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Abstract: Constant monitoring is necessary for powdery mildew prevention in field crops because, as
a fungal disease, it modifies the green pigments of the leaves and is responsible for production losses.
Therefore, there is a need for solutions that assure early disease detection to realize proactive control
and management of the disease. The methodology currently used for the identification of powdery
mildew disease uses RGB leaf images to detect damage levels. In the early stage of the disease, no
symptoms are visible, but this is a point at which the disease can be controlled before the symptoms
appear. This study proposes the implementation of a support vector machine to identify powdery
mildew on cucurbit plants using RGB images and color transformations. First, we use an image
dataset that provides photos covering five growing seasons in different locations and under natural
light conditions. Twenty-two texture descriptors using the gray-level co-occurrence matrix result
are calculated as the main features. The proposed damage levels are ’healthy leaves’, ’leaves in the
fungal germination phase’, ’leaves with first symptoms’, and ’diseased leaves’. The implementation
reveals that the accuracy in the L * a * b color space is higher than that when using the combined
components, with an accuracy value of 94% and kappa Cohen of 0.7638.

Keywords: statistical tests; feature extraction; feature selection; classification; confusion matrix; accuracy

1. Introduction

Agriculture is one of the primary resources and involves a large community of plants as
various crops with different environmental conditions. A large part of a country’s economy
involves the export of agricultural products that are sold daily for human consumption.
The diagnosis and prevention of pathologies in crops are required tasks in agriculture.
The excessive use of pesticides, inappropriate farming practices, and the abandonment of
plant-disease-infected regions are causing agricultural losses. In addition, farmers confront
several problems every day, such as fungal plant diseases. Different plants are highly
susceptible to damage by fungi. In the case of cucurbits, there are limited studies about
the damage caused by diseases and pests. According to previous studies, fungal infections
such as powdery mildew (PM) begin with spore germination [1–3]. This fungus is the most
common type of disease found in open-field crops.

Various techniques involving mathematical and computational processes using infor-
mation obtained by digital images can be used for disease detection. Currently, some meth-
ods use images for disease and pest classification under conditions of infected plants [4–6].
Plant disease detection using on image-processing technologies generally involves a
methodology that includes plant disease image acquisition, image processing, image
segmentation through the region of interest, feature extraction and selection, and the
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application to disease detection. An image provides sufficient information to identify
characteristics that describe the severity and stage of the disease [7] because the leaves of
the plant are the first organ that shows symptoms of a disease. Methods such as classi-
fication algorithms have been developed over the years for disease identification. These
algorithms consist of feature extraction from images of plants experiencing problems at
different disease stages.

There is a need for early-stage identification in general in diseased plants when the
first symptoms appear in order to take effective control measures against a fungus. This
paper proposes a method for early PM detection in cucurbit leaves based on digital images
according to predefined PM damage levels. Then, the problem becomes training a set of
classifiers. The first stage consists of training the classifier to distinguish between two
PM damage levels. The second stage involves a voting scheme that determiens the PM
damage level.

In the literature, some methodologies for detection applied to fungal diseases have
been proposed. However, there are still open problems and unsolved issues related to the
classification of powdery infection and prevention, such as the early detection of powdery
mildew in cucurbit leaves. This scenario comprises the detection of the first symptoms of
initial powdery mildew germination, which is a crucial phase for implementing manage-
ment strategies to achieve eradication. Some studies only identified the disease when the
plants have symptoms. However, the real problem is cases in which the plants have not yet
shown symptoms. From this perspective, the innovations of the proposed methodology
include (i) early symptom detection in natural conditions of crops with fungal disease;
(ii) a feature extraction process in which the transformed and processed images are feature
descriptors of, for example, the texture in an image; (iii) statistical feature selection is
executed with the feature data to reduce the number of color components and descriptors;
(iv) a nondestructive methodology for crop plants; (v) sample images are in natural light-
ing conditions; and (vi) disease detection and classification of powdery mildew infection
in cucurbit leaves considering three phases of damage: the germination stage, the first
symptoms, and when the leaves have the fungus.

Literature Review

Kumar et al. [8] introduced a novel exponential spider monkey optimization method
to fix the significant features from a set of features generated using a subtractive pixel
adjacency model. Through a support vector machine, plants were classified as diseased or
healthy. The selected features for the spider monkey optimization increased the classifica-
tion reliability to an accuracy of 92.12% with 82 selected features. A hybrid prediction model
was developed by Lamba et al. [9] for predicting various levels of severity of blast disease
using diseased plant images. This work was based on the percentage of leaf area affected by
the disease. The features were extracted from an image dataset with a convolutional neural
network approach. The classification accuracy of the severity level of blast disease was
97%. Kaya et al. [10] proposed a novel approach based on deep learning for plant disease
detection by fusing RGB and segmented images. They considered two images as the input
to a multiheaded dense-net-based architecture. They used the Plant Village database with
38 classes. The accuracy was 98.17%. Xu et al. [11] proposed a vision system with an
integrated reflection–transmission image acquisition module, human–computer interaction
module, and power supply module for rapid Huanglongbing (HLB) detection in the field.
With six classes of identification (healthy; HLB pre-symptomatic; zinc, magnesium, or
boron deficiency; or HLB-positive), a step-by-step classification model with four steps was
used. The results showed that the model had an accuracy of 96.92% for all categories of
samples and 98.08% for multiple types of HLB identification.

Sabat-Tomala et al. [12] used support vector machine and random forest as two
machine learning algorithms to discriminate Solidago spp., Calamagrostis epigejos, and Rubus
spp. using hyperspectral aerial images. Kasinathan et al. [13] proposed a method of insect
detection based on morphological features. The classification used nine to twenty-four
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insect classes using shape features and machine learning techniques. The machine learning
models applied for the comparison were support vector machine, K-nearest neighbors,
artificial neural network, naïve Bayesian model, and convolutional neural network (CNN).
The algorithm consisted of foreground extraction and insect contour detection.

Recently, Yag et al. [14] used a new hybrid plant leaf difference as a classification model,
including a flower pollination algorithm, a support vector machine, and a convolutional
neural classifier. The two-dimensional discrete wavelet transform used image datasets
from apple, grape, and tomato plants for feature extraction. Fernandez et al. [15] conducted
a study to find the spectral changes caused by the downy mildew pathogen Podosphaera
xanthii on cucumber leaves. They adapted principal component analysis to the spectral
characteristics of healthy and diseased leaves. The authors used a linear support vector
machine classifier, achieving an accuracy of 95%.

2. Materials and Methods

The general scheme, which involves a machine learning approach for the early de-
tection of PM damage, is shown in Figure 1. Image acquisition and preprocessing are the
first steps, which are followed by a feature extraction process through texture descriptors.
The application selects the optimal features based on a comparison test. Binary classifiers
achieve multiclassification in combination with a voting scheme and SVM blocks. Finally,
the performance is evaluated with parameters that determine the optimal classification of
PM damage level in cucurbit leaves.

 [T1       T2      T3     T4]

Feature extraction

Feature selection

Images 

collection
Pre-processing

Performance 

evaluation

Confusion 

matrix

Accuracy. 

sensitivity, 

specificity 

Cohen’s kappa

Classification

Identification of 

powdery mildew 

damages

Multiclassification

Figure 1. Proposed methodology for PM damage level detection, where image collection is used for
feature extraction and selection. A multiclassification is operated with the results of the classification
process. In the end, a performance evaluation is conducted to verify the optimal classification.

2.1. Acquisition

We used an image database of cucurbit plants and leaves consisting of six distinct crops
in diverse locations and natural conditions: San Luis Potosí (San Luis Potosí), Jalpa (Zacate-
cas) and Yuriria (Guanajuato) in Mexico. During September–December 2015 (21◦69′42.1′′ N,
102◦97′34.5′′ and 20◦08′08′′ N, 101◦01′52′′), January–April 2016 (21◦65′89.7′′ N, 102◦96′80.6′′

and 21◦69′43′′ N, 102◦97′09.5′′), September—November 2016 (20◦21′92.7′′ N; 101◦10′11.6′′ W),
and March–June 2017 21◦59′75.7′′ N, 103◦01′52.3′′), a sampling process was used to record
the phenological data of the plants.

In open-field crops, irrigation systems were used, and preventive treatments were
applied every three days for leafminers, whiteflies, spider mites, downy mildew, and
powdery mildew. At the same frequency, leaves were imaged during the growing season
in the morning under natural field crop conditions. The database consists of 51,260 images.
Each leaf was sampled from the unfolded stage on the main stem to senescence, from the
1st true leaf to the 21st leaf of each plant. During sampling days, D1–D19 image samples
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were collected. The camera of a mobile device was fixed on a plastic structure with a
distance of 20 cm between the blade and the device, with a resolution of 2448 × 3264 with
a 13 megapixels resolution in Joint Photographic Experts Group (JPEG format) and RGB
color space (red, blue and green).

2.2. Proposed Powdery Mildew Damage Levels

Different plants are susceptible to fungal damage. In the case of cucurbit plants, there
are limited studies on disease and pest damage. According to previous studies, fungal
infections such as PM start with the germination of spores [1–3]. This disease has a spore
germination cycle. The fungus appears on mature leaves when the plant is in the flowering
and fruit development stages. The spore germination stage occurs when the infection
structure is being formed. This process occurs over three to seven days before the first
symptom becomes visible on the leaf surface. Some changes in the spore germination
cycle at phenological stages S1 to S8 on sampling days D1 to D19 are considered as basic
information for detecting different levels of leaf damage.

In Rivera-Romero et al. [16], a statistical analysis was conducted for determining a
timeline (Figure 2) with sampling days and phenological growth stages with the visual
assessment of PM signs and symptoms. At T1, leaf development (S1), lateral bud formation
(S2), and inflorescence emergence (S5) during the first nine sampling days (D1–D9) are
considered. From D10 to D12, between the main stages of flowering and fruit development
(S6 and S7), leaves with damage level T2 are monitored. Leaves with damage level T3 are
found in the main stages of fruit formation (S7) between D13 and D16. The main fruit and
seed growth and ripening stages are shown in S7 and S8 and in leaves at T4 from D17 to
D19 days of sampling. Four levels of PM damage are then defined (Figure 3): T1 for healthy
leaves, T2 for leaves with germinating spores, T3 for leaves with early symptoms, and T4
for diseased leaves.

0

T1 T2 T3 T4

S1 S2 S5 S6 S7 S8

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19

T1-T4: Levels         

S1, S8: Stages 

D1-D19: Sample days          

      

Damage levels
Germination of the 

fungus (3-7 days) 

Figure 2. A timeline of the sampling days and the phenological growth stages to identify PM damage
levels. The phenological stages (S1 to S8) and the sampling days (D1 to D19) are considered as basic
information. Then, four PM damage levels are defined: T1 for healthy leaves, T2 for leaves with spore
in germination, T3 for leaves with the first symptoms, and T4 for diseased leaves.

Because cucurbit leaves have five lobes, a region of interest (ROI) was selected for
analysis. The leaves were divided into six sections (R1–R6) to investigate where the first
symptoms were visible. A total of 465 leaves were then selected, of which 284 had first
symptoms in the same region. Figure 4 shows the leaf division, where regions R3 and R4
have a higher incidence of first symptom appearance. This ROI selection is in agreement
with the knowledge of local farmers, who confirmed that the first symptoms appear in the
central upper lobe (R4) of basal and mature leaves at the flowering stage.
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a)

b)

c)

d)

Figure 3. Visual evaluation of cucurbit leaves where four PM damage levels were defined: (a) T1:
healthy leaves, (b) T2: leaves with spore in germination, (c) T3: leaves with the first symptoms, and
(d) T4: diseased leaves.

R1

R6
R5

R4

R3R2

R4

a) b)

Figure 4. Exploration by parts of the leaf for the selection of the region of interest (ROI): (a) division
of the leaf, central part (R1), lower right lobe (R2), upper right lobe (R3), upper central lobe (R4),
upper left lobe (R5) and lower left lobe (R6), (b) first symptoms at R4.

2.3. Preprocessing

Images were divided into four sets according to the assessed level of damage. Image
samples were defined as I(x, y), where x represents the number of rows, and y is the
number of columns of a matrix, as shown in the ROI. The ROI image was defined as
R(s, t), where s are the rows, and t are the columns of a matrix that comprise the cropped
image. All these images correspond to the R4 region in the red, green, and blue (RGB)
color space with a size of 200 × 200 megapixels. The ROI image dataset consisted of
5906 samples: 3610 samples were used for the damage level in T1, 760 samples were used
for T2, 734 samples were used for T3, and T4 consisted of 802 samples. A contrast setting
C(p, q), where p is the row, and q is the columns, in a matrix in the range of [0.4–0.7]
was employed to enhance the highlighting, followed by a spatial color transformation to
different color spaces T(s, t), where s is the number of rows, and t is the number of columns
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in a matrix. Then, a color transformation was applied to the RGB color space samples
into different color spaces, separating each sample into all color components (CCs): gray
levels (G(i, j)), HSV (hue (H), saturation (S), and value (V)), H(i, j)), L * a * b (luminance
(L), chrominance * a (A), chrominance * b (B), L(i, j)), and YCbCr (luma component (Y),
chroma blue difference (Cb), and chroma red difference (Cr), Y(i, j)), where i is the number
of rows and j represents the number of columns in a matrix. Thirteen processed images
were extracted. Each processed sample of the different spatial colors was separated and
labeled into all og its CCs. With the color space transformation, the total dataset contained
76,778 samples. Figure 5 shows the different color spaces of an ROI image.

CCs images 

database 

76,778 items 
Analisys ROI 

200 x 200 

R(s,t)

5,906 images

Contrast 

C(p,q)
RGB transformation

T(s,t)

Color 

component 

images

(13 CCs)

Pre-processing

Sample image 

I(x,y)

HSV 

H(i,j)

L*a*b

L(i,j)

 YCbCr 

Y(i,j)

Gray 

G(i,j)

Figure 5. Preprocessing of the ROI images starting with the color transformation and separation of
color components (CCs), where the sample image (I(x, y)) is the original image, which is followed
by the analysis of ROI results in a new sample in RGB (R(s, t)), then a contrast adjust (C(p, q)) is
performed to obtain the transformation of the image (T(s, t)) in the different color spaces (G(i, j),
L(i, j), H(i, j), Y(i, j)) and the separation for color components.

2.4. Feature Extraction

In this study, the color components of each space were analyzed to obtain relevant
information. From the gray-level co-occurrence matrix (GLCM), texture features were
extracted. The GLCM is a statistical method that takes into account the spatial relationship
of pixels.

A GLCM matrix corresponds to a CC image considering the 255 gray levels, repre-
sented by the function P(I, i, j, d, θ), where i represents the gray level location (x, y) in
image I(x, y), and j represents the gray level of the pixel at a distance d = 1 from the
location (x, y) with an orientation angle and normalized with Equation (1) [17].

p(i, j) =
P(i, j, 1, 0)

∑i,j P(i, j, 1, 0)
(1)

Figure 6 shows the computation of a GLCM matrix of an image with gray intensity
levels, where the neighboring pixel pairs could be matched with four different reference
angles (0◦, 45◦, 90◦, and 135◦). Figure 7 shows the GLCM matrices generated from the Hi
components in the HSV color space.

The TDs contain some information about shade, texture, shape, and color, describing
the distribution, homogeneity, contrast, constant color, intensity, and gray levels of bright-
ness. The TD equations based on the GLCM are presented in Table 1. An explanation of the
feature extraction process used in our approach is given in Figure 8.
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135°

90°
45°

0°

a) Gray level image.

b) Gray intensity levels I(x,y).

Reference 

pixel

Neighboring 

pixel c) GLCM matrix with pixel values g(i,j)=g(7,8).

Pixel value (j)

P
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el
 v

a
lu

e 
(i

)

Figure 6. Calculation of the GLCM matrix in a gray image. The distance is d = 1, and the angle is
θ = 0: (a) gray image, (b) gray levels I(x, y), and (c) GLCM matrix with the paired pixels g(i, j).

1

H1(s,t) G1(i,j)

G2(i,j)

G3(i,j)

 R(s,t) C(p,q) T(s,t)

H3(s,t)

H2(s,t)

H

S

V

Figure 7. Processed image (I(x, y) and U(s, t)); color transformation (H(s, t)); components H1(s, t),
H2(s, t), and H3(s, t); and their GLCM matrices G1(i, j), G2(i, j), and G3(i, j) with 255 gray levels.
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1'689,116 data

Figure 8. Process of feature extraction through the color component images.
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Table 1. Texture descriptors (DTs) equations [4,17–19].

Equation DTs Texture Descriptors

∑i,j(i, j)p(i, j) auto Autocorrelation
∑i,j ∥i − j∥2 p(i, j) cont Contrast

∑i,j
{i×j}×p(i,j)−{µx×µy}

σx×σy
corr Correlation 1

∑i,j{i + j − µx − µy}4 × p(i, j) cpro Cluster Prominence 1

∑i,j{i + j − µx − µy}3 × p(i, j) csha Cluster Shade 1

∑i,j ∥i − j∥ · p(i, j) diss Dissimilarity
∑i,j p(i, j)2 ener Energy

−∑i,j p(i, j)log2(p(i, j)) entr Entropy
∑i,j

1
1−(i−j)2 p(i, j) homo Homogeneity1

maxi,j p(i, j) maxp Maximum Probability 1

∑i,j(i − µ)2 p(i, j) sosv Sum of Squares
∑i,j ipx+y(i) savg Sum Average

∑i,j(i − j)2p(i, j) svar Sum Variance
−∑i,j px+y(i)log(px+y(i)) sent Sum Entropy
∑i,j(k − µxx − y)2 px−y(k) dvar Difference Variance 1

−∑i,j px+y(i)log2(px+y(i)) dent Difference Entropy

HXY−HXY1
max(HX,HY) inf1

Information Measure of
Correlation1

2 3√
1 − exp[−2(HXY2 − HXY)] inf2

Information Measure of
Correlation2

2 3

∑i,j{i − j}2 × p(i, j) indn Inverse Difference
Normalized

∑i,j
1

1+(i−j)2 p(i, j) idmn Inverse Difference Moment
Normalized

1 µx , µy and σx , and σy are the median and standard deviation of px and py, respectively. 2 HXY = entr, where
HX and HY are the entropies of px and py, respectively. 3 HXY1 = −∑i,j p(i, j)log{px(i)py(j)} and HXY2 =

−∑i,j px(i)py(j)log{px(i)py(j)}.

A total of 260 features (20 TDs × 13 CCs) were extracted from 76,778 GLCM matrices
from the Color Component Image Dataset (CC-ID), which generated a texture dataset of
1,535,560, labeled as abbreviated texture descriptor names followed by the color component:
DTs-CCs. An example is the texture feature dissBB “dissimilarity” and the blue component
(BB) of the RGB color space image. The texture dataset was normalized using the minimum
and maximum values of each row.

2.5. Feature Selection

The feature selection process consists of finding the best set of features that allows
us to differentiate the four levels of damage. Statistical methods are used for the selection
process, the flow diagram of which is shown in detail in Figure 9 [16].

First, a Lilliefors test was performed to assess the normality of the trait data set,
followed by an analysis of variance (ANOVA) to obtain statistical significance values,
which was then followed by Tukey’s test for multiple comparisons. The Lilliefors test
compares the sample scores to a set of normally distributed scores with the same mean and
standard deviation; the null hypothesis is that “the sample distribution is normal” [20–22].
Parameter values are “1” in the Lilliefors test with a determined h value for each feature.
Table 2 presents examples of three texture features (diss, homo, and idmn) in all component
colors, where the calculated h value = 1 means that the data have a normal distribution,
and h-value = 0 means that they do not. As a result, we discarded 64 texture features.
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Figure 9. Feature selection process consists of a Lilliefors test, then an analysis of variance, and
Tukey’s test.

Table 2. An example of the results of two features submitted to the Lilliefors test. For each CC
(G—gray, R—red, GG—green, BB—blue, H—hue, S—saturation, V—value, L—luminance, A—a *
red and green coordinates, B—b * yellow coordinates with blue, Y—luma, CB—Cb chrominance
difference of blue, CR—Cr chrominance difference of red). The features are shown with their four
damage levels. If the h-value in “ 0 ” appears at any level, the feature is discarded for not complying
with the normality condition.

Gray RGB HSV L * a * b YCbCr

TDs G R GG BB H S V L A B Y CB CR

T1 diss 1 1 1 1 1 1 1 1 1 1 1 1 1
T2 1 1 1 1 1 1 1 1 1 1 1 1 0
T3 1 1 1 0 1 1 1 1 1 1 1 1 0
T4 0 1 0 0 1 1 0 1 1 1 0 1 1
T1 homo 1 1 1 1 1 1 1 1 1 1 1 1 1
T2 1 1 1 1 1 1 1 1 1 1 1 1 1
T3 1 1 1 1 1 1 1 1 1 1 1 1 1
T4 1 1 1 1 1 1 1 1 1 1 1 1 1
T1 idmn 1 1 1 1 1 1 1 1 1 1 1 1 1
T2 1 1 1 1 1 1 1 1 1 1 1 1 1
T3 1 1 1 1 1 1 1 1 1 1 1 1 1
T4 1 1 0 1 1 1 1 1 1 1 1 1 1

Analysis of variance (ANOVA) is a statistical method used to test for differences
between two or more mean values. ANOVA is applied to test general rather than specific
differences between mean values; we used ANOVA to test the null hypothesis H0 in
Equation (2) that the average values of the four PM damage levels (T1,T2, T3, and T4) are
equal for each texture characteristic.

H0 : µT1 = µT2 = µT3 = µT4 (2)

The F statistic and p < 0.000001 were calculated for all texture characteristics. Following
this, for each pair of information (T1 versus T2, T1 versus T3, T1 versus T4, T2 versus T3,
T2 versus T4, and T3 versus T4), a multicomparison was performed with Tukey’s test [20],
labeled with different lowercase letters (“a”, “b”, “c” or “d”), and assigned when the
comparison between the mean value of each damage level was different; otherwise, it
was the same lowercase letter. If the same lowercase letter appeared in two, three, or four
levels, there was no significant difference in their respective texture characteristic. Finally,
53 texture features had significantly different mean values among the four damage levels.
Table 3 presents only 17 texture features that were more sensitive to the discrimination of
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the four damage levels. Figure 10 shows the results of ANOVA and Tukey’s test of the
dissBB feature, which presents mean values with significant differences between the four
damage levels, and the autoA feature, which could separate only T1 from T2, T3, and T4.

All the levels have significant differences
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Figure 10. Results of the ANOVA and Tuke’s test: (a) mean values of the damage levels of diss-BB;
(b) Tukey’s test, where the means of the damage levels are significantly different; (c) mean values
of the damage levels of auto-A; (d) Tukey’s test, where the means of T2, T3, and T4 are equal but
significantly different from T1.

Table 3. Examples of results of Tukey’s test by feature listed in order according to the ability to
separate the four damage levels of PM.

Feature F Statistic T1 T2 T3 T4

enerB 184.7 a b c d
corrG 174.7 a b c d

homoV 171.2 a b c d
corrG 158.6 a b c d

enerGG 143.2 a b c d
enerV 142.6 a b c d
dentA 134.5 a b c d
sosvV 71.4 a b c d
dvarA 125.5 a b c d
idmnA 124.4 a b c d
cproGG 122.4 a b c d
homoG 119.4 a b c d
entrS 112.7 a b c d

homoY 111.3 a b c d
contL 109.7 a b c d
dvarL 109.7 a b c d

dvarGG 105.9 a b c d

2.6. Formation of the Feature Vectors

Ten feature vectors were created for the training, validation, and testing processes
from the 53 features (TD) with a significant difference between the four classes (PM damage
levels) considered. The features were listed in ascending order (significance value F) to
form the first group of five vectors (F1, . . . , F5) containing six TDs comprising the different
color space characteristics. The second group of vectors (G1, . . . , G5) contained the same
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number of TDs and components from the same color space (Table 4). The characteristics
matrix was 35,436 × 6 texture features × 4 damage levels.

Table 4. Formation of the features vectors with the combination of six TDs features belonging to
different color spaces (F1, . . . , F5), and the features belonging to components of the same color space
(G1, . . . , G5).

TDs Vector Features

Different F1 autoV , dentS, svarV , svagL, sosvV , savgG
color F2 entrR, homoR, idmnR, idmnCR, dvarR, contR
space F3 dvarCR, contCR, idmnY , idmnG, idmnGG, contY

combinations F4 contL, homoY , entrS, homoG, cproGG, idmnA
F5 contA, dvarA, dentA, enerV , enerGG, corrL

Same G1 sentR, entrR, idmnGG, contGG, dissBB, inf1BB
color G2 dentS, entrS, autoV , svarV , sosvV , enerV
space G3 dissL, savgL, idmnA, contA, dvarA, enerB

combinations G4 dissY , homoY , corrY , idmnCR, dvarCR, contCR
G5 dissG, savgG, idmnG, contG, dvarG, homoG

2.7. Proposed Multiclass Classification Framework

The main objectives of the proposed framework are to implement support vector
machines (SVMs) to classify PM damage levels (T1–T4) and predict the early phase. In
addition, a multiclass problem is found in multiple binary classification cases, called one-
vs.-one, resulting in a class comparison between each class. A block multiclassifier with
k(k − 1)/2 binary classifiers (SVMs) was constructed, where k is the class number. An
SVM is trained with different kernels (polynomial, sigmoidal, and radially-based Gaussian
functions) to find the optimal hyperplane [23]. Hyperplane minimizing and estimating h
are performed using hest = R2||w||2 + 1, where R is the diameter of the smallest sphere
including all training data, and ||w|| is the vector of standard Euclidean weights. Therefore,
an SVM classifies correctly when the parameters Γ (confidence interval) and hest working
with different values are minimied. In this study, 60% of the data were used for the
training and validation, and 40% were used for the test. Six binary SVMs (M1, . . . , M6)
were trained with their corresponding two different classes of input data for all the feature
vectors defined above. Tables 5 and 6 show the results for the SVMs trained with feature
vectors whose components belong to different color spaces F1, . . . , F5, and the same color
space G1, . . . , G5, respectively. In both tables, p is the degree of the polynomial, ω is the
variable parameter for the sigmoidal function, and σ is the parameter for the radial basis
function. The selected SVMs were those with the minimum values. The 2D graphs and 3D
hyperplanes; and training, validation, and error results with different kernels and feature
vectors are described in Figures 11 and 12, respectively.

Table 5. Support vector machines M1, . . . , M6 with different space color components F1, . . . , F5 with
the kernels’ linear, polynomial, sigmoidal, and radial base function for the selection of the SVM.

Kernel SVM p/ω/σ R2 hest Γ ||w||2 % Error

Lineal M1 - 433.36 1.0 × 1015 0.0 + 90.74 2.4 × 1012 17.4
Lineal M3 - 448.28 1.1 × 1015 0.0 + 9.53i 2.6 × 1012 18.6

Polynomial M4 4 3917 1.2 × 1016 0.0 + 3.0i 3105.6 30
Polynomial M6 4 3989 7.1 × 1016 0.0 + 8.7i 1801.79 20.2
Sigmoidal M1 1 2192.8 1096.5 0.0 + 1.67i 500 17.6
Sigmoidal M4 7 1614.5 8072.3 0.0 + 9.1i 500 43.4

RBF M1 0.5 0.9978 460.17 4.1048 461.18 0
RBF M2 0.5 0.9977 464.95 4.1237 465.98 0
RBF M4 0.5 0.9979 493.85 4.2359 494.87 0
RBF M5 0.5 0.9979 487.92 4.2132 488.94 0
RBF M3 1 0.9972 413.45 3.9135 414.60 0
RBF M6 1 0.9974 456.07 4.0885 457.22 0
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Figure 11. Kernel selection in the multiclassification system with the feature vectors in different color
spaces with the optimal hyperplane: (a) linear kernel in 2D with dissBB versus contV , (b) 3D optimal
hyperplane, (c) training and validation data with error in SVM T1 versus T2, (d) polynomial kernel in
2D with autoV versus savgG, (e) 3D optimal hyperplane, (f) training and validation data with error in
SVM T3 versus T4, (g) sigmoidal kernel in 2D with enerGG versus dvarA, (h) 3D optimal hyperplane,
(i) training and validation data with the error in SVM T2 versus T3, (j) radial base function kernel
in 2D with dissY versus inf1BB con kernel RBF, (k) 3D optimal hyperplane, and (l) training and
validation data with the error in SVM T2 versus T4.

Table 6. Support vector machines with components of a space color M1, . . . , M6 with the kernels’
linear, polynomial, sigmoidal and radial base function for the selection of the SVM.

Kernel SVM p/ω/σ R2 hest Γ ||w||2 % Error

Lineal M1 - 478.89 1.1 × 1015 0.0 + 9.74i 2.4 × 1012 16.8
Lineal M3 - 455.57 1.0 × 1015 0.0 + 8.59i 2.2 × 1012 15

Polinomial M1 6 9.95 × 1018 4.97 × 1021 0.0 + 26i 500 16
Polinomial M6 6 9.28 × 1018 1.24 × 1015 0.0 + 98.2i 0.0001 0
Sigmoidal M1 3 2137.45 1065.1 0.0 + 11.8i 500 17.2
Sigmoidal M2 3 2104.09 1052.5 0.0 + 11.1i 500 17.8

RBF M2 1 0.9957 458.48 4.098 460.42 0
RBF M3 0.5 0.9979 469.96 4.1434 470.95 0
RBF M4 0.5 0.9978 491.79 4.2280 492.79 0
RBF M5 0.5 0.9979 488.64 4.2160 489.64 0
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Table 6. Cont.

Kernel SVM p/ω/σ R2 hest Γ ||w||2 %Error

RBF M1 2 0.9799 34,676.99 25.8 35,385.5 0
RBF M6 1 0.9962 764.31 5.1414 767.17 0
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Figure 12. Kernel selection in the multiclassification system with the feature vectors in different
color space with the optimal hyperplane: (a) radial base function kernel in 2D with autoV versus
dentS, (b) 3D optimal hyperplane, (c) training and validating data with the error in the SVM T3

versus T4, (d) linear kernel in 2D with idmnG versus dissG, (e) 3D optimal hyperplane, (f) training
and validate data with the error in the SVM T1 versus T2, (g) polynomial kernel in 2D with dvarCR

versus homoY , (h) 3D optimal hyperplane, (i) training and validate data with the error in the SVM
T2 versus T4, (j) radial base function kernel in 2D with enerV versus entrS con kernel RBF, (k) 3D
optimal hyperplane, and, (l) training and validate data with the error in the SVM T1 versus T2.

The parameters for the best SVMs (different and same color spaces) were established
using the one-versus-one (OVO) method for all class combinations (T1 versus T2, T1 versus
T3, T1 versus T4, T2 versus T3, T2 versus T4, and T3 versus T4). Using a four-block voting
scheme (V1, . . . , V4), the final ranking decision of the assigned classes is made. When
classes have the same number of votes, the one with the lowest index is selected. Figure 13
describes the OVO method and the voting scheme and classes that define each block. The
best results of the testing stage are depicted in Figure 14 and Figure 15 for the features of
different color spaces and the same color space, respectively.
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Figure 13. One-versus-one multiclassification method. The main inputs are the support vectors
s1, . . . , s6), the validation data for each binary classifier M1, . . . , M6, and σ. Each block V1, . . . , V4

contains the different support vector machines for multiple classification.
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Figure 14. SVM binary classifiers: (a) test data F1 and SVM-classified data, (b) test data F2 and
SVM-classified data, (c) test data F3 and SVM-classified data, (d) test data F4 and SVM-classified data,
and (e) test data F5 and SVM-classified data.
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Figure 15. SVM binary classifiers with components of the same color space: (a) test data G1 and
SVM-classified data, (b) test data G2 and SVM-classified data, (c) test data G3 and SVM-classified
data, (d) test data G4 and SVM-classified data, and (e) test data G5 and SVM-classified data.

2.8. Performance Evaluation

Metrics were calculated to evaluate the results. In this study, we used the confusion
matrix, Cohen’s kappa coefficients, accuracy, sensitivity, false positive range, F-statistic
coefficients, and specificity to determine the performance of the proposed system. A
confusion matrix allowed us to obtain the performance of the system in terms of the
proportion of the total number of classified data: true positive (TP), which is the proportion
of positive cases correctly identified; false positive (FP), which is the fraction of negative
cases incorrectly classified as positive; true negative (TN), which is the proportion of
negative samples correctly classified; and false negative (FN), which is the proportion
of positive cases incorrectly distinguished [24–26]. The metrics were accuracy (ACC;
Equation (3)), sensitivity (SN; Equation (4)), specificity (SP; Equation (5)), precision (PRE;
Equation (6), false positive rate (FPR; Equation (7)), and F score (Fβ; Equation (8)) [23,27].

ACC =
TP + TN

TP + TN + FN + FP
(3)

SN =
TP

TP + FN
=

TP
P

(4)

SP =
TN

TN + FP
=

TN
N

(5)
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where P is the positive total, and N is the negative total.

PREC =
TP

TP + FP
(6)

FPR =
FP

TN + FP
= 1 − SP (7)

Fβ =
(1 + β2)(PREC ∗ SN)

β2 ∗ PREC + SN
(8)

where natural values in β are 0.5, 1, and 2, which was settto 1 in this case. Of the total of
all the tests, the obtained metrics for system performance evaluation (percentages of ACC,
SN, SP, PREC, FPR, and Fβ) are shown in Tables 7 and 8. From the classified data from
each test, we defined the confusion matrix (n × m), where the rows (n) indicate the damage
levels, and the columns (m) are the classes provided by the model. From this matrix, we
can see when one class is confused with another. The diagonal components contain the
sum of all the correct predictions, and the other diagonal components reflect the errors
of the misclassified data [24,25]. Cohen’s kappa coefficient (Equation (9)) is a statistical
measurement of the interevaluator agreement for qualitative data or categorical variables.
Its use in feature selection is suitable for testing the performance of models [28,29].

kappa =
(d − q)
(n − q)

(9)

where d is the sum of correctly classified data, and q is the sum of each line and column in
the confusion matrix to be divided by the total number of samples n with kappa in [0–1],
with concordance observed with degrees of agreements (between k ≥ 0 and k ≤ 0.2 is
negligible, k ≥ 0.21 and k ≤ 0.4 is discreet, k ≥ 0.41 and k ≤ 0.6 is moderate, k ≥ 0.61 and
k ≤ 0.8 is substantial, and k ≥ 0.81 and k ≤ 1 is perfect).

Table 7. Computed parameters for the performance evaluation of the classified data F1, F2, F3, F4,
and F5.

Vector ACC(%) SN SP PREC FPR Fβ

F1 93.1 0.832 0.965 0.887 0.035 85.8
F2 88.4 0.700 0.945 0.811 0.055 75.1
F3 88.9 0.682 0.958 0.844 0.042 75.5
F4 90.0 0.728 0.957 0.850 0.043 78.4
F5 91.2 0.754 0.964 0.875 0.036 81.0

Table 8. Computed parameters for the performance evaluation of the classified data G1, G2, G3, G4,
and G5.

Vector ACC SN SP PREC FPR Fβ

G1 87.3 0.625 0.956 0.824 0.044 0.711
G2 90.8 0.776 0.952 0.843 0.048 0.808
G3 94.4 0.877 0.967 0.898 0.033 0.887
G4 91.4 0.752 0.968 0.887 0.032 0.814
G5 87.3 0.678 0.938 0.786 0.062 0.728

3. Results

The extracted ROI images are proposed to obtain texture descriptors in three different
color spaces and gray images. Next, we defined six feature vectors as a set with components
from different color spaces and gray images. In addition, we detailed six feature vectors
with color components from different color spaces and another six feature vectors with
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the same color space. All these vectors contained the resulting 53 selected features. We
used each feature vector into the trained multiclass SVM classifier, which categorized the
input left image into four classes: healthy leaves, leaves with spore germination, leaves
with the first symptoms, and diseased leaves: classesT1, T2, T3, and T4, respectively. A total
of 130 samples of each class were used to test the system.

3.1. Different Color Space Feature Vectors

Table 9 shows the confusion matrices of the proposed early disease detection sys-
tem for the feature vectors containing different color space characteristics. It shows the
overall correctly classified and misclassified results of the defined disease levels for each
feature vector.

Table 9 shows that the best success rate of the multiclass SVM classifiers with different
color space feature vectors was 88.68% (F1). Still, all the feature vectors F1–F5 could
discriminate the four damage levels. For early detection, the optimal feature vector was F1.
Table 7 lists the performance evaluation results (Section 2.8), showing that the best feature
vector was F1 because this vector resulted in the best accuracy value of 93.1% and had a
kappa = 0.7874, verifying the results in Table 10.

Table 9. Confusion matrix of the classified test data F1–F5.

b) SVM-F1 T1 T2 T3 T4 Classified % Correct

T1 71 6 0 2 79 89.87
T2 2 9 0 0 11 81.82
T3 0 0 12 0 12 100.00
T4 2 0 0 2 4 50.00

Test data 75 15 12 4 106
% Correct 94.67 60.00 100.00 50.00 88.68

d) SVM-F2 T1 T2 T3 T4 Classified % Correct

T1 46 5 2 2 55 83.64
T2 4 7 0 0 11 63.64
T3 3 0 7 0 10 70.00
T4 2 0 0 17 19 89.47

Test data 55 12 9 19 95
% Correct 83.64 58.33 77.78 89.47 81.05

f) SVM-F3 T1 T2 T3 T4 Classified % Correct

T1 92 4 1 1 98 93.88
T2 4 5 3 0 12 41.67
T3 2 1 0 0 3 0.00
T4 3 0 0 6 9 66.67

Test data 101 10 4 7 122
% Correct 91.09 50.00 0.00 85.71 84.43

b) SVM-F4 T1 T2 T3 T4 Classified % Correct

T1 74 4 2 1 81 91.36
T2 3 3 1 0 7 42.86
T3 1 1 6 0 8 75.00
T4 1 0 2 8 11 72.73

Test data 79 8 11 9 107
% Correct 93.67 37.50 54.55 88.89 85.05
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Table 9. Cont.

d) SVM-F5 T1 T2 T3 T4 Classified % Correct

T1 86 3 2 0 91 94.51
T2 0 0 0 0 0 0.00
T3 6 0 0 0 6 0.00
T4 3 0 0 12 15 80.00

Test data 95 3 2 12 112
% Correct 90.53 0.00 0.00 100.00 87.50

Time 5–6 ms

Table 10. Final performance evaluation.

Vector Features ACC Kappa % Correct

F1
autoV , dentS, svarV ,

0.931 0.7874 88.68
savgL, sosvV , savgG

F5
contA, dvarA, dentA,

0.912 0.7841 87.50
enerV , enerGG, corrL

G3
dissL, savgL, idmnA 0.944 0.7638 89.76
contA, dvarA, enerB

G4
dissY , homoY , corrY 0.914 0.7835 88.68

idmnCR, dvarCR, contCR

3.2. Same Color Space Feature Vectors

Table 11 contains the confusion matrices of the proposed early-disease detection
system for the feature vectors with the same color space characteristics. The best success
rate achieved with the multiclass SVM classifiers with feature vectors using components of
the same space color was 89.76% (G3).

In feature vectors containing components of the same color space, higher accuracies
were achieved in G3 and G4, with 94.4% and 91.4%, respectively (Table 8, in Section 2.8),
with kappa = 0.7638 and kappa = 0.7835, respectively. These values are confirmed for the
values presented in Table 11.

Table 11. Confusion matrix with the classified test data G1, G2, and G5 in components of the same
color space.

b) SVM-G1 T1 T2 T3 T4 Classified % Correct

T1 56 3 2 1 62 90.32
T2 0 2 0 0 2 100.00
T3 6 0 6 0 12 50.00
T4 1 0 3 11 15 73.33

Test data 63 5 11 12 91
% Correct 88.89 40.00 54.55 91.67 82.42

d) SVM-G2 T1 T2 T3 T4 Classified % Correct

T1 82 5 4 2 93 88.17
T2 2 9 1 0 12 75.00
T3 2 0 1 0 3 33.33
T4 2 0 0 5 7 71.43

Test data 88 14 6 7 115
% Correct 93.18 64.29 16.67 71.43 84.35
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Table 11. Cont.

b) SVM-G3 T1 T2 T3 T4 Classified % Correct

T1 101 0 2 0 103 98.06
T2 4 4 4 0 12 33.33
T3 0 0 0 0 0 0.00
T4 3 0 0 9 12 75.00

Test data 108 4 6 9 127
% Correcs 93.52 100.00 0.00 100.00 89.76

d) SVM-G4 T1 T2 T3 T4 Classified % Correct

T1 90 0 0 0 90 100.00
T2 6 4 0 0 10 40.00
T3 4 0 0 0 4 0.00
T4 2 0 0 0 2 0.00

Prueba 102 4 0 0 106
% Corrects 88.24 100.00 0.00 0.00 88.68

f) SVM-G5 T1 T2 T3 T4 Classified % Corrects

T1 67 3 0 2 72 93.06
T2 9 7 3 0 19 36.84
T3 3 2 5 0 10 50.00
T4 3 2 0 20 25 80.00

Test data 82 14 8 22 126
% Corrects 81.71 50.00 62.50 90.91 78.57

Time 5–6 ms

The final results and the features that are best for this diagnostic system are in Table 10,
where the best feature vector is G3. Deriving from the L * a * b color space produces the
best component colors used for the identification according to the texture descriptors.

The features are combined according to the behavior of the pixels in the images.
Gray-level co-ocurrence matrix textural properties such as contr, energy, corrm, corrp,
dvarh, dissi, and idmnc, combined with color components such as R, GG, V, L, Y, and G,
are accurate descriptors for diseased leaves versus healthy leaves and the intermediate
damage levels, in general, without any specification required of the signs or symptoms. Our
results are a textural analysis, which have the potential of being develoedp into a valuable
evaluation tool that improves the diagnosis assessment of cucurbit plants. The features
formed with contr and dvarh in the RGB, L * a * b, YCbCr, and gray color spaces are texture
descriptors that describe significant differences among the four detected damage levels
of powdery mildew. Contrast (contr) is a good feature for powdery mildew disease. This
feature agrees with the texture characteristic, having high contrast values for large texture
changes. The variance in statistics is a measurement that describes the spread between
gray levels in an image. In our case, the variance difference (dvarh) measures how far the
gray levels in the GLCM were from the mean value. Energy (energ) is a characteristic of
the RGB color space in our GLCM that describes significant differences among the four
damage levels. This measurement represents the local uniformity of the gray levels. It
is an excellent descriptor for differentiating between white spots and infectious disease
without uniformity in the samples regarding the first signs and symptoms. Also, energy
is the angular second moment representing the uniformity in an image. We interpreted it
as powdery mildew disease causing localized heterogeneity in a disease-specified area on
the leaf, while the spores cause heterogeneous disorder throughout the whole leaf image.
Contrast measures the quantity of local changes in an image. It reflects the sensitivity of the
textures to changes in intensity. It returns a measure of the intensity contrast between a pixel
and its neighborhood. Therefore, we considered high contrast as relevant for describing
the signs he fungal disease. Contrast was 0 for a constant image in our samples that had a
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lot of variation in color. C. pepo L. leaves have a local variation with consistently higher
values. If a gray-scale difference occurs continually, the texture becomes coarse, and the
contrast becomes large. Correlation is a descriptor that measures how correlated a pixel
is to its neighborhood. It was used as a measure of the linear dependenciesof gray tone
in our image samples. Feature values range from −1 to 1, defining a perfect negative
and a positive correlation in the gray levels, respectively. The inverse difference moment
normalized (idmnc) presents the difference between the neighboring intensity values that
are normal by the total number of discrete intensity values. This means that in C. pepo L.
leaves, all gray values of each damage level are considered according to 255 gray intensity
values. The dissimilitude (dissi) in our samples showsedthe variability between the gray
levels that describe each damage level. For instance, a leaf with powdery mildew infection
in an advanced state would present white spots with the green color disappearing. In cases
of gray-color space, all the descriptors (corrp, corrm, homom, contr, dvarh, idmnc, and
dissi) have a coincidence with the YCbCr space color in the Y and CR components.

4. Discussion

The present study provides a reference for the detection of PM damage levels in
cucurbits. A feature dataset proved to be the best model for detecting four levels of PM
damage on cucurbit leaves under natural crop conditions. As a result, the number of
variables was reduced to minimize the calculation time. Using the images characterized
with texture descriptors, it was possible to obtain a diagnosis using the leaves. The images
describe the color changes visible on the leaves when symptoms are present. Therefore, the
proposed texture descriptors are the result of calculations that integrate variables derived
from the incidence of gray levels in the images of healthy and diseased leaves. Such is
the case of a fungal disease that modifies pigmentation by affecting the photosynthesis
process. Therefore, an image could describe this condition. Our main idea was to use
a combination of color components and texture descriptors to detect infection through
leaf color and texture. This study identified healthy and diseased leaves, defined as T1
for healthy leaves and T4 for diseased leaves, and two intermediate damage levels, T2 for
leaves with germinating spores and T3 for leaves showing the first symptoms. Currently,
to identify plant disease cases, methodologies are applied when symptoms are visible on
leaves. However, early detection is the main problem and a main focus of studies on crops
under field conditions. Thus, an advantage would be achieved by identifying the early
stage T2 of disease. The germinating spores on leaves are not visible and cannot be detected
using a particular feature in image processing. As such, the implementation of these
proposed features in future applications of sample classification for infected plants could
lead to controlling the disease in time. A texture descriptor is a measurement that shows the
heterogeneity in an image that is difficult to see with the human eye. Haralick textures [19]
have been used for medical and biological research [18,30,31]. Haralick textures reveal
the properties of the spatial distribution in a texture image. Computer diagnosis has been
widely applied to characterize, quantify, and detect numerous plant situations such as
the recognition of different leaves, medicinal plant classification, and detection of plant
diseases and pests, for instance, in winter wheat, maize, citrus, and soybean [4,32]. Texture
descriptors such as energy, entropy, contrast, homogeneity, and correlation have often been
used in the literature [18,30–33]. These descriptors are measures that describe some visible
features of leaves. The combination of these features changed when the leaf was diseased
with PM, which indirectly modified the pixels in an image regarding the changes in the
pigments. an infected leaf, the photosynthesis process slows, resulting in reductions in the
chlorophyll and carotene contents. Then, the image contains different pixels with white or
yellow spots according to the internal leaf conditions. In healthy young leaves, the green is
lighter when they are younger. Mature leaves are darker green and have gray spots.

In some studies, image processing and other metrics have been used to identify
differences in plant diseases. However, agreement on the damage levels of a fungal disease
is still lacking. Researchers have focused on the discrimination of various diseases caused
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by insects, viruses, and other pathologies. For cucurbit plants, some studies involved
monitoring fungal or viral diseases with chemical analysis. Machine learning models
have been used to distinguish plant diseases. According to a literature review, a limited
number of researchers have studied disease damage level detection. To make the best
decision for the control and monitoring of disease to enable protective measures to be
implemented, the damage of plants over time must be measured using an optimal tool. In
general, some methodologies can identify diseases, pests, viruses, and bacteria according
to pathologies in different plants and crops. Image processing, spectroscopy, machine
vision, remote monitoring, and hyperspectral imaging are tools that have been used for
the identification of various visible symptoms and problems [34–36]. The white powdery
mycelium covering the leaf surface affects the pixels in an image. The changes that occur
on the leaf surface modify the pixels. A texture descriptor helps to identify gray levels
based on disease damage. The proposed method calculates texture descriptors from ROI
images of different spatial colors with various scales and crop databases. As shown in
the results, the fungal disease of cucurbit plants affects the spectral signature of leaves in
different ways, depending on the internal structure and disease characteristics.

An image displays these changes through the modification in gray levels. This study
provides evidence that the analysis of textured features in an image simplifies the detec-
tion of a fungus based on the intensity of color feature data. We based the developed
methodology on the most relevant combination of texture descriptors of a plant disease in
combination with the health status, proposed damage levels, and stage classification, to
identify healthy and diseased cucurbit plants.

Pydipati et al. [4] used the color co-occurrence method based on hue, saturation,
and color intensity characteristics with uniformity, mean intensity, variance, correlation,
product moment, inverse difference, entropy, and contrast using stepwise discriminant
analysis to differentiate normal and diseased citrus leaves for diseases such as greasy
spot, melanosis, and scab. They obtained identification accuracies between 100% and 95%.
In this case, the diseases were detected when the symptoms were located on the leaves
and were only compared with the characteristics of each pathogen. The backpropagation
perceptron multilayer neural network performed classifications with descriptor textures
in different medicinal plants, with accuracy values of between 75 and 80%. Ehsanirad
et al. [32] developed a GLCM using texture descriptors such as autocorrelation, contrast,
correlation, dissimilarity, energy, and entropy. In addition, they performed principal
component analysis (PCA) for classification based on the leaf recognition of thirteen types
of plants. The overall accuracy was 78.46%, and for PCA, the accuracy was 98.46%. Similarly,
Malegori et al. [33] focused on the identification of biofilms and layers of microorganisms
coated on a surface for materials such as steel, plastic, and ceramics through image analysis
to define contaminated samples using defined texture and PCA descriptors. Similarly, for
plant identification, Kadir et al. [31] implemented a Bayesian classifier in combination with
shape, color, and texture features. On the flavia and foliage datasets, accuracies of 95% and
97.19% were achieved, respectively. However, in other work, texture descriptors were used
in applications for the medical area to evaluate the sensitivity to Haralick texture features
according to the gray levels used in the texture analysis: for glioma and prostate symptoms
in patients by Brynolfsson et al. [18] and for the diagnosis of skin diseases such as allergic
skin disorders, and viral, bacterial, and fungal skin diseases by Arabi et al. [35].

In our work, the analyses focused on identifying different pathologies when leaves are
diseased and differences between the stage of disease using texture descriptors. Applying
the concepts of texture descriptors, we developed an improved methodology with the
ability to be used with image datasets with a deep approach that could provide the early
detection of a fungal disease. All these methods have in common a classification process
that is applied to different problems with crop plants in different environmental conditions.
Several methodologies present high classification accuracies. Some of the processes are
robust and complex. Nevertheless, they achieve the purpose of differentiating diseases.
The main idea is to find different methods that are adapted to different crops to enable
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prevention. Identifying plan damage in time is a complicated task, but with a discrimination
method that measures damage status, early identification is possible, even if it is not visible.
In our analyses, we tested methods to identify diseased leaves in outdoor crops. Future
applications will explore the utility of these results in outdoor conditions to discriminate
leaves. In this study, one of the limitations is the optical devices and experimental issues
that affect the quality of the sample image. Depending on the environment and real
conditions in an open field, in an image, the hue of objects may change with brightness.
In real conditions, the sun, natural lighting, texture, distance from the camera, time, and
weather can be influential factors that affect the image acquisition of plants. These are all
parameters to consider for a sampling strategy that includes external conditions during
data acquisition and problem identification. Therefore, the planned follow-up control will
help identify leaves undergoing continuous changes during growth stages when a fungal
disease or pathogen is present.

Two computational limits are noted: i) the image preprocessing time required for
feature extraction according to the quality of the images and the proposed feature extraction
method, and ii) the time required for the training and validation process used for future
classification. To select a binary classifier, it is necessary to identify the behavior of the
samples for a cross-validation process. The classification process depends on the number
of samples and the portion of training data used in the implemented machine learning
method. Different studies have worked on diseases with different features and methods.
In our approach, we selected the features of images as the proposed optimal texture
descriptors for cucurbit leaves. As a result, we obtained a high-accuracy performance
with these features. Therefore, we consider our method useful for future studies and
applications in plants with similar characteristics. With these results, some characterized
color components converted into texture descriptors produced sufficient class separability
to classify the proposed four PM damage levels and identify the fungal disease at an early
stage. Finally, 53 extracted features could differentiate damage levels, according to the
results of statistical tests. In this work, we implemented algorithms based on RGB sample
images, a contrast algorithm, color transformation, and GLCM calculation to obtain a series
of texture descriptors as features. We then used statistical analysis to reduce these features
and evaluate the ability of the models to differentiate the damage levels of each feature.
A feature dataset emerged as the best model for detecting four levels of PM damage in
cucurbit leaves. As a result, we reduced the number of variables to reduce computational
time. Nevertheless, we considered images with features under highly variable outdoor
lighting conditions. This study tested a methodology for identifying diseased leaves in
open-field growing conditions. Future applications will explore the utility of these results
in outdoor conditions using the proposed method to analyze similar leaves with different
damage in a data set.

5. Conclusions

The control of fungal disease and its ecological impact is expensive due to the need for
a prevention point to reduce and optimize the applications of chemical treatments. The
visual monitoring of a fungal disease is difficult because a diseased leaf may be mistaken
for a healthy leaf due to the absence of visible symptoms during spore germination. First,
we obtained a collection of images under open-field conditions of cucurbits. Second, we
processed the images via contrast adjustment and color transformation. From the sample
images, we then performed a feature extraction process using the texture descriptors of
the sample images. Next, we employed statistical tools such as the Lilliefors test, one-way
ANOVA, and Tukey’s test to demonstrate the effectiveness of the method in assessing PM
disease severity levels. Fifty-three texture descriptors from color components in the L*a*b,
HSV, and YCbCr color spaces were found to be capable of showing potentially significant
differences among e four PM damage levels. A sample dataset of the four cucurbit classes at
different stages was used. This proposed methodology is suitable for disease detection for
a variety of cucurbitaceous plants given the similarity in their growth stages and planting
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areas. However, it is a subject requiring further deep analysis and study. Technologies such
as machine learning, big data, and the Internet of Things (IoT) could help with the sampling
and data collection phases given the wide range of varieties, environmental conditions, and
number of samples and taking into account all the parameters involved such as climate,
lighting, and optical devices. It could be laborious and limit such investigations. For other
varieties and crops, the proposed method may not contribute to optimal detection, but it
may contribute to a feasible comparison strategy for future implementations under field
conditions to detect different diseases.

Author Contributions: Conceptualization, C.A.R.-R. and E.R.P.-H.; methodology, C.A.R.-R. and
E.R.P.-H.; software, C.A.R.-R. and E.R.P.-H.; formal analysis, C.A.R.-R., E.R.P.-H., O.V.-C. and I.A.R.-
P.; investigation, C.A.R.-R., E.R.P.-H., O.V.-C. and I.A.R.-P.; visualization, O.V.-C. and I.A.R.-P.;
supervision, O.V.-C. and I.A.R.-P.; project administration, C.A.R.-R. and E.R.P.-H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data are unavailable due to privacy and ethical restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PM Powdery mildew
RGB Red, green, and blue
HSV Hue, saturation, and value
L*a*b Luminance, red, and blue crominance
YCbCr Luma component, Cb and Cr chroma components
ANOVA Analysis of variance
ROI Region of interest
GLCM Gray-level co-ocurrence matrix
CC Color component
TD Texture descriptor
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