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Abstract: Olive fruits at different ripening stages give rise to various table olive products and oil
qualities. Therefore, developing an efficient method for recognizing and sorting olive fruits based on
their ripening stages can greatly facilitate post-harvest processing. This study introduces an automatic
computer vision system that utilizes deep learning technology to classify the ‘Roghani’ Iranian olive
cultivar into five ripening stages using color images. The developed model employs convolutional
neural networks (CNN) and transfer learning based on the Xception architecture and ImageNet
weights as the base network. The model was modified by adding some well-known CNN layers to
the last layer. To minimize overfitting and enhance model generality, data augmentation techniques
were employed. By considering different optimizers and two image sizes, four final candidate models
were generated. These models were then compared in terms of loss and accuracy on the test dataset,
classification performance (classification report and confusion matrix), and generality. All four
candidates exhibited high accuracies ranging from 86.93% to 93.46% and comparable classification
performance. In all models, at least one class was recognized with 100% accuracy. However, by taking
into account the risk of overfitting in addition to the network stability, two models were discarded.
Finally, a model with an image size of 224 × 224 and an SGD optimizer, which had a loss of 1.23 and
an accuracy of 86.93%, was selected as the preferred option. The results of this study offer robust
tools for automatic olive sorting systems, simplifying the differentiation of olives at various ripening
levels for different post-harvest products.

Keywords: olive; color image; Xception; sorting; deep learning

1. Introduction

Olive, Olea europaea, is an essential evergreen subtropical fruit. Its fruits are utilized
for both table olives and olive oil. Certain varieties are specifically cultivated for oil
production, while others, renowned for their larger fruit sizes, are preferred for canning
products. Moreover, the production of dual-purpose olive varieties is growing [1]. In
Iran, the ‘Roghani’ cultivar stands out as a vital local dual-purpose olive variety, known
for its adaptability to diverse environmental conditions and ability to withstand winter
cold [2]. The type of canned olives and the quality of olive oil depend on various factors,
including the variety, cultivation conditions, and fruit ripening stage [3–5]. Olive fruits can
be harvested at different stages, ranging from immature green to fully mature black, and
even during over-ripened stages. The ripening stage of the fruit profoundly affects the oil
content, chemical composition, sensory characteristics of olive oil, and industrial yield [6,7].
Fruit homogeneity at the same ripening stage is crucial for canned olives, and the quality
of olive oil directly depends on the fruit’s ripening stage.

The timing of olive harvesting is typically determined by evaluating the maturity
index (MI) of each olive cultivar [5,8,9]. This evaluation of MI is based on changes in both
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the skin and flesh color of mature fruit [10]. Decisions about when to harvest fruit from an
orchard are made by conducting MI assessments on fruit samples collected from different
trees. However, it is common to come across olives with varying degrees of ripeness during
processing, as mechanical harvesters that use trunk shakers can harvest one hectare of an
intensive olive grove (consisting of 300–400 trees) within a timeframe of 2 to 5 days [10].
Due to factors such as the location of the fruit on outer or inner branches and exposure to
sunlight, even a single tree may have olives in different stages of maturity, and there may be
variations between each tree due to differences in horticultural practices and management.
Moreover, some orchards may cultivate multiple olive varieties, each with distinct ripening
stages during harvest, while others with a single cultivar may also have variations in fruit
ripeness. In olive processing facilities, it is possible for different growers to bring olives
with varying degrees of ripeness that must be categorized before processing.

Given the importance of olive ripening in the production of various post-harvest prod-
ucts, such as pickles, oil, and canned olives, it is essential to separate and sort olive fruits
before processing. However, manually sorting olives through human visual inspection
is a challenging and inefficient task. To address this challenge, integrating a computer
vision system into olive processing units as part of the automatic separation machinery
offers a potential solution. The system consists of an image-capturing unit, which relies
on a robust image processing model to ensure rapid and accurate results for mechanical
separation [11].

Numerous researchers have investigated various methods for assessing olive fruit
maturity, with a focus on Near Infrared Spectroscopy (NIRS) [10,12,13]. These studies
aimed to predict diverse quality parameters and characterize table olive traits utilizing
NIRS technology. In addition to NIRS, Convolutional Neural Networks (CNNs), a subset
of deep learning, have emerged as a powerful tool for image processing tasks, allowing for
the extraction of high-level features independent of imaging condition and structure [14],
making them a valuable tool for agricultural applications.

The use of cutting-edge technologies, such as deep learning, offers a more promising
solution to address this challenge, garnering the attention of scientists across multiple
agricultural domains [15–17]. Noteworthy applications of CNNs include olive classification,
as demonstrated by Riquelme et al. [18], who employed discriminant analysis to classify
olives based on external damage in images, achieving validation accuracies ranging from
38% to 100%. Guzmán et al. [9] leveraged algorithms based on color and edge detection for
image segmentation, resulting in an impressive 95% accuracy in predicting olive maturity.
Ponce et al. [19] utilized the Inception-ResNetV2 model to classify seven olive fruit varieties,
achieving a remarkable maximum accuracy of 95.91%. Aguilera Puerto et al. [20] developed
an online system for olive fruit classification in the olive oil production process, employing
Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to attain high
accuracies of 98.4% and 98.8%, respectively. Aquino et al. [21] created an artificial vision
algorithm capable of classifying images taken in the field to identify olives directly from
trees, enabling accurate yield predictions. Studies such as Khosravi et al. [17] have also
utilized RGB image acquisition and CNNs for the early estimation of olive fruit ripening
stages on-branch, which has direct implications for orchard production quality and quantity.
Furferi et al. [22] proposed an ANN-based method for automatic maturity index evaluation,
considering four classes based on olive skin and pulp color, while ignoring the presence of
defects. In contrast, Puerto et al. [23] implemented a static computer vision system for olive
classification, employing a shallow learning approach using an ANN with a single hidden
layer. In a recent study by Figorilli et al. [24], olive fruits were classified based on the state
of external color, “Veraison”, and the presence of visible defects using AI algorithms with
RGB imaging. Despite the commendable efforts in olive fruit detection modeling, however,
previous studies have primarily focused on identifying defective olives, inadvertently
overlooking the comprehensive assessment of distinct stages crucial for olive fruit ripening,
impacting both oil quality and canned olive production [18,20]. This trend, compounded
by the reliance on limited datasets, has significantly hindered the models’ capacity for
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effective generalization. Moreover, the dependency of these models on specific imaging
modalities has constrained their adaptability to varying environmental conditions, lighting
disparities, and diverse olive cultivars. Additionally, one of our primary objectives is to
enhance model efficiency and recognition speed. Therefore, we endeavored to address
these gaps by conducting a comprehensive exploration of olive fruit ripening stages and
developing new high-performance models to better address this critical area.

The field of machine learning has seen significant advancements in recent years,
particularly in agriculture. According to Benos et al. [25], there was a remarkable 745%
increase in articles related to machine learning in agriculture between 2018 and 2020,
indicating the growing use of machine learning algorithms for crop and animal analysis
based on input data from satellites and drones. This surge in interest is attributed to the
development of novel models that exhibit high performance and optimized detection times.
For instance, Fan et al. [26], successfully utilized a YOLOV4 network to detect defects in
apple fruits using near-infrared (NIR) images, achieving an average detection accuracy of
93.9% and processing five fruits per second.

In the realm of fruit recognition, the Xception deep learning model has been gainfully
employed [27]. Built upon the Inception architecture, Xception is a powerful neural network
that excels in image classification tasks owing to its efficiency and accuracy [28]. By
taking the concept of separable convolutions to an extreme level, Xception becomes a
highly efficient and powerful network, demonstrating the potential of CNNs for image
processing tasks.

This study aims to leverage the Xception deep learning model for the automated
sorting of olives based on color images, given the critical role of olive fruit sorting in
producing diverse end products (e.g., pickles, oil, canned goods). Our ultimate goal is
to create a highly accurate and robust computer vision system capable of categorizing
Roghani olives into five distinct ripening stages. We evaluated the system’s performance
using test dataset accuracy, classification performance metrics (such as classification reports
and confusion matrices), and its capacity to generalize across varied datasets.

The significance of our research lies in its potential to offer olive processing facilities
efficient and reliable tools for automating the sorting process, thus distinguishing between
olives of differing ripeness levels. This, in turn, may enhance the quality of various post-
harvest products and differentiate olive oil qualities, ultimately benefiting the olive industry
as a whole. By providing a more accurate method for sorting olives according to their
maturity, we can improve the overall quality of downstream products such as pickles, oil,
and canned goods. Moreover, our proposed approach could potentially reduce waste and
increase efficiency within the olive processing industry.

2. Material and Methods
2.1. Data Preparation

To develop an image-based CNN model for classifying olive fruits based on their
ripening stages, we considered an Iranian olive cultivar named Roghani at five distinct
ripening stages. A total of 761 images of different classes were captured in an unstructured
laboratory setting using a smartphone camera (Samsung Galaxy A51, India). One of
the most important advantages of deep learning-based image processing techniques and
convolutional neural networks is that unlike the traditional image processing methods,
they are not dependent on environmental conditions including lighting, background,
distance to object, camera properties, etc., making them more powerful and robust tools in
processing images taken in natural conditions. By addressing this fact, we did not consider
a special capturing condition or structure. The captured images had an initial resolution of
3000 × 4000 pixels. Figure 1 depicts the five ripening stages of the olive fruits and their
corresponding average mass. The color attributes of the samples served as the basis for
discriminating between ripening stages. Specifically, Stage 1 refers to samples with green
colors, Stage 2 is characterized by olives with 10–30% browning, while Stages 3, 4, and 5
represent approximately 50, 90, and 100% browning (fully black), respectively. The number
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of images taken at each ripening stage, and the average mass of samples at each class, are
presented in Table 1.
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Figure 1. Adjusted images of the five ripening stages of Roghani olives under our study. Each class
has been denoted by an assigned code (O1–O5).(Original pictures).

Table 1. The number of images taken at each stage of olive fruit maturity and the average mass of
samples at each class.

Classes O1 O2 O3 O4 O5

Number of Samples 195 161 183 93 129

Average Mass (g) 4.05 ± 1.30 2.93 ± 0.90 3.00 ± 0.78 3.22 ± 0.67 3.74 ± 3.29

The image data was divided into three distinct parts: the training set, the validation
set, and the testing set. To accomplish this, 20% of the total data (equivalent to 153 images)
were assigned to the test dataset. The remaining data consisted of 609 images, with 15%
(92 images) being allocated for the validation set, and the remaining 516 images being
utilized for the training set.

The training process involved passing the input data through several layers, obtaining
the output, and comparing it with the desired output. The difference between the two,
which served as the error, was then calculated. Using this error, the network parameters
were adjusted and fed the data back into the network to compute new results and errors.
This process was repeated multiple times, adjusting the parameters after each iteration to
minimize the error. There are various formulas and functions to calculate the network error.
Once the error was computed, the parameters were updated to move closer to minimizing
it; that is, optimizing the weights to achieve the lowest possible error.

Preprocessing the input images is crucial to enhance the model’s accuracy, prevent
overfitting, and boost its generalization capability. First, we resized all images to two
different sizes: 224 × 224 and 299 × 299. Next, we normalized the pixel values by dividing
them by the maximum pixel values of the captured images. Subsequently, we applied data
augmentation techniques, including random translation, random flip, random contrast, and
random rotation, to artificially increase the number of images used in model development.
The data augmentation parameters are presented in Table 2.
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Table 2. Augmentation arguments and values.

Augmentation Parameters Value

Random Translation (height_factor) 0.1

Random Translation (width_factor) 0.1

Random Flip True

Random Contrast 0.15

Random Rotation 0.15

To develop the deep neural network model, we utilized the transfer learning technique.
Initially, we invoked the Xception model and loaded its weights from the ImageNet dataset.
Subsequently, we embarked on a fine-tuning process by adding additional layers to the
base model. Diverse structures for the fine-tuning layers were experimented with, varying
their type, position, and arguments to identify the optimal configuration. We explored
several layer types and arrangements, with the most commonly used being 2D convolution,
Global Average Pooling, Dropout, Batch Normalization, and others. The comprehensive
architecture of the resulting model is illustrated in Figure 2.
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2.2. Xception Architecture

In this study, we employed the Xception deep learning architecture, a novel deep
convolutional neural network model introduced by Google, Inc. (Mountain View, CA,
USA) [28]. Xception features Depth Wise Separable Convolutions (DSC) to enhance per-
formance and efficiency. Unlike traditional convolution, DSC divides the computation
into two stages: depth wise convolution applies a single convolutional filter per input
channel, followed by point wise convolution to create a linear combination of the depth
wise convolution outputs.

Xception is a variant of the Inception architecture where Inception modules act as
an intermediate step between regular convolution and DSC. With the same number of
parameters, Xception surpasses Inception V3 on the ImageNet dataset due to its more
efficient use of model parameters. The Xception architecture consists of 36 convolutional
layers forming the feature extraction base of the network. In image classification tasks, the
convolutional base is succeeded by a logistic regression layer. The 36 convolutional layers
are organized into 14 modules, all with linear residual connections around them, excluding
the first and last modules. In summary, the Xception architecture is a linear stack of depth
wise separable convolution layers with residual connections [28].

2.3. Fine-Tuning and Modification

We first pre-trained the base model (Xception) using ImageNet weights. Next, the
trainable attribute of all layers in the base model were frozen, ensuring that their weights
remained fixed during training. This allowed us to use the pre-trained model as a starting
point for further training on a new dataset. We then unfroze the last 20 layers in the Middle
Flow and Exit Flow, making them trainable. By doing so, the pre-trained layers were
prevented from overfitting on the new dataset while allowing the newly added layers
to adapt to the new data. Finally, we added three blocks on top of the pre-trained base
model, each containing Convolution, Batch Normalization, Max Pooling, and Dropout
layers, followed by Fully Connected and Global Average Pooling layers. We called it the
modifying block (Figure 2).

Table 3 provides detailed information about the various layers used, their output
shapes, and the total number of parameters. The table covers both input image sizes
studied (224 × 224 and 299 × 299). The developed model has approximately 27 million
parameters for both image sizes, with only about 0.5% being non-trainable. Notably,
Max Pooling, Dropout, and Global Average Pooling layers do not contribute to the total
number of trainable parameters since they lack trainable parameters. As seen in Table 3,
the number of parameters remains constant across both input image sizes, because the
CNN architectures were totally the same for the two input image sizes.

Table 3. The detailed properties of the CNN architecture (Modified Xception) for two different input
image sizes.

Layer (Type) Output Shape (Input Size = 224 × 224) Output Shape (Input Size = 299 × 299)

Xception Block (None, 7, 7, 2048) (None, 10, 10, 2048)
Convolution 2D (None, 7, 7, 128) (None, 10, 10, 128)
Batch Normalization (None, 7, 7, 128) (None, 10, 10, 128)
Max Pooling 2D (None, 4, 4, 128) (None, 5, 5, 128)
Dropout (None, 4, 4, 128) (None, 5, 5, 128)
Convolution 2D (None, 4, 4, 64) (None, 5, 5, 64)
Batch Normalization (None, 4, 4, 64) (None, 5, 5, 64)
Max Pooling 2D (None, 2, 2, 64) (None, 3, 3, 64)
Dropout (None, 2, 2, 64) (None, 3, 3, 64)
Convolution 2D (None, 2, 2, 32) (None, 3, 3, 32)
Batch Normalization (None, 2, 2, 32) (None, 3, 3, 32)
Max Pooling 2D (None, 1, 1, 32) (None, 2, 2, 32)
Dropout (None, 1, 1, 32) (None, 2, 2, 32)
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Table 3. Cont.

Layer (Type) Output Shape (Input Size = 224 × 224) Output Shape (Input Size = 299 × 299)

Dense (None, 1, 1, 254) (None, 2, 2, 254)
Dense (None, 1, 1, 128) (None, 2, 2, 128)
Dense (None, 1, 1, 64) (None, 2, 2, 64)
Global Average Pooling 2D (None, 64) (None, 64)
Dense (None, 5) (None, 5)
Total Parameters: 27,721,803
Trainable Parameters: 27,577,643
Non-trainable Parameters: 144,160

2.4. Network Training

To optimize the performance of the deep learning model for classifying olive fruits
based on their ripening stages, several aspects required careful consideration. First, we
needed to select the most appropriate optimizer among popular choices such as RMSprop,
SGD, Adam, and Nadam. Accuracy was chosen as the evaluation metric to assess the
model’s performance. Additionally, we employed the categorical cross-entropy function as
the loss function.

Training the model involved a series of experiments to identify the best combination
of hyper parameters and architectural components. Initially, we trained the base model
(Xception) using a batch size of 8 and 20 epochs. Subsequently, we trained the modified
model with a batch size of 32 and 80 epochs (with an optional extension to 100 epochs for
Model 1). Throughout the training process, we monitored the loss and accuracy trends for
both the train and validation datasets at each epoch. This allowed us to analyze the models’
performance and make informed decisions regarding their suitability for our task. Four
promising candidates emerged from our experiments, each distinguished by its unique
combination of image size and optimizer. They were:

− Model 1: Best performer with 224 × 224 image size and Nadam optimizer
− Model 2: Best performer with 224 × 224 image size and SGD optimizer
− Model 3: Best performer with 299 × 299 image size and RMSprop optimizer
− Model 4: Best performer with 299 × 299 image size and SGD optimizer

When evaluating these models, we considered multiple factors, such as accuracy, loss,
and resistance to overfitting. Accuracy measures the proportion of correctly predicted
instances, while loss represents the average error per instance. A lower loss value generally
indicates better model performance. However, a model with high accuracy but relatively
high loss may still encounter challenges in unseen data, signaling potential overfitting
issues. Therefore, we assessed the risk of overfitting when comparing the four candidates.

The training, development, and testing procedures were executed using Python 3.7.10
and the Google Colab environment (K80 GPU and 12 GB RAM) with Keras, TensorFlow
backend (version 2.13.0), OpenCV, and other relevant libraries.

3. Results and Discussion

This section presents the methodological approach taken to develop and evaluate
deep learning models for classifying olive fruits according to their ripeness levels. Our next
step is analyzing the results and discussing the implications of our findings.

3.1. Training Progress

The trend of losses and accuracies against the number of epochs for both the training
and validation datasets and for the four candidate models are illustrated in Figures 3 and 4.
For each candidate model, the minimum losses and maximum accuracies for training and
validation data and the corresponding epochs are mentioned in Table 4.
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Table 4. The values and epochs of minimum training and validation losses, as well as maximum
training and validation accuracies for each candidate model.

Min Train
Loss/Epoch

Min Validation
Loss/Epoch

Max Train
Accuracy/Epoch

Max Validation
Accuracy/Epoch

Model 1 0.31/99 0.32/99 0.95/97 0.88/96
Model 2 0.42/73 1.23/66 0.94/63 0.92/56
Model 3 0.15/56 0.35/60 0.99/55 0.95/60
Model 4 1.61/79 3.60/79 0.94/74 0.91/75

According to Figures 3 and 4, Models 1 and 3 exhibit substantial fluctuations in
validation losses and validation accuracies, whereas Models 2 and 4 display a consistent
downward trend in losses and a steady increase in accuracies, with only minor variations.
These patterns suggest that Models 1 and 3 are susceptible to overfitting, whereas Models 2
and 4 are more resistant to it, making them more generalized and reliable in handling new,
unseen data.

3.2. Comparison of the Candidate Models

Four candidate models perform differently on unseen (test) data. The result of loss
and accuracy values on test data are provided in Table 5.

Table 5. Comparison of four final candidate models on test data.

Test Loss Test Accuracy

Model 1 0.3938 0.9346
Model 2 1.2338 0.8693
Model 3 0.5502 0.9085
Model 4 3.8232 0.8693

According to Table 5, both image sizes can provide low losses and high accuracies.
Model 1 has the lowest test loss (0.3938) and highest test accuracy (0.9346), indicating
good performance on the test set. However, test loss and test accuracy should not be the
only factors considered when evaluating a CNN model, as another important factor is the
risk of overfitting, which affects the model’s generalization ability to new, unseen data.
Therefore, the best model should be chosen based on a trade-off between test loss, test
accuracy, and the possibility of overfitting. Model 1 cannot be the final choice since it
possesses the possibility of overfitting during the training process, which may result in
poor generalization to new data (Figures 4 and 5). Model 2 has a higher test loss (1.2338)
and lower test accuracy (0.8693) compared to Model 1, but it does not show any signs of
overfitting (Figures 4 and 5), indicating better generalization to new data. Model 3 has a
slightly higher test loss (0.5502) and lower test accuracy (0.9085) than Model 1, but like
Model 1, it displays the possibility of overfitting during training. Model 4 and Model 2
do not have an overfitting issue. Model 4 has a significantly higher test loss (3.8232) but a
comparable value of test accuracy, indicating poor performance on the test set.

To evaluate the performance of the candidate models in discriminating between the
different classes (O1 to O5), we utilized four parameters: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). These parameters are used to calculate
two classification metrics: classification report and confusion matrix. The classification
report provides information about the performance of a model through precision, recall,
and F1-score, as described by Equations (1)–(3). Precision measures how well the model
predicts positive cases, while recall measures the proportion of correctly predicted positive
instances out of the total actual positive instances. The F1-score is the harmonic mean of
precision and recall, providing a balanced measure that combines both metrics.

Precision =
TP

TP + FP
. (1)
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Recall =
TP

TP + FN
. (2)

F1 − score = 2 × Precision × Recall
Precision + Recall

. (3)
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The classification report for recognizing the five olive classes under study is presented
in Table 6. According to this table, Model 1, 3, and 4 achieved a precision value of 1.00
for the O1 class, while Model 2 had a slightly lower precision of 0.97. This indicates that
all models performed well in predicting the O1 class. In recognizing class O2, Models 2
and 4 achieved a perfect accuracy of 100%, while Models 1 and 3 had an accuracy of 91%.
Class O3 was better identified by Models 1 and 3, with an accuracy of 89% for both models,
whereas Models 2 and 4 had a lower accuracy of 73% and 69%, respectively. For class O4,
all models performed similarly, with an accuracy ranging from 87% to 93%. Finally, class
O5 was identified perfectly by all models, except for Model 4, which had an accuracy of
96%. The performance of all models in identifying classes O1 and O5 was nearly perfect,
likely due to their distinct visual properties.

To assess the models’ ability to avoid false negatives, we can compare their recall
values. Models 2, 3, and 4 correctly predicted all O1 instances as O1, meaning they had
zero false negatives. Model 1 had a recall of at least 90% for class O1. For class O2, Model 2
had a lower recall of 59%, while Models 1, 3, and 4 achieved recalls of 0.94, 0.91, and 0.81,
respectively. Models 2 and 4 were perfect in predicting class O3, while Models 1 and 3 had
a high accuracy. In case of class O4, Model 4 performed weakly with a recall of 37%, while
the other models had a reasonable performance. Finally, all O5 instances were correctly
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predicted as O5 by Model 1, and Models 2 and 4 were very good, while Model 3 had a
relatively lower accuracy of 77%. Overall, the results suggest that all models performed
well in recognizing classes O1 and O5, while there were variations in performance across
the other classes.

Table 6. Classification report for recognizing the classes by the four final candidates.

Precision Recall F1-Score Support

Model
1

Model
2

Model
3

Model
4

Model
1

Model
2

Model
3

Model
4

Model
1

Model
2

Model
3

Model
4 All

O1 1.00 0.97 1.00 1.00 0.90 1.00 1.00 1.00 0.95 0.99 1.00 1.00 39
O2 0.91 1.00 0.91 1.00 0.94 0.59 0.91 0.81 0.92 0.75 0.91 0.90 32
O3 0.89 0.73 0.89 0.69 0.92 1.00 0.86 1.00 0.91 0.84 0.88 0.81 37
O4 0.89 0.80 0.82 0.88 0.84 0.84 0.95 0.37 0.86 0.82 0.88 0.52 19
O5 1.00 1.00 1.00 0.96 1.00 0.85 0.77 0.92 1.00 0.92 0.87 0.94 26
Micro Avg. 0.94 0.88 0.93 0.88 0.92 0.87 0.90 0.87 0.93 0.87 0.91 0.87 153
Macro Avg. 0.94 0.90 0.92 0.90 0.92 0.86 0.90 0.82 0.93 0.86 0.91 0.83 153
Weighted Avg. 0.94 0.90 0.93 0.90 0.92 0.87 0.90 0.87 0.93 0.87 0.91 0.86 153
Samples Avg. 0.92 0.87 0.90 0.87 0.92 0.87 0.90 0.87 0.92 0.87 0.90 0.87 153

In summary, Model 2 appears to be the most suitable choice among the four models,
as it demonstrates low test loss, high test accuracy, and no signs of overfitting. Additionally,
it achieves a relatively high F1-score, indicating its ability to accurately classify instances
across all classes.

Figure 5 displays the confusion matrices for the classification of five olive classes
using four candidate models. The columns represent the predicted values, while the rows
show the true values. Upon examining the matrices, we observed that all models achieved
a perfect classification (100%) for O1, with the exception of Model 1, which mislabeled
two instances as O2. Moving on to class O2, all models primarily confused it with O3.
Model 1 had the least confusion, while Model 2 had the most. For O3, Models 2 and 4
successfully recognized it, but Models 1 and 3 mixed up a few instances with O2 and O4.
In relation to class 4, Models 1 and 2 performed similarly, each with only three instances
confused with O3. Model 4 showed the weakest performance in classifying O4, while
Model 3 performed the best, mistakenly classifying just one instance as O3. Lastly, in the
case of O5, Model 1 achieved the highest accuracy with 100%, but Model 2 misidentified
four O5 instances as O4. Model 3 confused one O5 instance with O3 and four with O4,
while Model 4 misclassified one instance with both O3 and O4. To summarize, the models
generally demonstrated good recognition for classes O1 and O5, which can be attributed to
the minimal visual similarities compared to the other classes.

Our proposed network for detecting olive fruits ripening stage demonstrates competi-
tive performance metrics, exhibiting similar or enhanced accuracy or precision compared to
prior studies such as Guzmán et al. [9] in predicting olive maturity using specific algorithms,
and Puerto et al. [20] for classifying Veraison and visible defects of olive fruit under an
online system. The robustness of the Xception deep learning method in image-based classi-
fication tasks has been demonstrated in various applications. For instance, Pujari et al. [29]
achieved 99.01% accuracy in classifying breast histopathological images using this method.
Similarly, Wu et al. [14] applied the algorithm to classify scene images with an accuracy
of 92.32%, and Salim et al. [27] utilized the Xception model to classify fruit species with a
total accuracy of 97.73%. A comparative analysis, including the most relevant works on
the olive, is provided in Table 7, which discusses classification tasks using both traditional
and modern image analysis methods. One significant advantage of deep learning-based
image processing techniques is their independence from environmental conditions such as
lighting, background, distance to object, camera properties, etc., unlike traditional image
processing methods. Additionally, deep learning techniques excel in feature extraction,
allowing them to extract high-level features compared to low-level features like edges and
color extracted by traditional methods. This high-level feature extraction makes deep learn-
ing techniques powerful and robust tools for processing images captured in unstructured
and natural conditions, enabling their application in more challenging scenarios. Guzmán
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et al. [9] used traditional image processing techniques to extract maturity indexes of olive
fruit but were unable to extract high-level features, making it unsuitable for maturity-based
classification tasks. Puerto et al. [23] applied traditional image processing techniques for
classifying different batches of olives entering the milling process but could not identify the
individual olive pieces within the same batch. The most relevant work in this context was
carried out by Khosravi et al. [17] who successfully classified on-branch olives based on
maturity stage (91.91%), although the method’s robustness for post-harvest sorting remains
unclear. Our proposed network, a modified version of Xception, demonstrates promising
performance metrics in recognizing olive fruit ripening stages based on color images. This
indicates its reliability as a tool for post-harvest sorting of olive fruits.

Table 7. Comparative analysis of image-based classification technologies in olives.

Classification Target Classification
Technology

Structured
Condition

Extractable Features
Level

Guzmán et al. [9] Maturity index of olives Traditional image
processing Yes Low

Puerto et al. [23] Olive species Traditional image
processing + ANN Yes Low

Khosravi et al. [17] On-branch olive fruit
maturity stage

Deep learning
(lightweight CNN) No High

Our work Post-harvest olive fruit
maturity stage

Deep learning
(Xception) No High

4. Conclusions

Olives are a vital crop with various post-harvest applications, including pickling, can-
ning, and oil production, each requiring a specific ripening stage. To address this challenge,
a reliable classification system is crucial to sort olives according to their maturity levels.
This study aimed to develop an automated deep learning model utilizing color images
to classify ‘Roghani’, an Iranian olive cultivar, into five ripening stages. We employed a
modified and fine-tuned Xception architecture, harnessing cutting-edge image processing
and deep learning techniques to effectively categorize olives. Four Xception-based models
were shortlisted and evaluated based on their performance, using metrics such as loss, ac-
curacy, classification reports, confusion matrices, and overfitting risk. While all four models
showed comparable performance, Model 1 stood out. However, considering model general-
ity and stability, Model 1 raised concerns due to substantial fluctuations in validation losses
and accuracies during training, indicating a high risk of overfitting. Model 3 boasted a
remarkable accuracy, but its reliability was compromised by its susceptibility to overfitting.
Models 2 and 4 demonstrated stable validation losses and accuracies throughout training,
rendering them superior in terms of generality and stability. Although their accuracies
were not the highest among all models, they were still satisfactory. Of the two, Model 2
is preferred owing to its lower loss value. When selecting a model, a trade-off between
classification performance and model generality must be considered. For the present study,
Model 2 emerges as the optimal choice, striking a balance between respectable classification
results and minimal risk of overfitting, suggesting that it may generalize well to unseen
data. The findings of this research constitute a significant breakthrough in olive sorting and
classification, providing a potent tool for enhancing the efficiency and precision of olive
processing and production.
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