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Abstract: In a worldwide effort to generate clinically useful therapeutic or preventive interventions,
harnessing biophysical stimuli for directing cell fate is a powerful strategy. With the vision to control
cell function through engineering cell shape, better understanding, measuring, and controlling
cell shape for ultimately utilizing cell shape-instructive materials is an emerging “hot” topic in
regenerative medicine. This review highlights how quantitation of cellular morphology is useful
not only for understanding the effects of different microenvironmental or biophysical stimuli on
cells, but also how it could be used as a predictive marker of biological responses, e.g., by predicting
future mesenchymal stromal cell differentiation. We introduce how high throughput image analysis,
combined with computational tools, are increasingly being used to efficiently and accurately recognize
cells. Moreover, we discuss how a panel of quantitative shape descriptors may be useful for measuring
specific aspects of cellular and nuclear morphology in cell culture and tissues. This review focuses on
the mechano-biological principle(s) through which biophysical cues can affect cellular shape, and
recent insights on how specific cellular “baseline shapes” can intentionally be engineered, using
biophysical cues. Hence, this review hopes to reveal how measuring and controlling cellular shape
may aid in future regenerative medicine applications.

Keywords: cell morphology; cell shape; biophysical cues; tissue engineering; cell imaging;
quantitative analysis; engineering cell morphology; predicting phenotypic outcomes; morphological
signatures; morphological fingerprints; mesenchymal stromal cells

1. Is Shaping the Cell Also Shaping Regenerative Medicine?

Worldwide, regenerative medicine works toward improving practical methods and experimental
strategies to generate clinically useful therapeutic or preventive interventions. In this view,
mesenchymal stromal cells (MSCs) are recognized as adult, self-renewing, and multipotent stem cells
with substantial potential for therapeutic use [1,2] that were forecasted to significantly improve disease
outcomes and patient lives [3]. In this review, we chose the term “mesenchymal stromal cells” over
“mesenchymal stem cells” to describe a heterogeneous population of cells that can be differentiated
in vitro into a range of lineages, and whose self-renewal and subsequent in vivo differentiation
remains to be proven [4]. Publication titles such as the “rise of mechano-transduction” [5],
“mechano-transduction: use the force” [6], and “mechano-transduction: may the force be with you” [7]
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illustrate that besides biochemical and genetic factors, biophysical cues may be equally important in
controlling cell fate [8], and that harnessing biophysical stimuli is a modern, powerful approach to
steering cell function in regenerative medicine. Developmental biology demonstrates that cell shape
follows function. Classic examples are skeletal myogenic cells, which exhibit an elongated cylindrical
morphology. This morphology aligns multi-nucleated myofibers parallel to the direction of muscle
tissue tension and contraction. In the context of biophysically steering cell fate, cellular shape has
only recently emerged as potential determinant, because cellular shape influences tissue structure and
function [9,10] and determines the lineage of differentiation [11]. Additionally, the physical shape of
cells is a fundamental signal for proliferation [12], a potent regulator of cell growth and physiology,
and is adapted for specific functions [13]. Thus, in a way, actively shaping cellular morphology by
biophysical means contributes to shaping the future of regenerative medicine.

As this invited review was given the task to summarize topic-related advancements presented in
the Tissue Engineering and Regenerative Medicine International Society (TERMIS) European Chapter
Meeting 2017, this review focuses on cellular morphology as a novel assessment of biological responses
and discusses broadly how biophysical cues affect cellular shape, how cellular shape can be measured
quantitatively, and introduces the computational tools and approaches necessary for this task. Finally,
this review will discuss means of controlling cellular shape, its effects on functional phenotype, and
impact it will have on regenerative medicine applications.

2. Cell Morphology as a Novel Tool to Assess Biological Responses in Tissue Engineering

As this review is in included in the TERMIS special issue: selected papers from TERMIS European
Chapter Meeting 2017 on “Biomechanics, Morphology and Imaging”, we are highlighting some
selected studies that were presented at this meeting that demonstrated the importance of measuring
cell morphological features and their implications on tissue engineering. Topics ranged from the
effect of exposure to normogravity (or earth gravity force) vs. simulated hypergravity conditions
using the large diameter centrifuge (LDC) from the European Space Research and Technology Centre
(ESTEC, ESA, The Netherlands) [14] to how different degrees of compressive stiffness in 3D-printed
scaffolds containing mesenchymal stromal cells (MSCs) affected cell function and morphology [15].
According to the former group [14], microgravity-induced alterations, found during spaceflight, but
more importantly, during bed rest, were comparable to tissue degeneration caused by disuse and
ageing. In this study, human tendon-derived cells were exposed to normogravity (earth gravity force)
vs. hypergravity. After 16 h, the different g-levels led to cell and cytoskeleton morphology changes
(an increase in cell area, actin stress fiber formation and intracellular anisotropy) that correlated
with tenogenic differentiation markers, highlighting the importance of measuring cell shape and
suggesting that exposure of musculoskeletal tissues to hypergravity may simulate loading and rescue
the phenotype of degenerated tendon cells after exposure to near-weightlessness conditions. The
latter group’s work demonstrated that 3D printed scaffolds with different mechanical properties
(compressive moduli), but with the same 3D microstructure resulted in elongated vs. round and
short cell morphologies [15]. A third study by Rocca et al. [16] used a quantitative approach for
measuring cell shape parameters and assessed how the effect of mechanical forces through hypergravity
stimulation improved differentiation of MSCs into osteoblasts. His group showed that hypergravity
resulted in spreading of the cells (i.e., cells exhibiting a decrease in circularity, roundness and solidity),
and corresponding upregulation of Ras Homolog Family Member A (RHOA), a transcription factor that
regulates the actin cytoskeleton, and increased osteogenesis. A TERMIS 2017 keynote talk highlighted
how spatially restricting macrophage spreading through micro-patterning, can prevent the activation
of M0 macrophages into pro-inflammatory M1 macrophages and suggested that control of cell shape
may be used to regulate the immune response [17]. These recent results demonstrate the importance
of measuring cell morphology in assessment of biological responses and in tissue engineering.

Another highlight at the TERMIS 2017 meeting was use of different methods for measuring cell
morphology parameters. Our group showed how an automated, non-destructive, high-throughput
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quantification method, using images of calcein-stained cells, combined with binary thresholding,
could be used to efficiently and accurately measure a panel of cell morphological parameters on a
large number of cells (e.g., 60,000 cells) within a short time [18,19]. This automated high-throughput
quantification method was significantly more efficient, precise and reproducible than manual methods.
Furthermore, this approach can be applied to other cell types. Another group used a label-free
high throughput approach for measuring morphological descriptors during cell culture, providing a
non-invasive approach that could be used to assess cells during time-course experiments or in stem
cell manufacturing [20]. This group also showed how measuring cell morphological parameters can be
used in combination with experimental data in order to predict stem cell phenotypic outcomes at a later
time point. Here, stem cell shape was used as predictive marker with the intention to replace measuring
later time points [21–23]. Hence, studies have begun to increasingly and successfully use quantitative
approaches to access morphological parameters and to correlate them to biological parameters and
cell fate outcome. For example, our group has used a semi-automated high-throughput method for
calculating a specific panel of shape descriptors [18,19,24], which was used to describe MSC shape
in correlation to biophysical stimuli such as biomaterial type and nanoscale surface stiffness, as well
as in response to externally applied biomechanical forces [19,24] (Figure 1). Therefore, quantitation
of cellular morphology is useful for understanding the effects of different microenvironmental or
biophysical stimuli on cells and for helping to define a morphological fingerprint for cells [20,25].
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Figure 1. Overview of how biophysical stimuli are translated into biological responses and the
central role of cell shape in assessing, predicting, and controlling these processes. Various static
biophysical factors such as biomaterial type, topography, stiffness, roughness, and dynamically
applied biomechanical forces (e.g., cyclic stretch) can be used to modulate the cell’s shape and the
associated mechano-transduction processes. During such processes, external stimuli initiate changes
in cytoskeletal tension, which can modify focal adhesions and cytoskeletal organization and activate
integrin-mediated signal pathways. Additionally, these processes affect–and are affected by-cell shape,
which highlights why shape can be used to assess, predict, and control the downstream biological
responses. Modern computational tools such as automated segmentation and high throughput
calculation of quantitative shape descriptors for a large amount of cells, paired with machine
learning-assisted analyzes and classifications, will help to associate distinct shape profiles with
biological function in order to better understand how these processes are linked and can be controlled.

Given the pertinence of cell shape toward describing a cell’s current phenotype, recent
morphological analysis has also developed as a potent tool to effectively predict how cells will
respond to a particular stimulus or environment, including differentiation potential. As an example,
using high content imaging, Marklein et al. [25] demonstrated that nuclear morphological profiles
of MSCs had distinct morphological features that were highly predictive of MSC mineralization
capabilities, with >90% accuracy. Kato’s group has proposed a similar theory [21–23,26]. Their group
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demonstrated that cell morphological features from the first three days of differentiation can predict
osteogenic differentiation potential (i.e., alkaline phosphatase and calcium deposition). Additionally,
quantification of cell morphology is increasingly being used in time-lapse microscopy, combined with
non-invasive computational tools, to automatically detect, segment, and analyze unlabeled live cells
to assess, track and even predict MSC differentiation phenotypic outcomes [20,26,27]. For example,
eccentricity and filopodia were shown to robust classifiers of myogenic differentiation [27]. Pearson
et al. combined a unique approach which simultaneously measured cell morphology parameters,
migration trajectories, as well as viscoelasticity parameters and cell stiffness for characterizing MSC
differentiated phenotypes and naïve vs. stimulated T cells [28].

Quantitative morphological assessment of cell shape is not limited to cells in culture; it has also
been used for analyses in tissues. Zanier et al. showed how quantification of cell morphology can
be used to define specific population subsets in injured brain tissue following different injurious
stimuli [29]. Moreover, they used this technique to demonstrate how different populations of
inflammatory cells correlated with different aspects of injury. An image processing approach has also
been used to quantify morphology of muscle fibers in tissue by measuring the number of nuclei per
cytoplasm to track multinucleated myofiber formation, fiber length and width, and fiber density [30].
This approach could be used to classify abnormalities in muscular diseases or easily applied to track
myogenic differentiation of MSCs, satellite cells, or myocytes into myotubes.

Nuclear morphological studies have also showed strong correlations between nuclear shape
and changes in cell phenotype in many physiological, as well as pathological conditions [31–35].
Interestingly, even the perinuclear cytoplasmic mechanical properties have been associated with the
geometry of the stem cell nucleus; stem cell types can even be discriminated from each other through
coupling perinuclear mechanical properties to nuclear shape [32]. Collectively, these findings illustrate
that cellular shape is a fundamental element within the multiple complex processes of biophysically
modulated cellular function.

Hence, by converting the statistics of quantitative cell morphology into a data-rich morphological
fingerprint, computer analysis of high-resolution digitized images of cells and tissues may be used to
improve cell culture, tissue engineering techniques, and perhaps even serve as a prognostic marker in
which today’s cell shape can be analyzed to deduce a cell cultures state of function prior to implantation.

3. The Cellular Components that Sense and Respond to Biophysical Stimuli and Affect
Cell Shape

As we have illustrated above that cellular shape is a powerful, emerging parameter for assessing
the state of a cell, it is helpful to discuss how biophysical cues can sense the stimuli, transduce
the signals, and react to the environment (including but certainly not limited to changes in cell
shape), (Figure 1). Cell behavior can be dictated by microenvironmental biophysical cues including
(1) mechanical forces such as compression, tension, and shear forces, (2) substrate properties such
as biomaterial type, ligand presentation, surface topography, viscoelasticity, and stiffness, or (3)
biochemical cues such as autocrine and paracrine signals [19,24,31,36–39]. Collectively, such cues can
ultimately lead to a specific differentiation behavior of cells such as MSCs [38].

One of the most significant aspects of this biomechanical response to external cues is the
cytoskeleton. It is a highly dynamic network of interlinked proteins that form the cells’ shape and plays
an integral role in utilizing biophysical signals to modulate cell function. Such extracellular biophysical
signals exerted on the cell membrane and cytoskeleton change the balance between extracellular
and intracellular forces, which, in turn, affects the shape and also the function of a given cell by
activating various signaling pathways [31] (Figure 1). Cells transmit extracellular forces by adhering
to extracellular matrix proteins or to other cells. The main component of these adhesions are integrins,
which sense physical cues in micro- and nanometer ranges through the attachment to specific ECM
proteins. By binding to the ECM, integrins build highly dynamic adhesion complexes referred to
as focal adhesions (FAs), whose mechanical modulation induces integrin-mediated signal pathway
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activation. Such activation can lead to the spatio-temporal coordination of multiple downstream
events [40] and cause diverse biophysical cues such as mechanical forces or surface-associated
properties, such as roughness or elasticity, to affect the cytoskeleton, cell shape and FA assembly
and modification [40–42]. Integrins can also interact via their cytoplasmic tails via various adaptor
and signalling molecules to activate downstream signalling pathways such as tyrosine kinases
and phosphatases and regulate gene expression by responding to external biophysical stimuli.
Such so-called mechanotransduction pathways establish positive-feedback loops that cause integrin
engagement to activate processes such as actin-myosin cytoskeleton contractility, through which FAs
are reinforced [40–42]. For this reason, the cytoskeleton contractility propagated inside the cell becomes
directly proportional to the cells’ adhesion strength and the ECM elastic modulus. In many cases,
force-responses are acute and only transiently affect the local FAs, the cytoskeleton, and intracellular
signaling messengers. However, long-term phenotypic changes can also transpire in the cell through
comparable mechanisms.

4. Computational Tools to Segment Images for Recognizing Cells

Phase contrast microscopy has allowed the visualization of cells for nearly a century, and
qualitative assessment of histology has provided valuable insight into effects of culturing conditions of
cell morphology. Objective identification and quantification of these changes is the next natural step
in the progression of using shape to assess and modulate phenotype. Hence, computational tools for
analysis of cell morphology are increasingly becoming necessary to extract and analyze the enormous
amount of data from entire cell populations. This technology is continuously being improved to
promote a better quantitative and statistical approach for defining specific geometric aspects of cell
shape and relationships between cell shape and experimental stimuli or microenvironmental effects.
Generally, the process of measuring dimensions and shapes is termed quantitative mathematical
morphometry. As a first step, before any morphological parameters can be analyzed from a given
cell, an appropriate numerical mathematical representation of a cell’s shape must be generated, which
can then be used for more complex calculations of specific shape descriptors mentioned later [43].
In other words, one must first identify and select the cell(s) within a given image in order to calculate
specific shape features. In recent years, automated cell segmentation has evolved, which led to the
development of diverse approaches for identifying and distinguishing cells from the background
of an image [44]. Many different segmentation methods or other approaches for detecting objects
and boundaries exist and only a selection can be discussed here. The intensity threshold is the
oldest method that is based on measuring the absolute intensity difference between cells and black
background, either by global or local adaptive thresholding. Another approach is feature detection,
which uses image intensity-derived features that are found using linear image filtering or others such
as Gaussian or Laplacian-of-Gaussian filters [45–47]. In contrast, the morphological filtering method
uses e.g., nonlinear filters to examine geometrical and topological properties of objects within images.
Here, combining multiple approaches promises the construction of complicated, but effective, filters
possible. In an interactive approach, region accumulation lets the user set selected, labeled areas within
the image by connecting points [44]. This model can be implemented in watershed transform, one of
the main mathematical segmentation methods [48], in which a given image is seen as a topographic
surface, in which so-called watershed lines represent region boundaries. Another approach fits a
deformable model to the image data and this particular methodology allows the ability to adapt to
topological features and hence could be useful for complex situations such as seen in e.g., cell tracking.
Based on these segmentation approaches, one can determine the outline of features such as cells or
other objects of interest against a given background. This step is necessary prior to using the outlines
for calculating specific shape descriptors. Thus, biologically useful information needs to be extracted
from sample images after segmentation. The future of this technology will involve better algorithms
for distinguishing cell bodies but also demand modification to account for three-dimensional shape.
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This will become increasingly important as the field of tissue engineering develops and requires
manipulations of cells in complex environments.

5. Measuring Cellular Morphology with a Panel of Cell Shape Descriptors

Analysis of cell morphology is increasingly being measured via a more quantitative and
high-throughput approach. Although identification of cell morphological features has been used
to describe cells for centuries, in pre-digital times, cell shape was assessed qualitatively with the
microscope, which of course may have led to imprecise and biased results. Recent developments in
image processing technology and computer-aided analyses now allow for high-throughput calculation
of quantitative shape descriptors for mathematically describing cellular morphology. Our lab has
actively used algorithms in ImageJ, an open-source program for analyzing images [18,19]. In this
software, shape descriptors can be calculated based on objective mathematical functions and produce
numerical values. Based on the shape descriptor’s respective underlying formula, these numerical
values are representative of a specific characteristic of a given cellular shape. Shape descriptors can
measure the perimeter, area, length, and roundness of individual cells, or, once an ellipse is fitted
over a given cell, they may determine the length of the cell’s (ellipse’s) major and minor axes and,
thus, a cell’s length and width. Using major and minor axes, one can determine the cell’s aspect
ratio. Whereas length, roundness, and aspect ratio focus on more general shape aspects of the cell,
descriptors such as circularity and solidity emphasize the presence of membrane protrusions such as
lamellipodia, filopodia, and blebs that are relevant for adhesion, migration, and rigidity sensing [49].
While these shape factors are conceptually less intuitive, they have obvious implications of changes
to cell morphology and function. Circularity is a normalized ratio of area to perimeter (with a circle
having a circularity of 1 and lines having a circularity of 0) and solidity contrasts convex cell area and
concave cell area (an example is the negative area of a crescent moon). Biologically high circularity
and solidity values describe fewer of such protrusions. Sickle cells would have low solidity. We refer
the biologically interested reader to [19] and the mathematically interested reader to the ImageJ
homepage [50,51] and specifically to the “Analyze” menu section “set measurements”, which details
the mathematical calculations. In the context of quantifying MSC shape, we advocate using a defined
panel of shape descriptors such as those introduced in our previous studies [18,19,24]. Other programs
like MetaMorph [52] provide additional, albeit proprietary means for quantifying cell morphology and
cell networks. Of course, the choice, mathematical nature and biological meaning of these descriptor
values depends on the definition of the shape descriptors but, as specific aspects of morphology
can now be quantitatively calculated with high precision and reproducibility [18,21], using different
methods discussed below, they are becoming fundamental in quantitative cytology.

6. Computational Approaches to Classify Shape Profiles into Biologically Interpretable Groups

A modern approach for quantifying cellular morphology is to use computer algorithms for the
mathematical quantification of shape descriptors that represent specific features of cellular morphology.
Scion Image (property of Scion Corporation), ImageJ [50,51] or Fiji [53], an ImageJ-based package
with a rich set of tools and plugin focused on scientific image analysis, can potentially be used for
such analyses [18,19,24]. Another option is CellProfiler, a Python based system [54]. ImageJ, Fiji,
and CellProfiler are open-source software. Hence, the biggest advantage these systems have over
commercial systems is that the code can be altered by any individual to fit the personal needs of the
user. However, ImageJ and Fiji are not the only software systems for cell morphometry, as MATLAB,
Metamoporph [52] and IMARIS are two additional commercial software programs with features for
cell analyses. However, commercial systems that have their own codes for image analyses may give
the user limited input on how images are segmented prior to calculating shape descriptors.

After selecting cellular shape descriptors that may best represent the phenotypic information in
a dataset, a variety of computational strategies can be used to cluster or classify the resultant shape
profiles into biologically interpretable groups. Machine learning with novel algorithms are gradually
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increasing and being used to link cellular morphological features to biomarker measurements and to
recognize cell phenotypes [22,26,55,56]. Machine learning uses pattern recognition and computational
tools to find functional relationships from the training data with minimal intervention or bias [55].
For example, Logan et al. used cell segmentation combined with pixel-based machine learning to
identify hepatocytes vs. fibroblasts in co-culture conditions [57]. While use of cell segmentation
accurately identified hepatocytes, use of cell segmentation for identification of fibroblasts was not
as accurate [58]. Tuning the software to both cell types using defined regions of interest (ROIs) and
pixel-based machine learning enhanced the system and resulted in higher accuracy in identification
of both tested cell types [57]. Pixel-based machine learning using was accomplished with the
usage of ilastik software [55] succeeded by model-based segmentation of the predefined ROIs using
the software CellProfiler [57]. Whereas machine learning or other computational strategies are
highly promising approaches, it is not within the scope nor the aim of this review to recommend
a particular strategy/system, as almost no comparative data is available. These newly developed
systems include fastER, an advanced trainable state-of the art cell segmentation tool for large-scale
microscopy-images. This program addresses many of the problems with high through-put microscopy
imaging (e.g., high cell density, cell-to-cell heterogeneity, low and variable signal-to-noise ratios,
illumination gradients, and changing imaging modalities). Aside from training, the process does
not require any further specifications or interventions and is applicable to any given dataset [59].
Another example is the Undecimated Wavelet Transform Multivariate Image Analysis (UWT-MIA) [60],
a pattern recognition tool, which can extract textual features from phase contrast images and also
extracts shape descriptors such as major and minor axes length, orientation, and roundness. UWT-MIA
is an analysis tool, which can simultaneously analyze data relevant for scale and orientation of the
cells, which proves to be advantageous at high cell densities [60]. Another approach for addressing
the problem of recognizing cells within densely packed groups is the multi-resolution analysis and
maximum-likelihood (MAMLE) [61]. The automated image processing toolbox PHANTAST was
developed with open-source code for MATLAB and ImageJ and as such may enable a wide range of
utilizations for image processing pipelines [62]. PHANTAST was tested on chinese hamster ovary
(CHO) cells, human neuroblastoma, and embryonic mouse stem cells and obtains accurate information
on culture confluency, cell density, and the morphology of cellular objects. With this impressive list in
mind, it is clear that computational systems, including machine learning approaches, are increasingly
being used to establish relationships between functional and morphological properties of differing
populations of cells. This has allowed to more precisely define relationships and allow predictions
between form, such as dynamic cell shape, and function, such as cell phenotype (Figure 1).

7. A View into the Future: Controlling Shape for Regenerative Medicine Applications

In the previous sections of this review, we have discussed how morphology can be used
quantitatively and computationally as a functional or even predictive marker for assessing the
biological response(s) of a given cell type. It is important to stress that this approach has been
established on selected cell types, mainly MSCs, but that this approach is not limited to MSCs.
In contrast, one would hope that this approach will be extended to a multitude of cell types that are
relevant to the various anatomical and functional regions that are of interest in tissue engineering and
regenerative medicine. We are shaping the desired cell type’s shape and function and, of course, it is
difficult to predict how this shapes the future. However, some studies that have investigated mainly
MSCs, but whose punchline should not be limited to MSCs, may help envision future applications.
In a classical, well-known study, MSCs plated on polyacrylamide gels, across a wide range elasticities,
differentiated into different lineage directions in the absence of exogenous soluble factors. The type of
lineage was shown to correspond to specific ranges of the elastic properties of the material. Moreover,
through the addition of blebbistatin, which prevents the cell from building intracellular cytoskeleton
tension, differentiation by matrix-mechanics was abolished [41]. This study highlighted that matrix
elasticity is a crucial factor in determining differentiation lineage and concurrent cell shape. Another
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study investigated the effect of limiting the adhesion site area for cell growth. Specific growth areas of
low and high compactness had considerable effects on cell shape and MSC differentiation behavior [63].
On areas of low compactness, the cells were exposed to less intracellular forces than on areas of high
compactness, which directed differentiation into specific phenotypes. Hence, cells restricted to growing
on areas of low compactness–reflecting relatively lower intracellular forces-developed into adipose
tissue, whereas cells restricted to areas of high compactness–reflecting relatively higher intracellular
forces-developed towards cartilage and bone. Another group demonstrated that cells growing on
aligned topographical surfaces also influenced cell shape and differentiation [64]. This group used
adipose-derived stem cells and cultured them on so-called “random” and “aligned” topographies.
They achieved cell differentiation towards a progenitor muscle state on aligned topographies and
suggested that an elongated cell shape was due to the confinement of the growth area. Collectively,
these studies offer valuable insights into how architectural environments can help steering cell fate.

The well-accepted concept that changes in extracellular forces would prompt a subsequent change
in the intracellular forces also suggests that extracellular forces can be harnessed to engineer specific
cellular shapes. Indeed, our group showed in a recent study that MSCs exhibit a specific baseline
morphology that is associated with the biomaterial type and nanoscale stiffness of a given biomaterial
surface [19] and one can intentionally generate a desired baseline shape using this concept. Moreover,
our group demonstrated in Walters et al. [24] that defined changes in externally applied biomechanical
forces also prompt a subsequent, defined change in MSC shape. By applying various regimens of cyclic
tensional forces we were able to engineer distinctly different MSC shapes. Interestingly, cyclic tension
not only had time- and amplitude-dependent effects on cell shape, but the key to biomechanically
engineering cellular shape was the repetition of a chosen stretch regimen. This demonstrated that the
engineered shape and the associated MSC differentiation were complex non-linear processes that is
dependent on both active stress input and inactive response time. Indeed, it was shown in [19] that
MSCs can be elongated and spreading changes during cyclic stretch, but, after cessation of stretch, the
shape reverts back toward the initial baseline shape determined by the biomaterial type and stiffness.
It is important to the field that, in the chosen experimental system, dynamic tensile forces were shown
to be more significant in defining MSC shape than biomaterial stiffness-related cues [19]. It remains
to be seen whether this is a general principle highlighting the potential of harnessing biomechanical
forces for controlling cell shape, or whether this result represents a study-specific observation. From
these studies, it has become clear that MSC shape can be statically engineered through using e.g.,
micro-engineered adhesion sites, but MSC shape can also be highly dynamic. Under biomechanically
dynamic conditions, such as in a patient’s body, MSC shape can be intentionally designed through
biomaterial type and nanoscale stiffness and while also accounting for dynamic forces experienced
in vivo.

Overall, insight on how one can manipulate cell shape and cell function is crucial for designing
better cell-instructive scaffolds for in situ applications. Using biomaterials with lineage-specific
biophysical cues could serve as a starting-point to develop cell-based regenerative therapies [65],
which would determine the lineage of differentiation locally through the implant properties. Perhaps,
one could reach this goal by integrating the here discussed various shape-controlling biophysical
cues into a single biomaterial, e.g., a biomaterial with defined adhesion sites, nano-topography,
biomaterial stiffness and viscoelasticity, and specific force-transducing properties that harness the
effects of biomechanical forces abundant in our body. Naturally, it would be necessary to extend
the here discussed biological and computational concepts to the multitude of cell types and tissues
that are the target of worldwide regenerative medicine efforts to generate better and clinically useful
therapeutic or preventive interventions. For this task, an impressive range of methods is at our disposal,
and it will be interesting to see how these will shape our future. Hence, using advanced segmentation
methods and computational approaches to measure cell morphology for classifying shape profiles
that correspond to specific biological responses (Table 1) will become ever more important tools for,
ultimately, controlling cell shape and fate for regenerative medicine applications.
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Table 1. Overview of quantitatively measured shape descriptors for assessing cell morphology, the stimuli used for controlling shape, and the correlated biological
functions. Various cell types such as mesenchymal stromal cells (MSCs) or primary myoblasts can be actively shaped by biophysical and biomechanical forces. The
morphological phenotype can be visualized by either staining the cells and subsequently taking fluorescence images or using phase-contrast images for non-labeled
cells. Image processing can then be performed using computational tools, e.g., ImageJ, MATLAB, or CellProfiler, calculating shape descriptors. The measured shape
descriptors are listed in alphabetical order. For detailed definitions of listed shape descriptors, refer to each reference. Quantitatively obtained cell and nuclear shape
features can be used to predict biological responses such as MSC differentiation into specific lineages, physiology and health of primary cells, and even tissue injury.
Due to the broad application range and their correlation to biological functions, quantitative shape descriptors contribute vastly to progress in regenerative medicine.
Species (Sp.) abbreviations: Human (hu), mouse/murine (mu). Cell type abbreviations: Adipose-derived stem cells (APCs), embryonic stem cells (ESCs), human
umbilical vein endothelial cells (HUVECs), induced pluripotent stem cells (iPSCs), oligodendrocyte precursor cells (OPCs), smooth muscle cell (SMC).

Cell Type/Tissue Sp. Shape Inducer
Correlation to

Biological
Function

Shape Visualization Tool Shape Descriptors Ref

MSCs Hu

Biomaterial
stiffness and type,
sinusoidal cyclic

stretch

SMC
differentiation Calcein staining ImageJ Aspect ratio, circularity,

roundness, solidity [19]

MSCs Hu Biomaterial
stiffness and type

SMC
differentiation Calcein staining ImageJ

Aspect ratio, circularity,
major axis, roundness,

solidity
[18]

MSCs Hu Contraction
stimulant SMC contraction Calcein staining ImageJ Length [38]

MSCs Rat Hyper-gravity,
nanoparticles

Osteogenic
differentiation

Coomassie brilliant
blue staining ImageJ Area, circularity, convex

area, roundness, solidity [16]

MSCs Hu Differentiation
media

Osteogenic
differentiation

Phase-contrast
microscopy using

BioStation CT
MetaMorph

Breadth, elliptical form
factor, fiber breadth, fiber

length, hole area, inner
radius, relative hole area,

shape factor, total area

[26]

MSCs Hu
Expansion and
Differentiation

media

Osteogenic
differentiation and

mineralization

FITC maleimide for
cell shape

visualization and
Hoechst staining for
nuclear morphology

CellProfiler

Area, compactness,
eccentricity, Euler number,
extent, form factor, major

axis, minor axis,
orientation, perimeter,

solidity, 30 Zernike shape
features from orders 0 to 9

[25]
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Table 1. Cont.

Cell Type/Tissue Sp. Shape Inducer
Correlation to

Biological
Function

Shape Visualization Tool Shape Descriptors Ref

MSCs Hu
Differentiation

media, biomaterial
type, beads

Osteo-, adipo-,
chondro- and

myogenic
differentiation

Phase-contrast
microscopy using

time-lapse
Not given

Area, eccentricity, extent,
finger (filopodia), major

axis, minor axis
[27]

MSCs Hu
Expansion and
differentiation

media

Osteo-, adipo- and
chondrogenic
differentiation,

population
doubling time

Phase-contrast
microscopy Meta-Morph

Area without holes,
breadth, elliptical form

factor, fiber breadth, fiber
length, hole area, inner

radius, length, perimeter,
relative hole area, shape

factor, total area

[23]

MSCs Hu
Expansion and
differentiation

media

Osteo- and
adipogenic

differentiation
(classification of

stem cell
subpopulations)

IF staining of NuMA
protein and phalloidin

staining of F-actin
Image Pro Plus

Angle, area, area/box,
aspect, box height, box
ratio, box width, cell

area/total area, convex
perimeter, dendrites,

dendritic length, elliptical
perimeter, end points,

fractal dimension, length,
major axis, maximum

diameter, maximum Feret
length, maximum radius,

mean diameter, mean
Feret length, minimum

diameter, minimum Feret
length, minimum radius,

minor axis, perimeter
ratio, perimeter,

polygonal area, radius
ratio, roundness, width.

[33]

MSCs, Mu CD8+

T-cells Hu/Mu

Biomaterial type,
beads, expansion

and differentiation
media

Osteogenic
differentiation of
hMSCs, naive vs.

stimulated
phenotype of
murine T-cells

Phase-contrast
microscopy using
live-cell imaging

system

MAT-LAB

Area, aspect ratio, cell
centroid, ∆cell aspect
ratio, ∆cellular area,

migration speed,
perimeter

[28]
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Table 1. Cont.

Cell Type/Tissue Sp. Shape Inducer
Correlation to

Biological
Function

Shape Visualization Tool Shape Descriptors Ref

MSCs, immort.
MSCs, Rat OPCs Hu/Rat

Biomaterial type,
treatment with

nickel(II) sulfate,
differen-tiation

media

Osteo- and
adipogenic

differentiation of
MSCs, OPC

differentiation to
astrocytes,

cancer-mitigation
of biomaterials

CellLight
Nucleus-GFP, DAPI

staining and IF
staining of NuMA for
nuclear morphology

Image Pro Plus Same as in ref. [33] [34]

MSCs, ESCs, iPSCs Hu

Biomaterial type,
self-assembled

monolayers
(SAM),

differentiation
media

Osteo-, adipogenic
and neural

differentiation

DAPI staining and IF
staining of NuMA for
nuclear morphology

MAT-LAB Same as in ref. [33] [35]

MSCs, iPSCs Hu

Biomaterial type,
biomaterial

stiffness,
micropatterning,

intracellular
magnetic beads

Homeostatic
mechanical

counterbalance
between nuclear

shape and
perinuclear
cytoskeleton
architecture

eGFP-actin fusion
protein for cell
morphology,

AlexaFluor 568-tagged
beads, Hoechst

staining for nuclear
morphology and

phalloidin staining of
F-actin for stress fiber

localization

Not given

Angle to bead from the
major axis, distance to
bead from the nuclear

centroid, nuclear elliptical
shape (nuclear major axis,

nuclear minor axis)

[32]

APCs Hu Biomaterial
topography

Adipo- and
osteogenic

differentiation

APCs stably express
LifeAct-GFP and
CAAX-mCherry

Cell-Profiler Area, circularity, major
axis, minor axis [64]

PSC lines,
ESC line Hu Cultivation/

expansion

Colony
morphology for

single-colony
selection

Phase-contrast
microscopy using
live-cell imaging

system

CL-Quant

Area, compactness,
equivalent radius, Fourier

descriptors 0–19, inner
radius, perimeter, rod-like

width, shape factor

[22]
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Table 1. Cont.

Cell Type/Tissue Sp. Shape Inducer
Correlation to

Biological
Function

Shape Visualization Tool Shape Descriptors Ref

Brain: microglia,
macro-phages Mu

Transient and
permanent
occlusion of

middle cerebral
artery, traumatic

brain injury

Acute brain injury IF staining of CD11b
and CD45 Fiji

Area, aspect ratio,
circularity, Feret’s
diameter (caliper),
perimeter, solidity

[29]

Primary myoblasts Mu Differentiation
medium

Muscular fiber
health

DAPI staining for
nuclear morphology

and IF staining of
myosin heavy chain

Not given

Fiber density, fraction of
fiber area, nuclei density,
nuclei per fiber area, total

fiber length

[30]

Primary myoblasts Hu Cultivation/expansion Cellular
physiology

Phase-contrast
microscopy using
live-cell imaging

system/
MetaMorph

MAT-LAB
(UWT-MIA)

Major axis, minor axis,
orientation, roundness [60]

J2-3T3 fibroblasts,
primary

hepato-cytes

Hu/Mu Co-culturing of
fibroblasts and

hepatocytes

Simulation of
native

microenviron-ment

Hoechst staining for
nuclear morphology

Cell-Profiler
(Analyst) ilastik

Eccentricity, major axis,
perimeter [57]

Hu/Mu Functional
proliferation

Hoechst staining for
nuclear morphology

Cell-Profiler
(Analyst)

Eccentricity, major axis,
perimeter [58]

HUVECs Hu Hypergravity Cytoskeleton
organization

IF staining of
β-tubulin, Phalloidin

staining of F-actin
ImageJ Area, circularity,

roundness, solidity [66]
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