∈ LPTi | j ≤ k}

 MDPTi ← {pj ∈ LPTi | j > k}

 Endif

 Endfor

 Foreach (i ≥ 1 && i ≤ m + m′) // Failed node in MDPT

 If δ.failednode ∉ DPTi && δ.failednode ∈ MDPTi

 MDPTi ← MDPTi − p | {p ∩ δ.failednode ≠ 0}

 Endif

 Endfor

 Transmit (δ.failednode)

Endfor

LPT.d
create new segment (LPTi, DPTi, MDPTi)
LPTi.d, DPTi.d, MDPTi.d← I.d
LPTi← I.P
DPTi ← I.P
Maxpli ← Pl (I.P);
Transmit (LPTi)

Else
i← S (I.d) //Finding the received path

segment
D←max-dis-set (LPTi, k + k′) //Finding disjoint nature of existing paths (Algorithm A1)
LPTi ← I.P

⋃
LPTi

Sort (LPTi)
D′ ← max-dis-set (LPTi, k + k′) //Finding disjoint nature of existing paths and received

paths
If (PL(D′) > PL(D)) then

DPTi = {pi ∈ LPTi | i ≤ k}
MDPTi = {pi ∈ LPTi | i > k, i ≤ k + k′}
If (Maxpli is updated) //preventing the sending of redundant messages

Transmit (LPTi)
End if

End if
END if

End for

In DPV, ADPV, and MPD, each node that updates the DPT, receiving a new disjoint
path or a disjoint path of a higher lifetime, sends the pathinfo message across the network.
Consequently, the transmission of control messages persists until no further updates are
observed. KDPMS has been refined through the identification and prevention of message
transmissions that do not effectuate updates in the disjoint path tables (DPTs) of neighboring
nodes, resulting in fewer control messages.

Given the disjoint nature of paths related to the neighbors of each node, the node
is constrained to occupy, solely, one of its neighbor’s paths. It is imperative that this
particular path possesses the maximum lifetime. Consequently, the transmission of a

Inventions 2024, 9, 10 10 of 33

path characterized by a shorter lifetime would be ineffective in updating the DPT of the
adjacent node.

Exemplifying this, node D possesses two disjoint paths to supernode X, and node
E maintains a single disjoint path (Figure 3b). Node B’s transmission of the pathinfo
control message updates node D (Figure 3c), yet node D’s transmission of the pathinfo
message fails to update node E due to the latter’s pre-existing path containing node D
with a superior lifetime (Figure 3d). Precluding the transmission of such messages avoids
increased message complexity at the source node and computational complexity at the
destination node. Consequently, the preservation of the maximum lifetime among paths
in segment i (Maxpli) is ensured, and potential paths capable of updating Maxpli are
communicated via pathinfo messages.

Inventions 2023, 8, x FOR PEER REVIEW 11 of 34

Figure 3. Redundant control message: (a) initial topology, (b) disjoint paths of nodes D and E, (c) disjoint paths of nodes D and E after the pathinfo message has
been sent by node B, and (d) disjoint paths of nodes D and E after the pathinfo message has been sent by node D.

Figure 3. Redundant control message: (a) initial topology, (b) disjoint paths of nodes D and E,
(c) disjoint paths of nodes D and E after the pathinfo message has been sent by node B, and (d) disjoint
paths of nodes D and E after the pathinfo message has been sent by node D.

Following the completion of pathinfo messages, DPT and MDPT with m + m′ segments
are established. Subsequently, Algorithm 2 is executed at each node for connectivity
construction, the identification of required neighbors, and clustering in KDPMS. The
segments in the DPT are arranged based on the lifetimes, adhering to the condition ∀i
(lifetime (DPTi) > lifetime (DPTi+1)). Concurrently, MDPT updates itself in alignment with
DPT, maintaining ∀i (MDPTi.d = DPTi.d).

A requisite condition for achieving k-disjoint paths to m-supernode connectivity is
that k ≥ m. To connect each node to m-supernodes, the proposed algorithm selects the first
k − m + 1 paths of the first segment (DPT1, 1. . .k−m+1) to connect to the primary supernode,
and the first paths of segments 2 to m (DPT2. . .m,1) to connect to the secondary supernode.
For example, for k = 3 and m = 2, two paths of segment one are selected for connecting to the
primary supernode, and one path of segment two is selected for linking to the secondary
supernode. This yields k-disjoint paths to m-supernode connectivity, prioritizing paths with
the longest lifetime from each node to the designated supernodes. Once the disjoint paths
have been determined, each node identifies the first node of the selected paths (without
considering itself) as its required neighbors and readjusts its transmission power to connect
to its remotest neighbor. Subsequently, it communicates this neighborhood update to its
neighbors via a Notify message.

In KDPMS, clustering is utilized to confine supernode movement and balance sensor
node energy consumption. Designating each supernode as a cluster head, nodes join the
cluster of a supernode within DPT1.d. This straightforward clustering method optimally

Inventions 2024, 9, 10 11 of 33

distributes network load, as each node possesses paths with the longest lifetime to the
primary supernode. Subsequently, a notification message (comprising ID, node residual
energy, DPT1, and MDPT1) is transmitted to the primary supernode, signaling membership.
This data exchange mitigates data delay and the number of control messages during
supernode movement, as explained in Section 3.5.

Algorithm 2 Finding required neighbors, sensor clustering, and connectivity-centric
topology design

Input: DPT, m, m′, k
Output: RN
RN← 0
If |DPT| ≥m + m′

Sort (DPT)
DPT← {DPTi | i ≤m + m′}

End if
S← {DPT1, 1. . .k−m+1 ∪ DPT2. . .m,1}
For all p ∈ S

RN← RN ∪ p. first
End for
For all p ∈ RN

Transmit notify(p) // Notify to required neighbors
End for
Notify (DPT1.d, DPTi, MDPTi, RE) // Notify to cluster head

Theorem 1. The number of control messages in KDPMS is nearly equal to half of the messages sent
by the DPV and ADPV.

Proof. In accordance with references [5,6], the message complexity for a node in both
DPV and ADPV is expressed as O(n∆), where n represents the node count and ∆ signifies
the maximum degree of a node. Within the framework of KDPMS, the guarantee to
preserve the maximum lifetime within segment i, denoted as Maxpli, is firmly established.
The transmission of potential paths capable of updating Maxpli is facilitated through the
exchange of pathinfo messages. It is imperative to emphasize that a path with a superior
lifetime possesses the ability to update Maxpli. In the best-case, the initial path in DPTi
boasts the highest path lifetime. Consequently, subsequent paths received by the node lack
the capacity to update Maxpli. In this context, the node’s control message transmissions
amount to 1. Conversely, in a worst-case scenario, the first path in DPTi features the lowest
path lifetime, with subsequent paths arranged in ascending order of path lifetime in DPTi.
Each received path in this scenario triggers a Maxpli update, leading to the transmission of
control messages. Given that the node’s degree is represented as ∆, the number of messages
transmitted in this circumstance equals ∆. On average, the number of transmitted messages
in KDPMS is denoted as n+n∆

2 = n(∆+1)
2 , which is nearly equal to half of the messages sent

by the DPV and ADPV. □

Theorem 2. The message complexity of path information collection and connectivity-centric
topology design in KDPM is O(n∆), and the runtime equals O(n∆2).

Proof. According to [5,6], a node’s message complexity is O(n∆), with n denoting the
number of nodes and ∆ representing the maximum degree of the node. While KDPMS
enhancements result in a reduction in the transmitted control messages, the message’s
complexity remains unaffected.

Upon receiving the pathinfo message, a node combines the received and existing paths
in LPTi, sorting them by path lifetime. K-disjoint paths are allocated to DPTi, and the next k′

paths are assigned to MDPTi. Each node then identifies required neighbors and a primary
supernode. The union operation complexity is O(p), path sorting is O(p logp), selecting

Inventions 2024, 9, 10 12 of 33

k + k′ disjoint paths (Algorithm A1) is O (pk+k′) [5,6], identifying the required neighbors
is O(k), and determining the primary supernode is O(1). This results in a computational
complexity of O

(
pk+k′ + p logp + p + k + 1), where p signifies the number of joined paths

in LPTi. Given that each node transmits O(n∆) messages, it follows that each node receives
O(n∆2) messages. Consequently, the overall asymptotic running time for each node is

expressed as O(n∆2(pk+k′
+ p logp + p + k + 1)). Given that k, k′, and p are constants, the

time complexity is thereby established as O(n∆2). □

3.3. Node Failure Tolerance in KDPMS (the First Layer’s Fault Tolerance)

Once node failure leads to k-disjoint paths to m-supernode disconnectivity, the node
failure message, containing the failed node’s ID, is sent by the neighbors of the failed node
along the network. Upon receiving the message, each node checks all the paths in the
DPT and MDPT, removing the path containing the failed node. Given the disjoint nature
of paths in DPT and MDPT, each node failure causing k-vertex disconnectivity removes
only one path. Therefore, the KDPMS algorithm ensures that it can restore k-disjoint paths
to m-supernode connectivity if there is a path in the MDPT. Algorithm 3 represents the
pseudocode of this subroutine, with the notations shown in Table 1.

To elucidate this algorithm and its impact on connectivity restoration, we elaborate
its effects on node l. Nodes are connected through k-disjoint paths to m-supernodes (in
DPT1, 1. . .k−m+1 and DPT2. . .m,1). KDPMS ensures k-vertex disconnectivity if a failed node is
present in these paths. Subsequently, the path with the failed node in DPTi is eliminated
(where i denotes the segment of the node failure occurrence). After merging the remaining
k − 1 paths in DPTi with MDPTi, path lifetimes are updated per (A7), and the updated
paths are sorted by lifetime. The initial k paths are assigned to DPTi, and the remaining
paths are assigned to MDPTi. Paths are updated via update lifetime messages from origin to
destination and backward lifetime information from nodes in the path. Upon restoring k-
vertex connectivity, a path shifts from MDPTi to DPTi, and the list of the required neighbors
of the node is changed. Consequently, the node adjusts its transmission power to reach the
farthest neighbor based on the updated list. The number of nodes in k paths is kλ, leading
to a k-vertex disconnectivity probability of kλ/nt, where nt is the number of active sensor
nodes in the network.

If the failed node is not in the subset of k-disjoint paths but is found in DPT1. . .m+m′ ,
the failed node’s path is removed from DPTi. The remaining DPTi paths are then merged
with MDPTi paths and reorganized. The initial k paths are reinstated in DPTi, and the
remaining paths are allocated to MDPTi. As k-vertex disconnectivity does not occur in this
case, path lifetimes remain unaltered to minimize the control message overhead. It should
be noted that the following failed nodes update these paths. If the failed node exclusively
exists in MDPTi, the path containing the failed node is eliminated, reducing the count of
maintenance disjoint paths by 1. Ultimately, the node failure message is transmitted to
neighboring nodes within the network.

Theorem 3. The number of paths eliminated from each node’s DPT and MDPT after node failure i
is as follows:

ei =
(k + k′)(m + m′)

[[
∑i−2

j=0

(
(−1)j λj+1 ∏

i−j−2
j′=0 (n− j′)

)]
+ (−1)i−1 λi

]
∏i−1

j=0(n− j)
. (1)

Inventions 2024, 9, 10 13 of 33

Algorithm 3 Node failure tolerance algorithm in KDPMS

Input: k, k′, DPT, MDPT
Output: DPT, MDPT
Failednode← 0
For all received node failure δ do

If δ.failednode ∈ DPT1
If δ.failednode ∈ DPT1,1. . .k−m+1

DPT1← DPT1 − p | {p ∩ δ.failednode ̸= 0}
LPT1 ← DPT1

⋃
MDPT1

Update path lifetime (LPT1)
Sort (LPT1)
DPT1 ← {pi ∈ LPT1 | i ≤ k}
MDPT1 ← {pi ∈ LPT1 | i > k}
Execute Algorithm 2

Else
DPT1 ← DPT1 − p | {p ∩ δ.failednode ̸= 0}
LPT1 ← DPT1

⋃
MDPT1

Sort (LPT1)
DPT1 ← {pi ∈ LPT1 | i ≤ k}
MDPT1 ← {pi ∈ LPT1 | i > k}

Endif
Endif
Foreach (i > 1 && i ≤m) // Failed node in segments 2 to m

If δ.failednode ∈ DPTi,1
DPTi ← DPTi − p | {p ∩ δ.failednode ̸= 0}
LPTi ← DPTi

⋃
MDPTi

Update path lifetime (LPTi)
Sort (LPTi)
DPTi ← {pj ∈ LPTi | j ≤ k}
MDPTi ← {pj ∈ LPTi | j > k}
Execute Algorithm 2

Else
DPTi ← DPTi − p | {p ∩ δ.failednode ̸= 0}
LPTi ← DPTi

⋃
MDPTi

Sort (LPTi)
DPTi ← {pj ∈ LPTi | j ≤ k}
MDPTi ← {pj ∈ LPTi | j > k}

Endif
Endfor
Foreach (i > m && i ≤m + m′) // Failed node in segments m + 1 to m + m′

If δ.failednode ∈ DPTi
DPTi← DPTi − p | {p ∩ δ.failednode ̸= 0}
LPTi ← DPTi

⋃
MDPTi

Sort (LPTi)
DPTi ← {pj ∈ LPTi | j ≤ k}
MDPTi ← {pj ∈ LPTi | j > k}

Endif
Endfor
Foreach (i ≥ 1 && i ≤m + m′) // Failed node in MDPT

If δ.failednode

Inventions 2023, 8, x FOR PEER REVIEW 13 of 34

 DPT1← DPT1 − p | {p ∩ δ.failednode ≠ 0}

 LPT1 ← DPT1 ⋃ MDPT1

 Update path lifetime (LPT1)

 Sort (LPT1)

 DPT1 ← {pi ∈ LPT1 | i ≤ k}

 MDPT1 ← {pi ∈ LPT1 | i > k}

 Execute Algorithm 2

 Else

 DPT1 ← DPT1 − p | {p ∩ δ.failednode ≠ 0}

 LPT1 ← DPT1 ⋃ MDPT1

 Sort (LPT1)

 DPT1 ← {pi ∈ LPT1 | i ≤ k}

 MDPT1 ← {pi ∈ LPT1 | i > k}

 Endif

 Endif

 Foreach (i > 1 && i ≤ m) // Failed node in segments 2 to m

 If δ.failednode ∈ DPTi,1

 DPTi ← DPTi − p | {p ∩ δ.failednode ≠ 0}

 LPTi ← DPTi ⋃ MDPTi

 Update path lifetime (LPTi)

 Sort (LPTi)

 DPTi ← {pj ∈ LPTi | j ≤ k}

 MDPTi ← {pj ∈ LPTi | j > k}

 Execute Algorithm 2

 Else

 DPTi ← DPTi − p | {p ∩ δ.failednode ≠ 0}

 LPTi ← DPTi ⋃ MDPTi

 Sort (LPTi)

 DPTi ← {pj ∈ LPTi | j ≤ k}

 MDPTi ← {pj ∈ LPTi | j > k}

 Endif

 Endfor

 Foreach (i > m && i ≤ m + m′) // Failed node in segments m + 1 to m

+ m′

 If δ.failednode ∈ DPTi

 DPTi← DPTi − p | {p ∩ δ.failednode ≠ 0}

 LPTi ← DPTi ⋃ MDPTi

 Sort (LPTi)

 DPTi ← {pj ∈ LPTi | j ≤ k}

 MDPTi ← {pj ∈ LPTi | j > k}

 Endif

 Endfor

 Foreach (i ≥ 1 && i ≤ m + m′) // Failed node in MDPT

 If δ.failednode ∉ DPTi && δ.failednode ∈ MDPTi

 MDPTi ← MDPTi − p | {p ∩ δ.failednode ≠ 0}

 Endif

 Endfor

 Transmit (δ.failednode)

Endfor

DPTi && δ.failednode ∈MDPTi
MDPTi ←MDPTi − p | {p ∩ δ.failednode ̸= 0}

Endif
Endfor

Transmit (δ.failednode)
Endfor

Proof. This proof is provided in Appendix B. □

Inventions 2024, 9, 10 14 of 33

Theorem 4. The number of node failures resulting in path elimination and subsequently leading to
k-vertex disconnectivity, is as follows:

nk+k′ = n ∗
k+k′

∏
i=0

(
1− 1(

k + k′ − i
)
λ

)
. (2)

Proof. This proof is provided in Appendix B. □

Theorem 5. The number of update lifetime messages of each node upon failed node i is

uli =

[
kλ

n− (i− 1)

]
∗

(k + k′
)
−

 (k + k′)
[[

∑i−2
j=0

(
(−1)jλj+1∏

i−j−2
j′=0 (n− j′)

)]
+ (−1)i−1λi

]
∏i−1

j=0(n− j)

. (3)

Proof. This proof is provided in Appendix B. □

Theorem 6. The message complexity of node failure tolerance in KDPMS is O(∆2).

Proof. In the event of a node failure causing k-vertex disconnectivity, update lifetime
messages are dispatched for k + k′ paths in DPTi and MDPTi. Given that k + k′ < ∆, the
message complexity for k-vertex connectivity restoration is bounded by O(∆). In the worst-
case scenario, where paths are disjoint, the number of connectivity restorations is O(∆),
resulting in a message complexity of O(∆2) for each node. □

3.4. Supernode Failure Tolerance in KDPMS (the Second Layer’s Fault Tolerance)

The transmission of the supernode failure message occurs through the neighboring
nodes of the failed supernode in the network, and is triggered when it leads to k-vertex
to m-supernode disconnectivity. Upon the reception of this message, a node activates the
supernode failure tolerance algorithm. It is worth noting that the DPT comprises m + m′

segments, each corresponding to a required supernode. Paths to the primary supernode,
secondary supernodes, and alternative supernodes are stored in DPT1, DPT2. . .m, and
DPTm+1. . .m+m′ , respectively. The failure of a supernode in DPT1. . .m results in both m-
supernode and k-vertex disconnectivity. This is attributed to the fact that the k-disjoint
paths, those with the longest lifetime, are connected to supernodes 1 to m. Additionally,
the failure of the primary supernode in a node leads to the disconnection of the node from
the cluster head. The details of KDPMS’s various and valuable scenarios for handling the
supernode failure message are detailed below.

In the case of a failed supernode in DPT1 (the primary supernode), the elimination
of all paths in both DPT1 and MDPT1 is performed, resulting in the disconnection of this
node from the cluster head. Subsequently, the shift operation Sm+m′

1 is executed, during
which the DPT and MDPT segments replace the previous segments. The shift operation is
defined as follows:

SY
X =

[
DPTi ← DPTi+1 ∀i ∈ x, x + 1, . . . , y
MDPTi ← MDPTi+1 ∀i ∈ x, x + 1, . . . , y

(4)

As the DPT1 and MDPT1 paths have changed, their union is classified, updating the
lifetimes of the paths by sending an update lifetime message. Then, the paths are arranged
based on their lifetimes, placing the first k paths in DPT1 and the remaining paths within
MDPT1. Then, the node sends a notification to new supernode DPT1.d (containing the ID,
residual energy, DPT1, and MDPT1) so that supernode d can consider it a cluster member.
This is known as a cluster head change. Finally, this node executes Algorithm 2 to update

Inventions 2024, 9, 10 15 of 33

its required neighbors and leads to k-vertex to m-supernode connectivity by adjusting
transmission power.

Should a supernode failure be situated in DPT2. . .m, it results in k-vertex to m-supernode
disconnectivity due to the presence of paths to the secondary supernodes within these
segments. In such instances, Sm+m′

i is activated, with i denoting the segment corresponding
to the failed supernode. Subsequently, the node executes Algorithm 2 to update required
neighbors, thereby restoring k-vertex to m-supernode connectivity. In this case, the update
lifetime message is not sent to avoid an increased number of control messages.

In the event of a supernode failure within DPTm+1. . .m+m′ , there is no k-vertex to m-
supernode disconnectivity as these segments pertain to alternative supernodes. In this
scenario, only the execution of Sm+m′

i is required to eliminate the failed supernode from
the list of alternative supernodes. Subsequently, each node communicates the supernode
failure message to its neighbors. The pseudocode for the supernode failure tolerance
algorithm is delineated in Algorithm 4.

Algorithm 4 Supernode failure tolerance algorithm in KDPMS

Input: k, k′

Output: DPT, MDPT
Failedsupernode← 0
For all received supernode failure δ do

If δ.failedsupernode ∈ DPT1.d // primary supernode failure
Eliminate DPT1, MDPT1
For each i < m + m′

DPTi ← DPTi+1
MDPTi ←MDPTi+1

Endfor
LPT1 ← DPT1

⋃
MDPT1

Update path lifetime (LPT1)
Sort (LPT1)
DPT1 ← {pi ∈ LPT1 | i ≤ k}
MDPT1 ← {pi ∈ LPT1 | i>k}

Execute Algorithm 2
Endif
If δ.failedsupernode ∈ DPT2. . .m.d // secondary supernode failure

i← S(DPT.d) // Finding the segment corresponding to the failed supernode
Eliminate DPTi, MDPTi
For each l > i && l < m + m′

DPTl ← DPTl+1
MDPTl ←MDPTl+1

Endfor
LPTi ← DPTi

⋃
MDPTi

Sort (LPTi)
DPTi ← {pj ∈ LPTi | j ≤ k}
MDPTi ← {pj ∈ LPTi | j > k}
Execute Algorithm 2

Endif
If δ.failedsupernode ∈ DPTm+1. . .m+ m′ .d // alternative supernode failure

i← S (DPT.d)
Eliminate DPTi, MDPTi
For each l > i && l < m + m′

DPTl ← DPTl+1
MDPTl ←MDPTl+1

Endfor
Endif

End for

Inventions 2024, 9, 10 16 of 33

Theorem 7. The number of paths eliminated from each node’s DPT and MDPT after supernode
failure i and node failure j is

ei,j =

[
(m+m′)

[[
∑i−2

j=0

(
(−1)j∏

i−j−2
j′=0

(ns−j′)
)]

+(−1)i−1(m+m′)
]

∏
j−1
j′=0

(n−j′)

]

∗

(k + k′)−

 (k+k′)
[[

∑
j−2
j′=0

(
(−1)j′λj′+1∏

j−j′−2
j′′ =0

(n−j′′)
)]

+(−1)j−1λj
]

∏
j−1
j′=0

(n−j′)

 (5)

Proof. This proof is provided in Appendix B. □

Theorem 8. The number of update lifetime messages upon failed supernode i and failed node j is
as follows:

uli,j =

[
1

ns − (i− 1)

]
∗

(k + k′
)
−

 (k + k′)
[[

∑
j−2
j′=0

(
(−1)j′λj′+1∏

j−j′−2
j′′=0 (n− j′′)

)]
+ (−1)j−1λj

]
∏

j−1
j′=0(n− j′)

. (6)

Proof. This proof is provided in Appendix B. □

Theorem 9. The message complexity of supernode failure tolerance in KDPMS is O(∆).

Proof. When supernode failure occurs in DPT1, an update lifetime message is sent for the
k + k′ paths in DPT1 and MDPT1. Since k + k′ < ∆, message complexity in each m-supernode
connectivity restoration is O(∆). Given that each node has m + m′ segments, there are
m + m′ restorations in the worst scenario. Thus, asymptotic message complexity is O(∆
(m + m′)). Since m and m′ are constants, message complexity is O(∆). □

3.5. Supernode Mobility Model in KDPMS

In Algorithm 5 of KDPMS, clusters established through the application of Algorithm 2
are utilized. In this clustering method, each node belongs to the DPT1.d cluster, and the
number of clusters corresponds to the number of supernodes. It is important to highlight
that a supernode failure would decrease the cluster count by 1. Given that DPT1 has
only one supernode, KDPMS guarantees that each node is a member of a single cluster.
Consequently, a graph of sensor nodes is formed within each supernode. With an assumed
uniform distribution of nodes in the clusters, the number of nodes in each cluster equals n

ns
,

where n is the number of sensor nodes and ns is the number of supernodes.

Algorithm 5 Determining migration points in KDPMS

Input: N
Output: S

S← 0
S← N

while S is not empty
S← S

⋃
MaxDegree(S)

S← S − S − { x| x ∈ neighbor(S) }
end while

This phase aims to identify optimal migration points for distributing relay tasks
within each cluster, a task known to be NP-hard [27]. This paper addresses this challenge
by adapting the optimization algorithm based on the dominating set problem, achieving
a complexity of O(n2). The goal of this algorithm is to identify a set of points, denoted

Inventions 2024, 9, 10 17 of 33

as S, with the smallest cardinality such that every node is either in S or has a neighbor in
S. It is essential to highlight that supernodes execute this distributed algorithm, ensuring
it does not impact the computational complexity of individual nodes. The outcome is a
minimal subset of sensor nodes, serving as the mounting points for the mobile supernode
in each deployment. Following the identification of migration points within each cluster,
the migration point node message is transmitted to all nodes within these subsets. This
ensures that, in the event of a supernode failure causing the disconnection of these nodes
from the cluster head, the subsequent primary supernode is promptly notified about the
migration points.

The relocation of each supernode to the new migration point induces a topological
change, leading to k-vertex to m-mobile supernode disconnectivity. In a previous study [28],
all nodes in the network sent an Init message, and k-disjoint paths were extracted from
each node to others, ensuring k-vertex connectivity at each migration point. However,
approach [28] suffered from control message overhead and the requirement for substantial
memory to store these paths. In our current research, upon identifying S for each cluster, S
members transmit the Init message to the network. Cluster members receive the message
and execute Algorithm 1 to extract disjoint paths to the sender, conserving memory by
storing these paths in the supernode. Subsequently, when the supernode migrates to a new
point, it dispatches paths to its member nodes through a path-update message.

An additional mobility challenge lies in determining the next migration point to
avert relay node failure and maintain a balanced traffic distribution. To accommodate the
adaptation of mobile supernodes to nodes’ residual energy, the migration point subset for
mobile supernodes is organized according to the residual energy within each supernode.
The node with the highest residual energy is chosen as the subsequent migration point,
aiming to prolong the network’s lifetime. The duration of the supernode’s migration
or stay at each migration point is computed based on the energy levels of neighboring
nodes [18]. Consequently, when the residual energy of neighboring nodes falls below a
specified threshold, the supernode initiates migration to the next point.

Theorem 10. The message complexity of KDPMS equals O(n∆), and the runtime equals O(n∆2).

Proof. In [52], it was proven that the maximum cardinality γ(G) in the minimum domi-
nating problem was 3n/8 or O(n). Due to the disjoint nature of paths among neighboring
nodes, each node can send a maximum of ∆ messages. Therefore, the message complexity
of the mobility model is equal to O(n∆). The number of node failure tolerance messages sent
is O(∆2), the number of supernode failure tolerance messages sent is O(∆), and the number of
path information collection messages sent is O(n∆). As a result, the total asymptotic message
complexity of each node is O(n∆ + ∆2 + ∆ + n∆). Therefore, the message complexity of each
node is O(n∆). Given that each node sends O(n∆) messages, it can be concluded that each
node receives O(n∆2) messages. Based on Theorem 2, the computational complexity of each
received message is O(pk+k′ + p logp + p + k + 1) = O(1). As a result, the computational
complexity of KDPMS is O(n∆2). □

4. Results and Discussion

This section evaluates the proposed algorithm against DPV and ADPV algorithms
using manual simulation. The simulator operates on stochastic topologies, calculating and
reporting various parameters. The results suggest that nodes and supernodes are uniformly
distributed in a 600 m × 600 m area, with an initial maximum transmission range (Rmax)
of 100m for nodes and supernodes, as indicated in [5,6]. Experiments cover node counts
from 100 to 550, with k values of 2, 3, and 4, m values of 2, 3, and 4, and supernode ratios
of 3% and 5%. Each experiment runs the mentioned algorithms 100 times, reporting their
average rates.

Inventions 2024, 9, 10 18 of 33

Figures 4 and 5 depict the node fault tolerance in ADPV, DPV, and KDPMS algo-
rithms. Two modes of supernode disconnectivity and k-disjoint paths to m-supernode
disconnectivity are considered for a more precise assessment of this evaluation. Supernode
disconnectivity occurs when at least one active node exists in the network connecting to no
supernode. The disconnectivity of k-disjoint paths to m-mobile supernodes occurs when a
node exists in a network, and the number of its disjoint paths for access to m-mobile supern-
odes is less than k, or the number of supernodes available for connectivity is less than m.
According to this definition, Figure 4 shows the percentage of node failure tolerance before
supernode disconnectivity, and Figure 5 depicts the percentage of node failure tolerance
before k-disjoint paths to m-mobile supernode disconnectivity.

Inventions 2023, 8, x FOR PEER REVIEW 19 of 34

(a) (b)

(c) (d)

(e) (f)

Figure 4. Percentage of failed nodes when supernode disconnectivity occurs: (a) k = 2, Sr = 3%, (b)
k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5, Sr = 5%.

According to the simulation results, the KDPMS algorithm outperforms ADPV and
DPV within two modes of supernode connectivity maintenance and k-disjoint paths to m-
supernode connectivity. Figures 4 and 5 show that the DPV algorithm cannot be consid-
ered a suitable solution for fault tolerance due to the stationary and damping status of
nodes near the supernode. Relay node damping leads to the disconnectivity of many
nodes from supernodes, and this algorithm does not provide a mechanism to overcome
this problem. Regarding energy awareness and retrieval paths, the ADPV algorithm pro-
vides higher node fault tolerance than DPV does. ADPV outperforms dense networks
compared to sparse ones because more supernodes exist in these networks, and more

0%

10%

20%

30%

40%

50%

60%

70%

80%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV Connected

ADPV Connected

KDPMS Connected

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100 150 200 250 300 350 400 450 550
N

od
e

fa
ilu

re
 to

le
ra

nc
e(

%
)

Number of sensing nodes

DPV Connected

ADPV Connected

KDPMS Connected

0%

10%

20%

30%

40%

50%

60%

70%

80%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV Connected

ADPV Connected

KDPMS Connected

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV Connected

ADPV Connected

KDPMS Connected

0%

10%

20%

30%

40%

50%

60%

70%

80%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV Connected

ADPV Connected

KDPMS Connected

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV Connected

ADPV Connected

KDPMS Connected

Figure 4. Percentage of failed nodes when supernode disconnectivity occurs: (a) k = 2, Sr = 3%,
(b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5, Sr = 5%.

Inventions 2024, 9, 10 19 of 33

Inventions 2023, 8, x FOR PEER REVIEW 20 of 34

disjoint paths are available for connectivity. These figures show no significant difference
between ADPV and DPV in sparse networks. Moreover, the damping status of nodes near
the supernode is the main shortcoming of ADPV, like DPV, which results in the discon-
nectivity of other nodes from the supernode set.

In DPV and ADPV, supernode disconnectivity happens when 5% and 23% of nodes
fail, respectively. K-vertex disconnectivity occurs after node failures of 2% and 8%. On the
other hand, k-vertex disconnectivity and supernode disconnectivity occur from node fail-
ures of 16% and 58%, respectively, in the KDPMS algorithm. In sparse networks of 100,
150, and 200 nodes, the average node failure tolerance for k-vertex connectivity and su-
pernode connectivity is, respectively, 3% and 5% in the DPV and 4% and 14% in the
ADPV. In contrast these values are 10% and 48% in the KDPMS algorithm.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Percentage of failed nodes when k-vetrtex supernode disconnectivity occurs: (a) k = 2, Sr
= 3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5, Sr = 5%.

0%

5%

10%

15%

20%

25%

30%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV-2 Connected

ADPV- 2 Connected

KDPMS- 2-2 Connected

0%

5%

10%

15%

20%

25%

30%

35%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV-2 Connected

ADPV- 2 Connected

KDPMS- 2-2 Connected

0%

5%

10%

15%

20%

25%

30%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV-3 Connected
ADPV- 3 Connected
KDPMS- 3-3 Connected
KDPMS- 3-2 Connected

0%

5%

10%

15%

20%

25%

30%

35%

100 150 200 250 300 350 400 450 550
N

od
e

fa
ilu

re
 to

le
ra

nc
e(

%
)

Number of sensing nodes

DPV-3 Connected
ADPV- 3 Connected
KDPMS- 3-3Connected
KDPMS- 3-2 Connected

0%

5%

10%

15%

20%

25%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV-4 Connected
ADPV- 4 Connected
KDPMS- 4-4 Connected
KDPMS- 4-3Connected
KDPMS- 4-2Connected

0%

5%

10%

15%

20%

25%

30%

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV-4 Connected
ADPV- 4 Connected
KDPMS- 4-4 Connected
KDPMS- 4-3Connected
KDPMS- 4-2Connected

Figure 5. Percentage of failed nodes when k-vetrtex supernode disconnectivity occurs: (a) k = 2,
Sr = 3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5,
Sr = 5%.

According to the simulation results, the KDPMS algorithm outperforms ADPV and
DPV within two modes of supernode connectivity maintenance and k-disjoint paths to m-
supernode connectivity. Figures 4 and 5 show that the DPV algorithm cannot be considered
a suitable solution for fault tolerance due to the stationary and damping status of nodes
near the supernode. Relay node damping leads to the disconnectivity of many nodes from
supernodes, and this algorithm does not provide a mechanism to overcome this problem.
Regarding energy awareness and retrieval paths, the ADPV algorithm provides higher
node fault tolerance than DPV does. ADPV outperforms dense networks compared to
sparse ones because more supernodes exist in these networks, and more disjoint paths are
available for connectivity. These figures show no significant difference between ADPV and
DPV in sparse networks. Moreover, the damping status of nodes near the supernode is the

Inventions 2024, 9, 10 20 of 33

main shortcoming of ADPV, like DPV, which results in the disconnectivity of other nodes
from the supernode set.

In DPV and ADPV, supernode disconnectivity happens when 5% and 23% of nodes
fail, respectively. K-vertex disconnectivity occurs after node failures of 2% and 8%. On
the other hand, k-vertex disconnectivity and supernode disconnectivity occur from node
failures of 16% and 58%, respectively, in the KDPMS algorithm. In sparse networks of
100, 150, and 200 nodes, the average node failure tolerance for k-vertex connectivity and
supernode connectivity is, respectively, 3% and 5% in the DPV and 4% and 14% in the
ADPV. In contrast these values are 10% and 48% in the KDPMS algorithm.

Figures 6 and 7 depict the network lifetime for instances depicted in Figures 4 and 5.
The network lifetime for the DPV algorithm is not significantly affected by network density,
as relay node damping disconnects other nodes from the network, reducing the network’s
lifetime. Regarding the energy awareness in the ADPV algorithm, the energy depletion of
relay nodes is carried out more slowly than it is under DPV, resulting in a longer lifetime of
this algorithm. Also, ADPV has a longer lifetime in dense networks than in sparse ones
because more disjoint paths are extracted in dense networks. In addition to the nodes’
energy considered for extracting and retrieving disjoint paths in the KDPMS algorithm,
mobile supernodes are used to solve the challenge of damping relay nodes. As seen in
Figures 6 and 7, this algorithm has a longer lifetime than that under previous techniques.

Inventions 2023, 8, x FOR PEER REVIEW 21 of 34

Figures 6 and 7 depict the network lifetime for instances depicted in Figures 4 and 5.
The network lifetime for the DPV algorithm is not significantly affected by network den-
sity, as relay node damping disconnects other nodes from the network, reducing the net-
work’s lifetime. Regarding the energy awareness in the ADPV algorithm, the energy de-
pletion of relay nodes is carried out more slowly than it is under DPV, resulting in a longer
lifetime of this algorithm. Also, ADPV has a longer lifetime in dense networks than in
sparse ones because more disjoint paths are extracted in dense networks. In addition to
the nodes’ energy considered for extracting and retrieving disjoint paths in the KDPMS
algorithm, mobile supernodes are used to solve the challenge of damping relay nodes. As
seen in Figures 6 and 7, this algorithm has a longer lifetime than that under previous tech-
niques.

These data show that the KDPMS algorithm outperforms DPV and ADPV in terms
of lifetime in supernode and k-vertex connectivity. Within 2-vertex, 3-vertex, 4-vertex, and
1-vertex supernode connectivity, respectively, the lifetime of this method is, on average,
107%, 123%, 79%, and 235% higher than that of the DPV algorithm. On the other hand, in
the cases of 2-vertex, 3-vertex, 4-vertex, and 1-vertex supernode connectivity, respectively,
the lifetime of this algorithm is 46%, 56%, 35%, and 88% higher than that of the ADPV
algorithm.

(a) (b)

(c) (d)

0

500

1000

1500

2000

2500

3000

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

0

500

1000

1500

2000

2500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400 450 550

N
od

e
fa

ilu
re

 to
le

ra
nc

e(
%

)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

Figure 6. Cont.

Inventions 2024, 9, 10 21 of 33
Inventions 2023, 8, x FOR PEER REVIEW 22 of 34

(e) (f)

Figure 6. Comparison of supernode connectivity lifetime in DPV, ADPV and KDPMS: (a) k = 2, Sr =
3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5, Sr = 5%.

(a) (b)

(c) (d)

0

500

1000

1500

2000

2500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

0

200

400

600

800

1000

1200

1400

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

ft
im

e(
s)

Number of sensing nodes

DPV-2 Connected

ADPV- 2 Connected

KDPMS- 2-2 Connected
0

500

1000

1500

2000

2500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-2 Connected

ADPV- 2 Connected

KDPMS- 2-2 Connected

0

200

400

600

800

1000

1200

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-3 Connected

ADPV- 3 Connected

KDPMS- 3-3 Connected

KDPMS- 3-2 Connected
0

200

400

600

800

1000

1200

1400

1600

1800

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-3 Connected
ADPV- 3 Connected
KDPMS- 3-3Connected
KDPMS- 3-2 Connected

Figure 6. Comparison of supernode connectivity lifetime in DPV, ADPV and KDPMS: (a) k = 2,
Sr = 3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5,
Sr = 5%.

Inventions 2023, 8, x FOR PEER REVIEW 22 of 34

(e) (f)

Figure 6. Comparison of supernode connectivity lifetime in DPV, ADPV and KDPMS: (a) k = 2, Sr =
3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5, Sr = 5%.

(a) (b)

(c) (d)

0

500

1000

1500

2000

2500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV Connected
ADPV Connected
KDPMS Connected

0

200

400

600

800

1000

1200

1400

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

ft
im

e(
s)

Number of sensing nodes

DPV-2 Connected

ADPV- 2 Connected

KDPMS- 2-2 Connected
0

500

1000

1500

2000

2500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-2 Connected

ADPV- 2 Connected

KDPMS- 2-2 Connected

0

200

400

600

800

1000

1200

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-3 Connected

ADPV- 3 Connected

KDPMS- 3-3 Connected

KDPMS- 3-2 Connected
0

200

400

600

800

1000

1200

1400

1600

1800

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-3 Connected
ADPV- 3 Connected
KDPMS- 3-3Connected
KDPMS- 3-2 Connected

Figure 7. Cont.

Inventions 2024, 9, 10 22 of 33
Inventions 2023, 8, x FOR PEER REVIEW 23 of 34

(e) (f)

Figure 7. Comparison of k-vertex supernode connectivity lifetime in DPV, ADPV and KDPMS: (a)
k = 2, Sr = 3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5,
Sr = 5%.

Based on the results obtained, an increased k value leads to a higher node transmis-
sion range and a shorter network lifetime. Additionally, an Sr increase leads to a longer
lifetime of the network. The strength of KDPMS is seen in k-vertex to m-mobile supernode
connectivity. In this case, when supernode disconnectivity occurs, another supernode is
retrieved for reconnection, and when k-vertex disconnectivity happens, another path of
MDPT is retrieved for k-vertex connectivity. Therefore, this algorithm has a longer lifetime
compared to that of the previous algorithm. For instance, in the case of k = 4 and sr = 3%
and 550 nodes, the lifetime of KDPMS-4-2 connectivity equals 807 s, while it equals 527 s
in ADPV-4 connectivity.

The supernode fault tolerance for the DPV, ADPV, and KDPMS algorithms is shown
in Figure 8. Many nodes are disconnected from the network with each supernode failure
because DPV and ADPV do not offer a solution for supernode fault tolerance. Each node
in the KDPMS algorithm is connected to m supernodes, and m′ alternative supernodes are
used to retrieve m-supernode connectivity. Examples of Figure 8 have been assessed using
the assumptions that k = 2, sr = 3%, m = 2, and m′ = 2.

(a) (b)

0

100

200

300

400

500

600

700

800

900

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-4 Connected
ADPV- 4 Connected
KDPMS- 4-4 Connected
KDPMS- 4-3Connected
KDPMS- 4-2Connected 0

200

400

600

800

1000

1200

1400

1600

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-4 Connected
ADPV- 4 Connected
KDPMS- 4-4 Connected
KDPMS- 4-3Connected
KDPMS- 4-2Connected

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9

Di
sc

on
ne

ct
ed

 S
en

so
rs

(%
)

Number of failed supernodes

DPV Connected

ADPV Connected

KDPMS Connected

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9

Di
sc

on
ne

ct
ed

 S
en

sr
s(

%
)

Number of failed supernodes

DPV Connected

ADPV Connected

KDPMS Connected

Figure 7. Comparison of k-vertex supernode connectivity lifetime in DPV, ADPV and KDPMS:
(a) k = 2, Sr = 3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and
(f) k = 5, Sr = 5%.

These data show that the KDPMS algorithm outperforms DPV and ADPV in terms of
lifetime in supernode and k-vertex connectivity. Within 2-vertex, 3-vertex, 4-vertex, and 1-
vertex supernode connectivity, respectively, the lifetime of this method is, on average, 107%,
123%, 79%, and 235% higher than that of the DPV algorithm. On the other hand, in the cases
of 2-vertex, 3-vertex, 4-vertex, and 1-vertex supernode connectivity, respectively, the lifetime
of this algorithm is 46%, 56%, 35%, and 88% higher than that of the ADPV algorithm.

Based on the results obtained, an increased k value leads to a higher node transmis-
sion range and a shorter network lifetime. Additionally, an Sr increase leads to a longer
lifetime of the network. The strength of KDPMS is seen in k-vertex to m-mobile supernode
connectivity. In this case, when supernode disconnectivity occurs, another supernode is
retrieved for reconnection, and when k-vertex disconnectivity happens, another path of
MDPT is retrieved for k-vertex connectivity. Therefore, this algorithm has a longer lifetime
compared to that of the previous algorithm. For instance, in the case of k = 4 and sr = 3%
and 550 nodes, the lifetime of KDPMS-4-2 connectivity equals 807 s, while it equals 527 s in
ADPV-4 connectivity.

The supernode fault tolerance for the DPV, ADPV, and KDPMS algorithms is shown
in Figure 8. Many nodes are disconnected from the network with each supernode failure
because DPV and ADPV do not offer a solution for supernode fault tolerance. Each node
in the KDPMS algorithm is connected to m supernodes, and m′ alternative supernodes are
used to retrieve m-supernode connectivity. Examples of Figure 8 have been assessed using
the assumptions that k = 2, sr = 3%, m = 2, and m′ = 2.

It is assumed in all experiments in Figure 8 that nodes are disconnected from the
network only due to the failure of supernodes, while ignoring node failure in these experi-
ments. As is seen in n = 300, the first supernode failure causes a disconnectivity of 9.4% and
6.6% of nodes from the network in DPV and ADPV. The reason is that these nodes available
in the generated topology are only connected to the failed supernode. This limitation
hinders their effective strategy for supernode failure tolerance. In the KDPMS algorithm,
no considerable disconnectivity occurs in the network up to the third supernode failure
because two alternative supernodes exist for connectivity retrieval. The number of nodes’
disconnectivity dramatically increases after the m + m′ supernode failure. Therefore, unlike
the previous techniques that do not have supernode fault tolerance, this algorithm provides
an appropriate tolerance up to the m + m′ supernode failure level. On average, the percent
of disconnected nodes before the failure of the m + m′ supernode equals 36% and 42% in
ADPV and DPV algorithms, respectively, while it equals 2% in the KDPMS algorithm.

Inventions 2024, 9, 10 23 of 33

Inventions 2023, 8, x FOR PEER REVIEW 23 of 34

(e) (f)

Figure 7. Comparison of k-vertex supernode connectivity lifetime in DPV, ADPV and KDPMS: (a)
k = 2, Sr = 3%, (b) k = 2, Sr = 5%, (c) k = 3, Sr = 3%, (d) k = 3, Sr = 5%, (e) k = 4, Sr = 3%, and (f) k = 5,
Sr = 5%.

Based on the results obtained, an increased k value leads to a higher node transmis-
sion range and a shorter network lifetime. Additionally, an Sr increase leads to a longer
lifetime of the network. The strength of KDPMS is seen in k-vertex to m-mobile supernode
connectivity. In this case, when supernode disconnectivity occurs, another supernode is
retrieved for reconnection, and when k-vertex disconnectivity happens, another path of
MDPT is retrieved for k-vertex connectivity. Therefore, this algorithm has a longer lifetime
compared to that of the previous algorithm. For instance, in the case of k = 4 and sr = 3%
and 550 nodes, the lifetime of KDPMS-4-2 connectivity equals 807 s, while it equals 527 s
in ADPV-4 connectivity.

The supernode fault tolerance for the DPV, ADPV, and KDPMS algorithms is shown
in Figure 8. Many nodes are disconnected from the network with each supernode failure
because DPV and ADPV do not offer a solution for supernode fault tolerance. Each node
in the KDPMS algorithm is connected to m supernodes, and m′ alternative supernodes are
used to retrieve m-supernode connectivity. Examples of Figure 8 have been assessed using
the assumptions that k = 2, sr = 3%, m = 2, and m′ = 2.

(a) (b)

0

100

200

300

400

500

600

700

800

900

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-4 Connected
ADPV- 4 Connected
KDPMS- 4-4 Connected
KDPMS- 4-3Connected
KDPMS- 4-2Connected 0

200

400

600

800

1000

1200

1400

1600

100 150 200 250 300 350 400 450 550

N
et

w
or

k
Li

fe
tim

e(
s)

Number of sensing nodes

DPV-4 Connected
ADPV- 4 Connected
KDPMS- 4-4 Connected
KDPMS- 4-3Connected
KDPMS- 4-2Connected

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9

Di
sc

on
ne

ct
ed

 S
en

so
rs

(%
)

Number of failed supernodes

DPV Connected

ADPV Connected

KDPMS Connected

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9

Di
sc

on
ne

ct
ed

 S
en

sr
s(

%
)

Number of failed supernodes

DPV Connected

ADPV Connected

KDPMS Connected

Inventions 2023, 8, x FOR PEER REVIEW 24 of 34

(c) (d)

(e) (f)

Figure 8. Comparison of supernode failure tolerance in DPV, ADPV, and KDPMS: (a) N = 300, (b)
N = 350, (c) N = 400, (d) N = 450, (e) N = 500, and (f) N = 550.

It is assumed in all experiments in Figure 8 that nodes are disconnected from the
network only due to the failure of supernodes, while ignoring node failure in these exper-
iments. As is seen in n = 300, the first supernode failure causes a disconnectivity of 9.4%
and 6.6% of nodes from the network in DPV and ADPV. The reason is that these nodes
available in the generated topology are only connected to the failed supernode. This lim-
itation hinders their effective strategy for supernode failure tolerance. In the KDPMS al-
gorithm, no considerable disconnectivity occurs in the network up to the third supernode
failure because two alternative supernodes exist for connectivity retrieval. The number of
nodes’ disconnectivity dramatically increases after the m + m′ supernode failure. There-
fore, unlike the previous techniques that do not have supernode fault tolerance, this algo-
rithm provides an appropriate tolerance up to the m + m′ supernode failure level. On av-
erage, the percent of disconnected nodes before the failure of the m + m′ supernode equals
36% and 42% in ADPV and DPV algorithms, respectively, while it equals 2% in the
KDPMS algorithm.

Figure 9 shows connectivity retrievals of ADPV and KDPMS algorithms for k = 2, 3,
and 4, and sr = 3%. Connectivity retrieval occurs in the ADPV when a node failure leads
to k-vertex disconnectivity. Therefore, an increase in the k number leads to an increase in
connectivity retrievals. In dense networks with many nodes, an increase in node failure
leads to an increase in the number of connectivity retrievals in ADPV. In addition to node
failure, supernode failure and mobility result in connectivity retrieval in the KDPMS al-
gorithm.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9

Di
sc

on
ne

ct
ed

 S
en

so
rs

(%
)

Number of failed supernodes

DPV Connected

ADPV Connected

KDPMS Connected

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9

DI
sc

on
ne

ct
ed

 S
en

so
rs

(%
)

Number of failed supernodes

DPV Connected

ADPV Connected

KDPMS Connected

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9

Di
sc

on
ne

ct
ed

 S
en

so
rs

(%
)

Number of failed supernodes

DPV Connected

ADPV Connected

KDPMS Connected

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9

Di
sc

on
ne

ct
ed

 S
en

so
rs

(%
)

Number of failed supernodes

DPV Connected
ADPV Connected
KDPMS Connected

Figure 8. Comparison of supernode failure tolerance in DPV, ADPV, and KDPMS: (a) N = 300,
(b) N = 350, (c) N = 400, (d) N = 450, (e) N = 500, and (f) N = 550.

Figure 9 shows connectivity retrievals of ADPV and KDPMS algorithms for k = 2,
3, and 4, and sr = 3%. Connectivity retrieval occurs in the ADPV when a node failure
leads to k-vertex disconnectivity. Therefore, an increase in the k number leads to an
increase in connectivity retrievals. In dense networks with many nodes, an increase in
node failure leads to an increase in the number of connectivity retrievals in ADPV. In
addition to node failure, supernode failure and mobility result in connectivity retrieval in
the KDPMS algorithm.

In this algorithm, as k increases, the disconnectivity of the k-vertex increases, necessi-
tating more connectivity retrieval. Additionally, more nodes mean more instances of node
failure and connectivity retrievals. Regarding the proposed technique’s supernode failure
tolerance, more supernodes imply more supernode failures and also more requirements for
connectivity retrieval. Additionally, supernode mobility and connectivity retrieval increase

Inventions 2024, 9, 10 24 of 33

as the number of supernodes increases. For k = 2, 3, and 4, the connection retrievals in
KDPMS are 4.9, 5.9, and 7.7 times higher than these rates in ADPV.

Inventions 2023, 8, x FOR PEER REVIEW 25 of 34

(a)

(b)

(c)

Figure 9. number of restored connections in ADPV and KDPMS: (a) k = 2, (b) k = 3, and (c) k = 4.

In this algorithm, as k increases, the disconnectivity of the k-vertex increases, neces-
sitating more connectivity retrieval. Additionally, more nodes mean more instances of
node failure and connectivity retrievals. Regarding the proposed technique’s supernode
failure tolerance, more supernodes imply more supernode failures and also more require-
ments for connectivity retrieval. Additionally, supernode mobility and connectivity re-
trieval increase as the number of supernodes increases. For k = 2, 3, and 4, the connection
retrievals in KDPMS are 4.9, 5.9, and 7.7 times higher than these rates in ADPV.

For a better and more accurate evaluation of the suggested technique and a compar-
ison with fault tolerance solutions that use mobile supernodes, ADPV has been devel-
oped, enabling it to use mobile supernodes (MADPV). Each supernode moves to the next
random migration point when the stay time has expired according to the fully stochastic
movement pattern of KDPMS. The network lifetime and the total number of control

0

500

1000

1500

2000

2500

100 150 200 250 300 350 400 450 500 550

Co
nn

ec
tiv

ity
 R

es
to

ra
tio

n
(n

o)

Number of sensor nodes

ADPV KDPMS

0

500

1000

1500

2000

2500

100 150 200 250 300 350 400 450 500 550

Co
nn

ec
tiv

ity
 R

es
to

ra
tio

n
(n

o)

Number of sensor nodes

ADPV KDPMS

0

500

1000

1500

2000

2500

3000

100 150 200 250 300 350 400 450 500 550

Co
nn

ec
tiv

ity
 R

es
to

ra
tio

n
(n

o)

Number of sensor nodes

ADPV KDPMS

Figure 9. Number of restored connections in ADPV and KDPMS: (a) k = 2, (b) k = 3, and (c) k = 4.

For a better and more accurate evaluation of the suggested technique and a compari-
son with fault tolerance solutions that use mobile supernodes, ADPV has been developed,
enabling it to use mobile supernodes (MADPV). Each supernode moves to the next random
migration point when the stay time has expired according to the fully stochastic movement
pattern of KDPMS. The network lifetime and the total number of control message transmis-
sions are compared in this examination. The total number of control messages in KDPMS
and MADPV for k = 2 and sr = 5% is shown in Figure 10.

Inventions 2024, 9, 10 25 of 33

Inventions 2023, 8, x FOR PEER REVIEW 26 of 34

message transmissions are compared in this examination. The total number of control
messages in KDPMS and MADPV for k = 2 and sr = 5% is shown in Figure 10.

Figure 10. Number of message transmissions in KDPMS and MADPV algorithms.

According to the first observation, an increase in the number of sensor nodes and
supernodes causes a rise in the mobility of supernodes and a corresponding increase in
the number of message exchanges required for connectivity retrieval. The second obser-
vation demonstrates that the MADPV method offers more message exchanges than the
suggested technique does since it needs some message exchange for each supernode’s
mobility towards the new migration point to create a k-vertex topology, while the pro-
posed method maintains k-vertex connectivity during migration. On average, the number
of control messages transmitted in the proposed algorithm is 22% less than that under
MADPV.

Figure 11 depicts the network lifetime for k = 2 and sr = 5% in KDPMS and MADPV
algorithms. The first observation indicates that increasing the number of nodes and su-
pernodes would increase the network lifetime due to the extraction of more disjoint paths.
The second observation shows that the MADPV algorithm’s high number of control mes-
sages can reduce network lifetime by increasing node energy usage. The third observation
shows that stochastic mobility in MADPV has prevented the covering of all relay nodes
and the early death of these nodes would reduce the network’s lifetime. On average, the
network lifetime of the proposed technique is 43% greater than that of MADPV.

Figure 11. Lifetime comparison of the KDPMS and MADPV algorithms.

0

10,000

20,000

30,000

40,000

50,000

60,000

100 150 200 250 300 350 400 450 550

N
um

be
r o

f M
es

sa
ge

 T
ra

ns
m

is
si

on
s

Number of sensing nodes

MADPV KDPMS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
lif

et
im

e
(s

ec
on

ds
)

number of sensing nodes

MADPV Connected

KDPMS Connected

Figure 10. Number of message transmissions in KDPMS and MADPV algorithms.

According to the first observation, an increase in the number of sensor nodes and
supernodes causes a rise in the mobility of supernodes and a corresponding increase in the
number of message exchanges required for connectivity retrieval. The second observation
demonstrates that the MADPV method offers more message exchanges than the suggested
technique does since it needs some message exchange for each supernode’s mobility
towards the new migration point to create a k-vertex topology, while the proposed method
maintains k-vertex connectivity during migration. On average, the number of control
messages transmitted in the proposed algorithm is 22% less than that under MADPV.

Figure 11 depicts the network lifetime for k = 2 and sr = 5% in KDPMS and MADPV
algorithms. The first observation indicates that increasing the number of nodes and supern-
odes would increase the network lifetime due to the extraction of more disjoint paths. The
second observation shows that the MADPV algorithm’s high number of control messages
can reduce network lifetime by increasing node energy usage. The third observation shows
that stochastic mobility in MADPV has prevented the covering of all relay nodes and the
early death of these nodes would reduce the network’s lifetime. On average, the network
lifetime of the proposed technique is 43% greater than that of MADPV.

Inventions 2023, 8, x FOR PEER REVIEW 26 of 34

message transmissions are compared in this examination. The total number of control
messages in KDPMS and MADPV for k = 2 and sr = 5% is shown in Figure 10.

Figure 10. Number of message transmissions in KDPMS and MADPV algorithms.

According to the first observation, an increase in the number of sensor nodes and
supernodes causes a rise in the mobility of supernodes and a corresponding increase in
the number of message exchanges required for connectivity retrieval. The second obser-
vation demonstrates that the MADPV method offers more message exchanges than the
suggested technique does since it needs some message exchange for each supernode’s
mobility towards the new migration point to create a k-vertex topology, while the pro-
posed method maintains k-vertex connectivity during migration. On average, the number
of control messages transmitted in the proposed algorithm is 22% less than that under
MADPV.

Figure 11 depicts the network lifetime for k = 2 and sr = 5% in KDPMS and MADPV
algorithms. The first observation indicates that increasing the number of nodes and su-
pernodes would increase the network lifetime due to the extraction of more disjoint paths.
The second observation shows that the MADPV algorithm’s high number of control mes-
sages can reduce network lifetime by increasing node energy usage. The third observation
shows that stochastic mobility in MADPV has prevented the covering of all relay nodes
and the early death of these nodes would reduce the network’s lifetime. On average, the
network lifetime of the proposed technique is 43% greater than that of MADPV.

Figure 11. Lifetime comparison of the KDPMS and MADPV algorithms.

0

10,000

20,000

30,000

40,000

50,000

60,000

100 150 200 250 300 350 400 450 550

N
um

be
r o

f M
es

sa
ge

 T
ra

ns
m

is
si

on
s

Number of sensing nodes

MADPV KDPMS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 150 200 250 300 350 400 450 550

N
et

w
or

k
lif

et
im

e
(s

ec
on

ds
)

number of sensing nodes

MADPV Connected

KDPMS Connected

Figure 11. Lifetime comparison of the KDPMS and MADPV algorithms.

5. Conclusions

In summary, this paper presented a novel scheme for enhancing quality of service
(QoS) in heterogeneous wireless sensor network-based smart agriculture monitoring. The
introduced framework, with its distributed and energy-aware methodology, establishes a
robust network topology, showcasing its capability to tolerate failures and prolong network

Inventions 2024, 9, 10 26 of 33

connectivity. The incorporation of an optimal greedy algorithm for supernode migration
further strengthens load balancing and network lifetime. These contributions provide valuable
insights for the advancement of wireless sensor network-based smart agriculture, offering a
foundation for future research and practical applications in heterogeneous environments.

Simulation results demonstrate significant improvements in node fault tolerance,
supernode fault tolerance, node lifetime, and path lifetime when contrasted with those in
previous studies. This comprehensive approach represents a noteworthy advancement
in fortifying the robustness and longevity of networks within smart agricultural systems.
Recognizing the heightened mobility and relocation of supernodes is essential due to the
increased demand for message exchange to adapt to changing network topologies. As a
result, additional research is necessary to determine the optimal number of supernodes that
can simultaneously ensure coverage and connectivity, thereby improving fault tolerance
for both nodes and supernodes within the network.

Author Contributions: Conceptualization, F.A. and O.A.; methodology, F.A.; software, F.A.; valida-
tion, S.E. and O.A.; formal analysis, O.A.; investigation, F.A. and O.A.; resources, S.E.; data curation,
O.A.; writing—original draft preparation, F.A.; writing—review and editing, S.E.; visualization, F.A.;
supervision, O.A. and S.E.; project administration, O.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Energy Consumption and Path Lifetime

KDPMS controls topology dynamically based on the residual energy of nodes and
supernodes. In this research, the path lifetime is formally defined as follows:

The input packets, output packets, and generated packets of each node are shown as
fI, fO, and fG, respectively, in this energy model. Evidently, the number of input packets for
each node is delineated as follows:

f I
n = ∑Lmn

f O
m (A1)

where n denotes a specific node, and Lmn represents the wireless channels between node n
and its one-hop neighbors. The number of output packets for each node is as follows:

fn
O = fn

I + fn
G (A2)

Clearly, each node receives packets, senses events, and generates data. The energy
consumption of each node is as follows:

En
consume = ER fn

I +Efn
O (A3)

where ER indicates the amount of energy used to receive a bit of data. In [12], this value
was reported as 50 nj/bit. Moreover, ET indicates the energy consumed in transmitting a
bit of data and is formulated as follows:

ET = Eelec + Eamp dh (A4)

where Eelec refers to the transmitter or receiver circuitry dissipation, whereas Eamp in-
dicates the energy consumption of an amplifier to maintain reliable radio transmission.
Furthermore, d represents the distance of a node from its neighbors, whereas h indicates
the path loss exponent. In [12], Eelec equals 50 nj/bit, whereas Eamp equals 100 pj/bit/m2,

Inventions 2024, 9, 10 27 of 33

h = 2. According to (A4), energy usage decreases with a decreasing node distance from
neighboring nodes. The residual energy of a node will be as follows:

En
Residual = En

Initial − En
Consume (A5)

Given the residual energy, the number of neighbors of a node and its hop count
reliability are as follows:

Reliability (n) = α
EResidual

n

N(n)EInitial
n

+β
λ

hop count
(A6)

fI, fO, and their energy usage depend on the number of node neighbors. Therefore, the
larger the value of N(n), the less reliable node n becomes. At the same time, the efficiency
of the network might be significantly impacted by the low hop counts. In actuality, the
noise collision decreases with decreasing hop counts. In this equation, α + β = 1.

The path lifetime is formally defined as follows: if path P includes p nodes of n1, n2,
. . ., and np when n1 and np are source and destination nodes, respectively, the path lifetime
is the minimum reliability of path nodes.

Lifetime (P) = min
1<n<p

reliabilityn (A7)

Algorithm A1 shows the pseudocode for finding disjoint paths in the KDPMS system,
selecting k + k′ paths with the longest lifetime, and determining the maximum path lifetime
for each segment.

Algorithm A1 Finding disjoint path in KDPMS [6] (max-dis-set)

Input: LPTi and k + k′

Output: D
D← 0

If |LPTi| > k + k′ then
Q← { q ∈ LPTi | |q| = k + k′};
pl← 0
qmax ← 0
For All q ∈ Q do

If q consists of disjoint paths, then
if PL(q) > pl then

pl← PL(q);
qmax ← q;

End if
End if

End for
D← qmax;
Maxpli ← qmax .first_path.pl //Find the lifetime of the first disjoint path (maximum

lifetime)
End if

Appendix B. Proof of Theorems

Proof of Theorem 3. To establish the theorems, a uniform failure probability is assumed for
the nodes. The likelihood of node failure in DPT and MDPT is contingent on the quantity
of nodes within them. At the beginning of network activity, DPT and MDPT possess
k(m + m′) and k′(m + m′) paths, along with k(m + m′)λ and k′(m + m′)λ nodes, respec-
tively. Consequently, the total number of DPT ∪MDPT nodes amounts to (k + k′)(m + m)λ.
The probability of the initial node failure occurring in the DPT and MDPT of a node is
(k+k′)(m+m′)λ

n , where n is the number of sensor nodes in the network. Given the disjoint

Inventions 2024, 9, 10 28 of 33

nature of the paths, in the event of a node failure, only the path containing the failed node
is eliminated from these tables. Hence, with the aforementioned probability, one path is
subtracted from DPT ∪MDPT, and the number of nodes drops by 1. The quantity of paths
removed due to the first failed node is expressed as follows:

e1 =

(
k + k′

)
(m + m′)λ
n

(A8)

After the first failed node, and considering each path consists of λ nodes, the total
number of nodes removed from DPT ∪ MDPT is denoted as e1λ. Consequently, the
probability of path removal upon the second failed node is expressed as follows:

e2 =

(
k + k′

)
(m + m′)λ− e1λ

n− 1
(A9)

After the second node failure, the quantity of nodes removed from DPT ∪MDPT is
denoted as e2λ, resulting in an overall reduction of one in the total node count. Similarly, e3
is defined as follows:

e3 =

(
k + k′

)
(m + m′)λ− e2λ

n− 2
(A10)

To calculate ei, the expansion of e1 into e2 is expressed as follows:

e2 =

(
k + k′

)
(m + m′)λ− (k+k′)(m+m′)λ2

n
n− 1

(A11)

Simplifying the above sentence and multiplying the numerator and denominator by n
yields the following:

e2 =

(
k + k′

)
(m + m′)λ n−

(
k + k′

)
(m + m′) λ2

n(n− 1)
(A12)

Expanding e2 into e3 proceeds as follows:

e3 =

(
k + k′

)
(m + m′)λ− (k+k′)(m+m′)λ2n−(k+k′)(m+m′)λ3

n(n−1)

n− 2
(A13)

Multiplying the numerator and denominator of the aforementioned sentence by
n(n − 1) results in the following:

e3 =

(
k + k′

)
(m + m′)λn(n− 1)−

(
k + k′

)
(m + m′)λ2n +

(
k + k′

)
(m + m′)λ3

n(n− 1)(n− 2)
(A14)

Generalizing each term in the previous expression provides the expansion of ei as:

ei =

(k + k
′
)(m + m

′
)

[[
∑i−2

j=0

(
(−1)j λj+1 ∏

i−j−2
j′=0

(
n− j

′
))]

+ (−1)i−1λi
]

∏i−1
j=0(n− j)

(A15)

□

Proof of Theorem 4. The state of k-vertex disconnectivity manifests when all paths within
DPTi and MDPTi undergo elimination and there is no path for restoration, resulting in the
inability to recover k-vertex connectivity. Given that the number of sensor nodes within

Inventions 2024, 9, 10 29 of 33

DPTi
⋃

MDPTi is (k + k′)λ, the anticipated number of sensor nodes expected to cease
functioning prior to the demise of any one of these (k + k′)λ sensor nodes is equivalent to:

n(
k + k′

)
λ

(A16)

Upon the demise of a node along a given path, the path becomes invalid and gets
taken out of the available DPTi

⋃
MDPTi sets. So, when a node fails, the number of paths

decreases by one. Thus, if the first node in a restoration set fails, there will be (k + k′ − 1)
paths left, made up of (k + k′ − 1)λ sensor nodes. Meanwhile, the total number of remaining
sensor nodes in the whole network will be:

n− n(
k + k′

)
λ

(A17)

The remaining sensor nodes following the removal of the pth path in DPTi
⋃

MDPTi
can be expressed in a general manner as follows:

np+1 = np −
n(

k + k′ − p
)
λ
= n ∗

p

∏
i=0

(
1− 1(

k + k′ − i
)
λ

)
(A18)

As long as there is a minimum of 1 path within the DPTi
⋃

MDPTi, KDPMS has the
capability to reinstate k-vertex supernode connectivity. The number of sensor nodes at
which the restoration of k-vertex supernode connectivity for the specified node becomes
unattainable is given by nk+k′ and can be computed as follows:

nk+k′ = n ∗
k+k′−1

∏
i=0

(
1− 1(

k + k′ − i
)
λ

)
(A19)

□

Proof of Theorem 5. Prior to presenting the proof of this theorem, a set of outcomes is
derived from Theorem 3.

In accordance with Theorem 3, it can be deduced that the number of paths eliminated
from the DPT subsequent to the failure of node i is as follows:

ei =
k(m + m′)

[[
∑i−2

j=0

(
(−1)j λj+1 ∏

i−j−2
j′=0 (n− j′)

)]
+ (−1)i−1λi

]
∏i−1

j=0(n− j)
(A20)

Furthermore, the total number of paths removed from the MDPT upon failed node i is
as follows:

ei =
k′(m + m′)

[[
∑i−2

j=0

(
(−1)j λj+1 ∏

i−j−2
j′=0 (n− j′)

)]
+ (−1)i−1λi

]
∏i−1

j=0(n− j)
(A21)

The number of paths removed from a given segment of DPT U MDPT upon failed
node i is determined via the following:

ei =
(k + k′)

[[
∑i−2

j=0

(
(−1)j λj+1 ∏

i−j−2
j′=0 (n− j′)

)]
+ (−1)i−1λi

]
∏i−1

j=0(n− j)
(A22)

Inventions 2024, 9, 10 30 of 33

Therefore, the number of remaining paths in a given segment of DPT U MDPT upon
failed node i is as follows:

ri =
(
k + k′

)
−

 (k + k′)
[[

∑i−2
j=0

(
(−1)j λj+1 ∏

i−j−2
j′=0 (n− j′)

)]
+ (−1)i−1λi

]
∏i−1

j=0(n− j)

 (A23)

In the occurrence of a failed node resulting in k-vertex disconnectivity within a seg-
ment, updates are applied to all paths in both the DPT and MDPT of the segment. The
proof of Theorem 5 necessitates the consideration of two key factors: 1. the probability of
the failed node within the paths of k-vertex connectivity, and 2. the count of remaining
paths in DPTi ∪MDPTi.

The probability of the first node failure occurring in k-disjoint paths is kλ/n, where
n is the total number of sensor nodes. Once a failed node occurs, KDPMS ensures that
k-vertex connectivity is retrieved. The number of nodes in the network drops by 1, at the
same time. Therefore, the second failed node has a probability of kλ

n−1 . From this, it can be
inferred that the probability of failed node i to result in k-vertex disconnectivity is kλ

n−(i−1) .
In (A23), the number of remaining paths in a given segment of DPT U MDPT upon

failed node i was formulated. Therefore, the total number of update lifetime messages is
as follows:

uli =

[
kλ

n− (i− 1)

]
∗

(k + k′
)
−

 (k + k′)
[[

∑i−2
j=0

(
(−1)j λj+1 ∏

i−j−2
j′=0 (n− j′)

)]
+ (−1)i−1λi

]
∏i−1

j=0(n− j)

 (A24)

□

Proof of Theorem 7. If there is supernode failure in the DPT of a node, all the paths in the
corresponding segment of the DPT and MDPT are removed. Therefore, to prove Theorem 7,
one must consider two factors: (1) the probability of supernode failure in the DPT and (2)
the number of paths in each segment of DPTi ∪MDPTi.

Given that the DPT has m + m′ segments, the probability that the first failed supernode
is in the DPT is m+m′

ns
, where ns is the number of supernodes. Let Ei be the number of

supernodes removed from the DPT. Subsequently,

E1 =
m + m′

ns
(A25)

Each failed supernode reduces the number of active supernodes in the network by 1. If
this failed supernode is in the DPT, only one segment that contains the failed supernode is
removed. Therefore, the number of segments removed before the second failed supernode
is E1. Here, E2 is written as follows:

E2 =
m + m′ − E1

ns − 1
(A26)

Ei is obtained by expanding E2 as follows:

Ei =
(m + m′)

[[
∑i−2

j=0

(
(−1)j ∏

i−j−2
j′=0 (ns − j′)

)]
+ (−1)i−1(m + m′)

]
∏

j−1
j′=0(n− j′)

(A27)

Inventions 2024, 9, 10 31 of 33

The number of remaining paths in a given segment of DPT U MDPT upon failed node
i is calculated via (A23). (A28) is the same as (A23), except that subscription i has been
replaced with j to represent failed node j.

rj =
(
k + k′

)
−

 (k + k′)
[[

∑
j−2
j′=0

(
(−1)j′ λj′+1 ∏

j−j′−2
j′′=0 (n− j′′)

)]
+ (−1)j−1λj

]
∏

j−1
j′=0(n− j′)

 (A28)

The result of the product of (A27) and (A28) yields the total number of removed paths
as follows:

ei,j =

[
(m+m′)

[[
∑i−2

j=0

(
(−1)j∏

i−j−2
j′=0

(ns−j′)
)]

+(−1)i−1(m+m′)
]

∏
j−1
j′=0

(n−j′)

]

∗

(k + k′)−

 (k+k′)
[[

∑
j−2
j′=0

(
(−1)j′λj′+1∏

j−j′−2
j′′ =0

(n−j′′)
)]

+(−1)j−1λj
]

∏
j−1
j′=0

(n−j′)

 (A29)

□

Proof of Theorem 8. The update lifetime message in the supernode failure tolerance sub-
routine is sent when the failed supernode is a primary. In this case, Sm+m′

1 is implemented,
and DPT2 and MDPT2 replace DPT1 and MDPT1. Then, an update lifetime message is sent
for each path in DPT1 ∪MDPT1. Therefore, the number of messages sent depends on the
number of DPT1 ∪MDPT1 paths and the probability of the failed supernode being present
in DPT1.

There is only one primary supernode for each node. Thus, the probability that the
first failed supernode is DPT1 is 1

ns
, where ns denotes the total number of supernodes.

Furthermore, when a primary supernode fails, a secondary supernode replaces the failed
primary supernode, with the number of supernodes dropping by 1. Hence, if the second
failed supernode occurs, the probability that the second failed supernode is in DPT1 is 1

ns−1 .
The number of remaining paths in a given segment of DPT U MDPT upon failed node

i is calculated via (A28). Therefore, the total number of update lifetime messages sent is given
by the following:

uli,j =

[
1

ns − (i− 1)

]
∗

(k + k′
)
−

 (k + k′)
[[

∑
j−2
j′=0

(
(−1)j′ λj′+1 ∏

j−j′−2
j′′=0 (n− j′′)

)]
+ (−1)j−1λj

]
∏

j−1
j′=0(n− j′)

 (A30)

□

References
1. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
2. Glaroudis, D.; Iossifides, A.; Chatzimisios, P. Survey, Comparison and Research Challenges of IoT Application Protocols for Smart

Farming. Comput. Netw. 2020, 168, 107037. [CrossRef]
3. Liu, X.; Zeng, X.; Ren, J.; Yin, S.; Zhou, H. Region-Different Network Reconfiguration in Disjoint Wireless Sensor Networks for

Smart Agriculture Monitoring. ACM Trans. Sens. Netw. 2023, 3614430. [CrossRef]
4. Akyildiz, I.F.; Kasimoglu, I.H. Wireless Sensor and Actor Networks: Research Challenges. Ad Hoc Netw. 2004, 2, 351–367.

[CrossRef]
5. Deniz, F.; Bagci, H.; Korpeoglu, I.; Yazıcı, A. An Adaptive, Energy-Aware and Distributed Fault-Tolerant Topology-Control

Algorithm for Heterogeneous Wireless Sensor Networks. Ad Hoc Netw. 2016, 44, 104–117. [CrossRef]
6. Bagci, H.; Korpeoglu, I.; Yazici, A. A Distributed Fault-Tolerant Topology Control Algorithm for Heterogeneous Wireless Sensor

Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 914–923. [CrossRef]

https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.comnet.2019.107037
https://doi.org/10.1145/3614430
https://doi.org/10.1016/j.adhoc.2004.04.003
https://doi.org/10.1016/j.adhoc.2016.02.018
https://doi.org/10.1109/TPDS.2014.2316142

Inventions 2024, 9, 10 32 of 33

7. Yarvis, M.; Kushafnagar, N.; Singh, H.; Rangarajan, A.; Liu, Y.; Singh, S. Exploiting Heterogeneity in Sensor Networks. In
Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA,
13–17 March 2005; Volume 2, pp. 878–890.

8. Shafi, U.F.; Bajwa, I.S.; Anwar, W.; Sattar, H.; Ramzan, S.; Mahmood, A. Sensing Spontaneous Combustion in Agricultural Storage
Using IoT and ML. Inventions 2023, 8, 122. [CrossRef]

9. Holtorf, L.; Titov, I.; Daschner, F.; Gerken, M. UAV-Based Wireless Data Collection from Underground Sensor Nodes for Precision
Agriculture. AgriEngineering 2023, 5, 338–354. [CrossRef]

10. Tsipis, A.; Papamichail, A.; Koufoudakis, G.; Tsoumanis, G.; Polykalas, S.E.; Oikonomou, K. Latency-Adjustable Cloud/Fog
Computing Architecture for Time-Sensitive Environmental Monitoring in Olive Groves. AgriEngineering 2020, 2, 175–205.
[CrossRef]

11. Xu, Z.; Chen, L.; Liu, T.; Cao, L.; Chen, C. Balancing Energy Consumption with Hybrid Clustering and Routing Strategy in
Wireless Sensor Networks. Sensors 2015, 15, 26583–26605. [CrossRef]

12. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-Efficient Communication Protocol for Wireless Microsensor
Networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January
2000; Volume 1, p. 10.

13. Xu, Z.; Long, C.; Chen, C.; Guan, X. Hybrid Clustering and Routing Strategy with Low Overhead for Wireless Sensor Networks.
In Proceedings of the 2010 IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010; pp. 1–5.

14. Chauhan, S.S.; Gore, M.M. Balancing Energy Consumption across Network for Maximizing Lifetime in Cluster-Based Wireless
Sensor Network. CSIT 2015, 3, 83–90. [CrossRef]

15. Jafari Kaleibar, F.; Abbaspour, M.; Aghdasi, H.S. An Energy-Efficient Hybrid Routing Method for Wireless Sensor Networks with
Mobile Sink. Wirel. Pers. Commun. 2016, 90, 2001–2015. [CrossRef]

16. Khalilpour Akram, V.; Akusta Dagdeviren, Z.; Dagdeviren, O.; Challenger, M. PINC: Pickup Non-Critical Node Based k-
Connectivity Restoration in Wireless Sensor Networks. Sensors 2021, 21, 6418. [CrossRef] [PubMed]

17. Koç, M.; Korpeoglu, I. Controlled Sink Mobility Algorithms for Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2014,
10, 167508. [CrossRef]

18. Koç, M.; Korpeoglu, I. Traffic- and Energy-Load-Based Sink Mobility Algorithms for Wireless Sensor Networks. IJSNET 2017,
23, 211. [CrossRef]

19. Shankar, R.; Ganesh, N.; Čep, R.; Narayanan, R.C.; Pal, S.; Kalita, K. Hybridized Particle Swarm—Gravitational Search Algorithm
for Process Optimization. Processes 2022, 10, 616. [CrossRef]

20. Ganesh, N.; Shankar, R.; Čep, R.; Chakraborty, S.; Kalita, K. Efficient Feature Selection Using Weighted Superposition Attraction
Optimization Algorithm. Appl. Sci. 2023, 13, 3223. [CrossRef]

21. Ganesh, N.; Shankar, R.; Kalita, K.; Jangir, P.; Oliva, D.; Pérez-Cisneros, M. A Novel Decomposition-Based Multi-Objective
Symbiotic Organism Search Optimization Algorithm. Mathematics 2023, 11, 1898. [CrossRef]

22. Narayanan, R.C.; Ganesh, N.; Čep, R.; Jangir, P.; Chohan, J.S.; Kalita, K. A Novel Many-Objective Sine–Cosine Algorithm
(MaOSCA) for Engineering Applications. Mathematics 2023, 11, 2301. [CrossRef]

23. Joshi, M.; Kalita, K.; Jangir, P.; Ahmadianfar, I.; Chakraborty, S. A Conceptual Comparison of Dragonfly Algorithm Variants for
CEC-2021 Global Optimization Problems. Arab J. Sci. Eng. 2023, 48, 1563–1593. [CrossRef]

24. Dai, Z.; Ma, Z.; Zhang, X.; Chen, J.; Ershadnia, R.; Luan, X.; Soltanian, M.R. An Integrated Experimental Design Framework for
Optimizing Solute Transport Monitoring Locations in Heterogeneous Sedimentary Media. J. Hydrol. 2022, 614, 128541. [CrossRef]

25. Haq, M.Z.U.; Khan, M.Z.; Rehman, H.U.; Mehmood, G.; Binmahfoudh, A.; Krichen, M.; Alroobaea, R. An Adaptive Topology
Management Scheme to Maintain Network Connectivity in Wireless Sensor Networks. Sensors 2022, 22, 2855. [CrossRef]
[PubMed]

26. Tomlinson, I. Doubling Food Production to Feed the 9 Billion: A Critical Perspective on a Key Discourse of Food Security in the
UK. J. Rural Stud. 2013, 29, 81–90. [CrossRef]

27. Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The Global Burden of Cancer: Priorities for Prevention.
Carcinogenesis 2010, 31, 100–110. [CrossRef] [PubMed]

28. Bogdanov, A.; Maneva, E.; Riesenfeld, S. Power-Aware Base Station Positioning for Sensor Networks. In Proceedings of the IEEE
INFOCOM 2004, Hong Kong, China, 7–11 March 2004; Volume 1, pp. 575–585.

29. Youssef, W.; Younis, M. Intelligent Gateways Placement for Reduced Data Latency in Wireless Sensor Networks. In Proceedings
of the 2007 IEEE International Conference on Communications, Glasgow, UK, 24–28 June 2007; pp. 3805–3810.

30. Deniz, F.; Bagci, H.; Korpeoglu, I.; Yazıcı, A. Energy-Efficient and Fault-Tolerant Drone-BS Placement in Heterogeneous Wireless
Sensor Networks. Wirel. Netw. 2021, 27, 825–838. [CrossRef]

31. Preite, L.; Solari, F.; Vignali, G. Technologies to Optimize the Water Consumption in Agriculture: A Systematic Review. Sustain-
ability 2023, 15, 5975. [CrossRef]

32. Du, Y.; Xia, J.; Gong, J.; Hu, X. An Energy-Efficient and Fault-Tolerant Topology Control Game Algorithm for Wireless Sensor
Network. Electronics 2019, 8, 1009. [CrossRef]

33. Mazumdar, N.; Nag, A.; Nandi, S. HDDS: Hierarchical Data Dissemination Strategy for Energy Optimization in Dynamic Wireless
Sensor Network under Harsh Environments. Ad Hoc Netw. 2021, 111, 102348. [CrossRef]

https://doi.org/10.3390/inventions8050122
https://doi.org/10.3390/agriengineering5010022
https://doi.org/10.3390/agriengineering2010011
https://doi.org/10.3390/s151026583
https://doi.org/10.1007/s40012-015-0074-8
https://doi.org/10.1007/s11277-016-3434-2
https://doi.org/10.3390/s21196418
https://www.ncbi.nlm.nih.gov/pubmed/34640738
https://doi.org/10.1155/2014/167508
https://doi.org/10.1504/IJSNET.2017.083525
https://doi.org/10.3390/pr10030616
https://doi.org/10.3390/app13053223
https://doi.org/10.3390/math11081898
https://doi.org/10.3390/math11102301
https://doi.org/10.1007/s13369-022-06880-9
https://doi.org/10.1016/j.jhydrol.2022.128541
https://doi.org/10.3390/s22082855
https://www.ncbi.nlm.nih.gov/pubmed/35458846
https://doi.org/10.1016/j.jrurstud.2011.09.001
https://doi.org/10.1093/carcin/bgp263
https://www.ncbi.nlm.nih.gov/pubmed/19934210
https://doi.org/10.1007/s11276-020-02494-x
https://doi.org/10.3390/su15075975
https://doi.org/10.3390/electronics8091009
https://doi.org/10.1016/j.adhoc.2020.102348

Inventions 2024, 9, 10 33 of 33

34. Wei, L.; Han, J. Topology Control Algorithm of Underwater Sensor Network Based on Potential-Game and Optimal Rigid
Sub-Graph. IEEE Access 2020, 8, 177481–177494. [CrossRef]

35. Singla, P.; Munjal, A. Topology Control Algorithms for Wireless Sensor Networks: A Review. Wirel. Pers. Commun. 2020, 113,
2363–2385. [CrossRef]

36. Khalily-Dermany, M. A Decentralized Algorithm to Combine Topology Control with Network Coding. J. Parallel Distrib. Comput.
2021, 149, 174–185. [CrossRef]

37. Wu, H.; Han, X.; Yang, B.; Miao, Y.; Zhu, H. Fault-Tolerant Topology of Agricultural Wireless Sensor Networks Based on a Double
Price Function. Agronomy 2022, 12, 837. [CrossRef]

38. Rani, K.P.; Sreedevi, P.; Poornima, E.; Sri, T.S. FTOR-Mod PSO: A Fault Tolerance and an Optimal Relay Node Selection Algorithm
for Wireless Sensor Networks Using Modified PSO. Knowl.-Based Syst. 2023, 272, 110583. [CrossRef]

39. Mehra, P.S.; Doja, M.N.; Alam, B. Fuzzy Based Enhanced Cluster Head Selection (FBECS) for WSN. J. King Saud Univ.-Sci. 2020,
32, 390–401. [CrossRef]

40. Rawat, P.; Chauhan, S. Probability Based Cluster Routing Protocol for Wireless Sensor Network. J. Ambient. Intell. Hum. Comput.
2021, 12, 2065–2077. [CrossRef]

41. Wang, C. A Distributed Particle-Swarm-Optimization-Based Fuzzy Clustering Protocol for Wireless Sensor Networks. Sensors
2023, 23, 6699. [CrossRef]

42. Wang, Z.; Zhang, M.; Gao, X.; Wang, W.; Li, X. A Clustering WSN Routing Protocol Based on Node Energy and Multipath. Clust.
Comput. 2019, 22, 5811–5823. [CrossRef]

43. Cherappa, V.; Thangarajan, T.; Meenakshi Sundaram, S.S.; Hajjej, F.; Munusamy, A.K.; Shanmugam, R. Energy-Efficient Clustering
and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks. Sensors 2023,
23, 2788. [CrossRef]

44. Shah, S.L.; Abbas, Z.H.; Abbas, G.; Muhammad, F.; Hussien, A.; Baker, T. An Innovative Clustering Hierarchical Protocol for Data
Collection from Remote Wireless Sensor Networks Based Internet of Things Applications. Sensors 2023, 23, 5728. [CrossRef]

45. Temene, N.; Sergiou, C.; Georgiou, C.; Vassiliou, V. A Survey on Mobility in Wireless Sensor Networks. Ad Hoc Netw. 2022,
125, 102726. [CrossRef]

46. Chang, J.-Y.; Jeng, J.-T.; Sheu, Y.-H.; Jian, Z.-J.; Chang, W.-Y. An Efficient Data Collection Path Planning Scheme for Wireless
Sensor Networks with Mobile Sinks. J. Wirel. Commun. Netw. 2020, 257. [CrossRef]

47. Prasanth, A.; Pavalarajan, S. Zone-Based Sink Mobility in Wireless Sensor Networks. Sens. Rev. 2019, 39, 874–880. [CrossRef]
48. Abu Taleb, A. sink mobility model for wireless sensor networks using kohonen self-organizing map. Int. J. Commun. Netw. Inf.

Secur. 2022, 13, 1. [CrossRef]
49. Wu, X.; Chen, Z.; Zhong, Y.; Zhu, H.; Zhang, P. End-to-End Data Collection Strategy Using Mobile Sink in Wireless Sensor

Networks. Int. J. Distrib. Sens. Netw. 2022, 18, 155013292210779. [CrossRef]
50. Abu Taleb, A.; Abu Al-Haija, Q.; Odeh, A. Efficient Mobile Sink Routing in Wireless Sensor Networks Using Bipartite Graphs.

Future Internet 2023, 15, 182. [CrossRef]
51. Cardei, M.; Yang, S.; Wu, J. Algorithms for Fault-Tolerant Topology in Heterogeneous Wireless Sensor Networks. IEEE Trans.

Parallel Distrib. Syst. 2008, 19, 545–558. [CrossRef]
52. Poghosyan, A. The Probabilistic Method for Upper Bounds in Domination Theory. Ph.D. Thesis, University of the West of

England, Bristol, UK, 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.3024742
https://doi.org/10.1007/s11277-020-07331-0
https://doi.org/10.1016/j.jpdc.2020.12.001
https://doi.org/10.3390/agronomy12040837
https://doi.org/10.1016/j.knosys.2023.110583
https://doi.org/10.1016/j.jksus.2018.04.031
https://doi.org/10.1007/s12652-020-02307-1
https://doi.org/10.3390/s23156699
https://doi.org/10.1007/s10586-017-1550-8
https://doi.org/10.3390/s23052788
https://doi.org/10.3390/s23125728
https://doi.org/10.1016/j.adhoc.2021.102726
https://doi.org/10.1186/s13638-020-01873-4
https://doi.org/10.1108/SR-11-2018-0310
https://doi.org/10.17762/ijcnis.v13i1.4813
https://doi.org/10.1177/15501329221077932
https://doi.org/10.3390/fi15050182
https://doi.org/10.1109/TPDS.2007.70768

	Introduction
	Literature Review
	The Proposed Method
	Problem Statement
	Path Information Collection and Connectivity-Centric Topology Design in KDPMS
	Node Failure Tolerance in KDPMS (the First Layer’s Fault Tolerance)
	Supernode Failure Tolerance in KDPMS (the Second Layer’s Fault Tolerance)
	Supernode Mobility Model in KDPMS

	Results and Discussion
	Conclusions
	Appendix A
	Appendix B
	References

