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Abstract: An observer design for a class of nonlinear systems with unknown inputs is considered.
Takagi–Sugeno fuzzy bilinear systems represent a wide class of nonlinear systems, and these systems
with unknown inputs are an ideal model for many physical systems. For such systems, a design
method for obtaining an observer that estimates the state of the system is proposed. A parallel
distributed observer (PDO), which is constructed with local linear observers and the appropriate grade
of the membership functions, is a conventional observer for Takagi–Sugeno fuzzy bilinear systems.
However, it is known that its design conditions have conservativeness. In this paper, to reduce the
conservatism in the design conditions, non-PDO with new design conditions is proposed. Our design
conditions are derived from a multiple Lyapunov function, which depends on the membership
function with time-delay in the premise variables. This method eventually reduces the conservatism
and enables us to construct an observer for a wide class of nonlinear systems. When the premise
variables are the state variables that are not measurable, Takagi–Sugeno fuzzy bilinear systems can
represent a wider class of nonlinear systems. Hence, an observer design for fuzzy bilinear systems
with unmeasurable premise variables is also proposed. Finally, numerical examples are given to
illustrate our design methods.

Keywords: Takagi–Sugeno fuzzy model; nonlinear system; bilinear system; observer design;
unmeasurable premise variable

1. Introduction

It is well known that the Takagi–Sugeno fuzzy system has a great potential to describe a wide
class of nonlinear systems [1]. It is a nonlinear system described by a set of fuzzy if-then rules that
gives a local representation of an underlying system. Due to its importance, system analysis and
control design based on Takagi–Sugeno fuzzy systems have been active (see [2–6] for example). As an
extension of system representation, much attention has recently been paid to fuzzy bilinear systems.
A bilinear system is a class of nonlinear systems, and its analysis and synthesis are of importance.
Although both the fuzzy bilinear system and standard fuzzy system can describe nonlinear systems,
a fuzzy bilinear system has the advantage of its representation with a lesser number of subsystems,
which significantly reduces the conservatism in analysis and synthesis [7]. Due to its significant
advantage, control problems for fuzzy bilinear systems have been considered, and many results have
been given in [8–16]. For a controller design of fuzzy systems, a parallel distributed compensator
(PDC) with a common Lyapunov function approach is conventionally employed. A PDC uses linear
controllers corresponding to local linear systems, and a common Lyapunov function guarantees
the stabilization. This method eventually produces the conservatism because a common Lyapunov
function is exactly the same quadratic Lyapunov function for linear systems, despite the fact that

Designs 2017, 1, 10; doi:10.3390/designs1020010 www.mdpi.com/journal/designs

http://www.mdpi.com/journal/designs
http://www.mdpi.com
http://dx.doi.org/10.3390/designs1020010
http://www.mdpi.com/journal/designs


Designs 2017, 1, 10 2 of 21

a fuzzy system is nonlinear. To overcome this issue, a multiple Lyapunov function approach has
been introduced in [4] where a descriptor system approach and multiple Lyapunov function were
adopted. The descriptor approach reduced the conservatism in control design conditions for the
state feedback control design. Although the analysis of descriptor systems is more complicated than
state-space systems, they have richer structures that give less conservatism in the control design
conditions. The multiple Lyapunov matrix method in [4] is a generalization of a common Lyapunov
matrix method. However, this method requires the upper bound of the derivatives of the membership
functions. The membership functions are not always differentiable, and their upper bounds are not
easily calculated in advance. The recent papers [17,18] proposed the control design method based
on a new multiple Lyapunov function approach. Since their Lyapunov function has an integral of
the membership functions, any information on the derivatives of the membership functions is not
necessary. Furthermore, their methods reduced the conservatism in the stability and control design for
fuzzy systems.

Parallel to control design problems, a study on observer design for fuzzy systems has
started [3,19–24]. An observer design for fuzzy bilinear systems has also been considered in [25–28],
some of which are concerned with the design of an observer that attenuates unknown inputs.
A conventional method of constructing an observer for a fuzzy system is based on a parallel distributed
observer (PDO). Each sub-observer of a PDO corresponds to a local linear subsystem in a fuzzy system,
and then, the overall fuzzy observer is constructed with the grade of the same membership functions
for the system. Similar to control design, however, this approach is also found to be conservative
because its design conditions stem from a common Lyapunov function. In the literature, a PDO has
been extensively employed for fuzzy bilinear systems. A generalization of the PDO observer design is
necessary. Another issue for the observer design of fuzzy systems is the availability of the premise
variables. The premise variable plays an important role in the observer design for fuzzy systems.
When the premise variable is the output, a fuzzy system representation is limited, but its observer
design is simple because the premise variable can be used for the observer. When the premise variable
is the state of the system, a fuzzy system describes a wider class of nonlinear systems, but its observer
design becomes complicated because the premise variable is not available for the observer. The output
feedback control and observer design with the unmeasurable premise variables was first considered
in [29]. Since then, various methods of control and observer design have been proposed [22,23,30–35].

In this paper, we consider an observer design for nonlinear systems based on Takagi–Sugeno
fuzzy bilinear models. First, we assume a new class of fuzzy observers and consider the stability
of the error between the actual state and its estimate. In order to obtain less conservative stability
conditions for the error system, we introduce a new type of multiple Lyapunov function. A multiple
Lyapunov function is a natural extension of a common Lyapunov function. However, a conventional
multiple Lyapunov function contains the membership function, and hence, the resulting stability
condition depends on the derivative of the membership function, which is a function of the premise
variable. This causes the issues that the membership function may not always be known a priori
nor differentiable. In these cases, this design method is infeasible. Followed by [17,18], a class of
multiple Lyapunov functions that contain an integral of the membership function of fuzzy systems is
adopted. This approach requires no information on the derivative of the membership function and
is shown to reduce the conservatism in control design conditions. Our multiple Lyapunov function
eventually does not require the upper bound of the derivative of the membership function. Based on
such a multiple Lyapunov function, an observer design method of fuzzy bilinear systems is proposed.
Our observer design not only takes care of unknown inputs in the systems, but also fuzzy systems
with the unmeasurable premise variables. The design methods for these extensions are also proposed.
Finally, numerical examples are shown to illustrate our observer design method and to show the
effectiveness of our approach.
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2. Fuzzy Bilinear Systems

In this section, we introduce Takagi–Sugeno fuzzy bilinear systems. Consider the Takagi–Sugeno
fuzzy model, described by the following IF-THENrules:

IF ξ1 is Mi1 and · · · and ξp is Mip
THEN ẋ(t) = Aix(t) + Biu(t) + Miy(t)u(t) + Nix(t)u(t) + Fid(t), i = 1, · · · , r

y(t) = Cx(t)

where x(t) ∈ <n is the state, u(t) ∈ < is the control input, d(t) ∈ <m is the unknown input and
y(t) ∈ <q is the measurement output. The matrices Ai, Bi, Ni, Fi and C are constant matrices of
appropriate dimensions, and C is of column full rank. r is the number of IF-THEN rules. Mij are fuzzy

sets, and ξ1, · · · , ξp are premise variables. We set ξ =
[
ξ1 · · · ξp

]T
. The premise variable ξ(t) is

assumed to be measurable.
Then, the state and output equations are described by:

ẋ(t) =
r

∑
i=1

λi(ξ){Aix(t) + Biu(t) + Miy(t)u(t) + Nix(t)u(t) + Fid(t)}

de f
= Aλx(t) + Bλu(t) + Mλy(t)u(t) + Nλx(t)u(t) + Fλd(t)

(1)

y(t) = Cx(t) (2)

where:

λi(ξ) =
βi(ξ)

∑r
i=1 βi(ξ)

, βi(ξ) =
p

∏
j=1

Mij(ξ j) (3)

and Mij(·) is the grade of the membership function of Mij. We assume:

βi(ξ(t)) ≥ 0, i = 1, · · · , r,
r

∑
i=1

βi(ξ(t)) > 0

for any ξ(t). Hence, λi(ξ(t)) satisfies:

λi(ξ(t)) ≥ 0, i = 1, · · · , r,
r

∑
i=1

λi(ξ(t)) = 1

for any ξ(t).

Remark 1. The standard Takagi–Sugeno fuzzy system can represent a nonlinear system. However,
the Takagi–Sugeno fuzzy bilinear system has some advantages in estimation for nonlinear systems over the standard
one. For example, consider the nonlinear system:

ẋ(t) = 3x(t) + x3(t)u(t) (4)

By a simple calculation, it can be written as the standard Takagi–Sugeno fuzzy system with x ∈ [−1, 1]:

ẋ(t) = λ1(x(t))(3x(t) + u(t)) + λ2(x(t))(3x(t)− u(t)) + λ1(x(t))(3x(t)) + λ2(x(t))(3x(t))

λ1(x(t)) =
x2(t)(1 + x(t))

2
, λ2(x(t)) =

x2(t)(1− x(t))
2

λ3(x(t)) =
(1 + x(t))2(1− x(t))

2
, λ4(x(t)) =

(1− x(t))2(1 + x(t))
2

(5)
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The system can also be written as the Takagi–Sugeno fuzzy bilinear system with x ∈ [−1, 1]:

ẋ(t) = λ1(x(t))(3x(t) + x(t)u(t)) + λ2(x(t))(3x(t)− x(t)u(t))

λ1(x(t)) =
1 + x(t)

2
, λ2(x(t)) =

1− x(t)
2

(6)

The system (4) can be written by (5) and (6) where λi(x(t)) is the membership function. The system (6)
allows bilinear terms but the system (5) does not. The system (5) has four subsystems, while the system (6) has
only two of these. This makes a big difference in analysis and synthesis. As we see in the literature, control and
observer design conditions depend on the number of subsystems. The greater the number of subsystems a fuzzy
system has, the more conservative the resulting design conditions are. Therefore, the number of subsystems is
important, and establishment of observer design methods based on fuzzy bilinear systems gives an alternative
approach to nonlinear systems.

Our problem is to find an observer that estimates the state of the system (1) and (2) and gets rid of
unknown inputs in the system.

The following lemmas are given to prove our main results in the later sections.

Lemma 1. ([36])
r

∑
i=1

r

∑
j=1

λi(ξ(t))λj(ξ(t))Φij < 0

holds if the following is satisfied:

Φii < 0, i = 1, · · · , r,
2

r− 1
Φii + Φij + Φji < 0, i, j = 1, · · · , r, i 6= j

Lemma 2. ([37]) Let A, R, L, P and Q be matrices of appropriate dimensions. The following inequalities
are equivalent.

1. A and Q > 0 are given. There exists P > 0 such that:

AT P + PA + Q < 0

2. A and Q > 0 are given. There exist P > 0, L and R such that:[
AT LT + LA + Q P− L− AT R

P− LT + RT A− R− RT

]
< 0

Lemma 3. ([38]) Let f (x) : <n → < and a, b ∈ <n. If f (x) is a differentiable function on [a, b], then there
exists a vector c ∈ <n with ci ∈]ai, bi[, i = {1, · · · , n} such that:

f (b)− f (a) = 5 f (c)(b− a)

where5 f (c) = ∂ f (x)
∂x |x=c, and ]ai, bi[ means the open interval between ai and bi.

Lemma 4. ([39]) For any given matrices X, Y of appropriate dimensions and scalar α > 0, we have:

XTY + YTX ≤ αXTX + α−1YTY

3. Observer Design

In this section, we attempt to make an observer design. We first give stability conditions
of the error system, and then, we propose a design method of observers for the fuzzy bilinear
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system (1) and (2). We also consider the generalization of the nonlinear output equation and
unmeasurable premise variables.

3.1. Non-PDO Design

In the conventional observer design, the parallel distributed observer is usually employed.
However, observer design conditions in this case are conservative. In order to avoid such conservatism,
we adopt the non-parallel distributed observer (non-PDO). Let us assume the full-order observer of
the form:

ż(t) =

(
r

∑
i=1

µi(ξ)Pi

)−1 r

∑
i=1

r

∑
j=1

r

∑
k=1

λi(ξ(t))µj(ξ(t))λk(ξ(t− h)){Âijkz(t) + B̂iju(t)

+M̂ijy(t)u(t) + L̂ijky(t)} (7)
de f
= P−1

µ

(
Âλµλh z(t) + B̂λµu(t) + M̂λµy(t)u(t) + L̂λµλh y(t)

)
x̂(t) = z(t)− Ĥy(t) (8)

where z(t) ∈ <n is the vector and x̂(t) ∈ <n is the estimated state of x(t). The matrices
Âijk, B̂ij, M̂ij, Pi, L̂ijk and Ĥ are constant matrices of appropriate dimensions to be determined, and the
variable µi(t) is defined by:

µi(t) =
1
h

∫ t

t−h
λi(s)ds, i = 1, · · · , r (9)

for some scalar h > 0. We note that µi(ξ(t)) ≥ 0, i = 1, · · · , r and:

r

∑
i=1

µi(ξ(t)) =
1
h

∫ t

t−h

r

∑
i=1

λi(ξ(s))ds

=
1
h

∫ t

t−h
1ds

= 1

which implies that µi(ξ(t)) and λi(ξ(t)) share the same properties as seen in (3).
Now, we state the first main result.

Theorem 1. For a given h > 0, (7) and (8) become an observer for the system (1) and (2) if there exist matrices
Pi > 0, Kijk, i, j, k = 1, · · · , r and T such that:

Φk
ii < 0, i, k = 1, · · · , r (10)

2
r− 1

Φk
ii + Φk

ij + Φk
ji < 0, i, j, k = 1, · · · , r, i 6= j (11)

Φk
ij = (PjTAi − KijkC)T + PjTAi − KijkC +

1
h
(Pi − Pk) (12)

TFi = 0, i = 1, · · · , r (13)

In this case, observer gains are calculated as:

Âijk = PjTAi − KijkC, i, j, k = 1 · · · , r (14)

Ĥ = (T − I)C+ (15)

L̂ijk = Kijk − Âijk Ĥ, i, j, k = 1 · · · , r (16)

B̂ij = PjTBi, i, j = 1 · · · , r (17)

M̂ij = PjT(MiC + Ni)C+, i, j,= 1 · · · , r (18)
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where C+ is a pseudoinverse matrix of C.

Proof. We consider the error e(t) between the actual state and its estimate, which is defined by:

e(t) = x̂(t)− x(t) = z(t)− Tx(t)

where:
T = I + ĤC (19)

Then, the error follows the dynamics:

ė(t) = ż(t)− Tẋ(t)

= P−1
µ

(
Âλµλh z(t) + B̂λµu(t) + M̂λµy(t)u(t) + L̂λµλh y(t)

)
−T(Aλx(t) + Bλu(t) + Mλy(t)u(t) + Nλx(t)u(t) + Fλd(t)) (20)

= P−1
µ Âλλhµe(t) + (P−1

µ Âλµλh T + P−1
µ L̂λµλh C− TAλ)x(t) + (P−1

µ B̂λµ − TBλ)u(t)

+(P−1
µ M̂λµC− TMλC− TNλ)x(t)u(t)− TFλd(t)

If the following conditions are satisfied:

P−1
µ Âλµλh T + P−1

µ L̂λµλh C− TAλ = 0 (21)

P−1
µ B̂λµ − TBλ = 0 (22)

P−1
µ M̂λµC− T(MλC + Nλ) = 0 (23)

TFλ = 0 (24)

the error dynamics becomes:

ė(t) = P−1
µ Âλµλh e(t) (25)

Hence, if the system (25) is asymptotically stable, (7) and (8) become an observer for the
system (1) and (2) under the conditions (21)–(24).

Let us obtain conditions for (25) to be asymptotically stable. To begin with, we consider a
polytopic matrix:

Pµ =
r

∑
i=1

µi(ξ(t))Pi

The time-derivative can be calculated as:

Ṗµ =
r

∑
i=1

µ̇i(ξ(t))Pi =
r

∑
i=1

1
h
(λi(ξ(t))− λi(ξ(t− h))Pi =

1
h
(Pλ − Pλh)

where:

Pλh =
r

∑
i=1

λi(ξ(t− h))Pi

Taking Pµ into account, we consider the following Lyapunov function:

V(e) = eT(t)Pµx(t) (26)

where Pi, i = 1, · · · , r are positive definite matrices to be determined. We calculate the time-derivative
of V(e) to get:

V̇(e) = ėT(t)Pµx(t) + eT(t)Pµ ẋ(t) + eT(t)Ṗµx(t)

= eT(t)(ÂT
λµλh + Âλµλh +

1
h
(Pλ − Pλh))e(t)

(27)
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It follows from (19) and (21) that:

Âλµλh = Âλµλh T − Âλµλh ĤC

= PµTAλ − L̂λµλh C− Âλµλh ĤC

= PµTAλ − Kλµλh C

(28)

where:
Kλµ = L̂λµλh + Âλµλh Ĥ (29)

Substituting (28) into (27), we see that together with (24):

(PµTAλ − Kλµλh C)T + PµTAλ − Kλµλh C +
1
h
(Pλ − Pλh) < 0 (30)

is a sufficient condition for the system (25) to be asymptotically stable. Rewriting (30) as:

r

∑
i=1

r

∑
j=1

r

∑
k=1

λi(ξ(t))µj(ξ(t))λk(ξ(t− h))[(PjTAi − KijkC)T + PjTAi − KijkC +
1
h
(Pi − Pk)] < 0

and applying Lemma 1, we get (10)–(13). Gains (14)–(18) follow from (19), (22), (23), (28) and (29),
respectively. This completes the proof.

Conditions (10)–(12) are not strict Linear Matrix Inequalities (LMIs), and (13) is a constraint. Due
to this difficulty, we propose the following algorithm:

Algorithm 1:
1. Solve (13) for T.
2. Substitute T in (10)–(12) and solve them for Pj and Kijk, i, j, k = 1, · · · , r.
3. Calculate gain matrices (14)–(18).

Remark 2. Theorem 1 is a generalized result of the existing ones in the literature because the multiple Lyapunov
function approach is used in Theorem 1 while the single Lyapunov function approach was applied to the existing
results. Hence, the observer (7) and (8) is a generalization of the PDO. As is readily seen, the observer (7) and (8)
reduces to the PDO if Pj = P, j = 1, · · · , r. Multiple Lyapunov matrices Pj, j = 1, · · · , r obviously allow a
wider region of solutions of the observer design conditions (10)–(13). The observer (7) and (8) and its multiple
Lyapunov function also adopt the integral of the membership function, as well as its time delay function, which
help (1) reduce the conservatism in the observer design conditions (10)–(13) and (2) avoid the derivatives of the
membership functions in the observer design [17,18]. The knowledge of the derivative of the membership function
is a tight requirement because the membership functions are not always differentiable and may not be calculated
in advance. The existing results for the observer design of fuzzy bilinear systems employs the common Lyapunov
function approach only and has never been extended to the use of the multiple Lyapunov function approach.

Remark 3. Theorem 1 adopts Lemma 1 for the relaxation of its design condition. It is known [17] that although
more decision variables are needed, Lemma 2 can make further relaxation of the conditions of Theorem 1. In fact,
it follows from Lemma 2 and (30) that the condition (12) in Theorem 1 can be replaced by:

Φk
ij =

[
AT

i TLT
ijk + LijkTAi − KijkC− KT

ijkC− 1
h (Pi − Pk) Pj − Lijk − AT

i Rijk

Pj − LT
ijk + RT

ijk Ai − Rijk − RT
ijk

]
< 0

where Lijk and Rijk, i, j, k = 1, · · · , r are matrices of appropriate dimensions, as well as Pi > 0 and Kijk, to be
chosen. This approach leads to less conservative results.
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Letting Pj = P, j = 1, · · · , r and Kijk = Ki, j = k = 1, · · · , r in Theorem 1, we have the following
corollary as a special case of Theorem 1. Corollary 1 is basically equivalent to the result in [26],
which proposes a design method for a conventional PDO.

Corollary 1. (7) and (8) become an observer for the system (1) and (2) if there exist matrices
P > 0, Ki, i = 1, · · · , r and S such that:

((P + SC)Ai − KiC)T + (P + SC)Ai − KiC < 0 (31)

(P + SC)Fi = 0, i = 1, · · · , r (32)

In this case, observer gains are calculated as:

Âi = (P + SC)Ai − KiC (33)

Ĥ = P−1S (34)

L̂i = Ki − Âi Ĥ (35)

B̂i = (P + SC)Bi (36)

M̂i = (P + SC)(MiC + Ni)C+, i = 1 · · · , r (37)

Proof. If Pj = P, i = 1, · · · , r, then the condition (10) reduces to:

(PTAi − KiC)T + PTAi − KiC < 0

Since T is given by (19), the above inequality can be written as (31): where:

S = PĤ (38)

The condition (13) can be written as (32). (33)–(37) obviously follow from (14)–(19) and (38).

Letting Kijk = Ki, j, k,= 1, . . . , r leads to a reduction of the number of decision variables while
preserving the advantages of this approach and, hence, reduces computational burden.

Corollary 2. For a given h > 0, (7) and (8) become an observer for the system (1) and (2) if there exist matrices
Pi > 0, Ki, i, j = 1, · · · , r and T such that (10), (11) and (13) with:

Φk
ij = (PjTAi − KiC)T + PjTAi − KiC +

1
h
(Pi − Pk), i, j, k = 1 · · · , r (39)

In this case, observer gains are calculated as:

Âij = PjTAi − KiC, i, j = 1 · · · , r (40)

Ĥ = (T − I)C+ (41)

L̂ij = Ki − ÂijĤ, i, j = 1 · · · , r (42)

B̂ij = PjTBi, i, j = 1 · · · , r (43)

M̂ij = PjT(MiC + Ni)C+, i = 1 · · · , r (44)

where C+ is a pseudoinverse matrix of C.
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3.2. Generalization of the Nonlinear Output Equation

In the previous section, we assumed to have the linear output equation. However, it is more
realistic that the output equation is nonlinear. Now, the output equation is given by:

y(t) =
r

∑
i=1

λi(ξi)Cix(t)

de f
= Cλx(t)

(45)

For this generalization, we assume the following.

Assumption 1. The following conditions are satisfied.

1. rank(CλFλ) = rank(Fλ) = m ∀ λ(t);
2. ẏ(t) is measurable.

Following the idea of [31], we shall transform the system (1) and (45) into the one without
unknown input d(t). It follows from (1) and (45) that:

ẏ(t) = Cλ ẋ(t)

= Cλ(Aλx(t) + Bλu(t) + Mλy(t)u(t) + Nλx(t)u(t) + Fλd(t))

The Assumption 1 allows us to obtain the unique solution:

d(t) = Θλẏ(t)−ΘλCλ(Aλx(t) + Bλu(t) + Mλy(t)u(t) + Nλx(t)u(t)) (46)

where Θλ denotes the Moore–Penrose pseudoinverse of CλFλ. In fact, Θλ is given by:

Θλ = [(CλFλ)
TCλFλ]

−1(CλFλ)
T

Substituting (46) into the state equation (1), we have:

ẋ(t) = Āλx(t) + B̄λu(t) + Θ̄λẏ(t) + M̄λy(t)u(t) + N̄λx(t)u(t) (47)

where:

Āλ = (I − FλΘλCλ)Aλ

B̄λ = (I − FλΘλCλ)Bλ

Θ̄λ = FλΘλ

M̄λ = (I − FλΘλCλ)Mλ

N̄λ = (I − FλΘλCλ)Nλ

Despite the structures of Āλ, B̄λ, Θ̄λ, M̄λ and N̄λ, using the sector nonlinearity technique [40],
we can obtain the equivalent system described by the Takagi–Sugeno fuzzy system:

ẋ(t) = Āλ̄x(t) + B̄λ̄u(t) + Θ̄λ̄ẏ(t) + M̄λ̄y(t)u(t) + N̄λ̄x(t)u(t)

=
r̄

∑
i=1

λ̄(ξ(t)){Āix(t) + B̄iu(t) + Θ̄i ẏ(t) + M̄iy(t)u(t) + N̄ix(t)u(t)}
(48)
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and (45) where λ̄(ξ̄(t)) satisfies:

λ̄i(ξ̄(t)) ≥ 0, i = 1, · · · , r̄,
r̄

∑
i=1

λ̄i(ξ(t)) = 1

Example 1. Consider Takagi–Sugeno fuzzy system (1) and (45) with the following matrices:

Aλ =

 1 −1 2
0 x1 x1

x1 −1 + x1 2

 , B =

−1
2x1

x1

 , Mλ =

 1 0
0 2
x1 2



Nλ =

0 1 1
2 1 −x1

1 1 + x1 0

 , Fλ =

 1
−1
x1

 , Cλ =

[
1 1 0

3 + x1 1 −2

]

where x1 ∈ [0, 1]. It is easy to see that:

CλFλ =

[
0

3− x1

]
has the same rank as that of Fλ. Then, we have:

Θ =
[
0 1

3−x1

]
Hence, the system (1) and (45) can be transformed into (47) with:

Āλ̄ =
1

3− x1


0 3x1 − 2 4− 5x1

0 3x1 + 3 6x1 − x2
1 + 2

0 x2
1 + 5x1 − 3 6− 4x1 − 3x2

1

 , B̄λ̄ =
1

3− x1


2x1

5x1 − 2x2
1 − 3

6x1

 , Θ̄λ̄ =
1

3− x1


0 1

0 −1

0 x1



M̄λ̄ =
1

3− x1


0 2

3− x1 4− 2x1

0 6

 , N̄λ̄ =
1

3− x1


0 1 −x1

6− 2x1 5− 2x1 x2
1 − 3x1 + 3

3− x1 3 −3x1


Taking the new premise variables as ξ̄1 = x1 ∈ [0, 1], ξ̄2 = x2

1 ∈ [0, 1] and ξ̄3 = 1
3−x1

∈ [ 1
3 , 1

2 ] and
using the sector nonlinearity concept, we obtain the transformed system (48) and (45) with eight subsystems
evaluated at (x̄i, x̄2, x̄3) = (0, 0, 1

3 ), (0, 0, 1
2 ), (0, 1, 1

3 ), (0, 1, 1
2 ), (1, 0, 1

3 ), (1, 0, 1
2 ), (1, 1, 1

3 )

and (1, 1, 1
2 ).

Now, we have the system (48) and (45) without unknown input d(t), and the corresponding
observer to be proposed is assumed to be:

˙̂x(t) =
r

∑
i=1

r

∑
j=1

r

∑
k=1

λi(ξ(t))µj(ξ(t))λk(ξ(t− h)){Āi x̂(t) + B̄iu(t) + Θ̄i ẏ(t)

+

(
r

∑
i=1

µi(ξ)Pi

)−1

(M̂ijy(t)u(t) + L̂ijk(y(t)−
r

∑
i=1

λi(ξ(t))Ci x̂(t)))} (49)

de f
= Āλ x̂(t) + B̄λu(t) + Θ̄λẏ(t) + P−1

µ

(
M̂λµy(t)u(t) + L̂λµλh(y(t)− Cλ x̂(t))

)
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Theorem 2. For a given h > 0, (49) becomes an observer for the system (48) and (45) if there exist matrices
Pi > 0 and L̂ijk, i, j, k = 1, · · · , r̄ such that:

Φk
ii < 0, i, k = 1, · · · , r̄ (50)

2
r− 1

Φk
ii + Φk

ij + Φk
ji < 0, i, j, k = 1, · · · , r̄, i 6= j (51)

Φk
ij = (Pj Āi − L̂ijkCi)

T + Pj Āi − L̂ijkCi +
1
h
(Pi − Pk) (52)

In this case, observer gain M̄ij, i, j,= 1, · · · , r̄ is chosen such that:

M̂ijCi = Pj(M̄iCi + N̄i), i, j,= 1 · · · , r̄ (53)

Proof. The error dynamics satisfies:

ė(t) = ˙̂x(t)− ẋ(t)

= (Āλ − P−1
µ L̂λµλh Cλ)e(t) + (P−1

µ M̂λµCλ −MλCλ − N̄λ)x(t)u(t)
(54)

If the following conditions are satisfied:

P−1
µ M̂λµCλ − (M̄λCλ + N̄λ) = 0 (55)

the error dynamics becomes:

ė(t) = Âλµλh e(t) (56)

where:

Âλµλh = Āλ − P−1
µ L̂λµλh Cλ (57)

Hence, if the system (56) is asymptotically stable, (49) becomes an observer for the system (48)
and (45) under the condition (55).

We consider the same Lyapunov function (26) and calculate the time-derivative of V(e) to get:

V̇(e) = eT(t)[(Āλ − P−1
µ L̂λµλh Cλ)

T Pµ + Pµ(Āλ − P−1
µ L̂λµλh Cλ) +

1
h
(Pλ − Pλh)]e(t)

= eT(t)[(Pµ Āλ − L̂λµλh Cλ)
T + Pµ Āλ − L̂λµλh Cλ +

1
h
(Pλ − Pλh)]e(t)

(58)

We see that:

(Pµ Āλ − L̂λµλh Cλ)
T + Pµ Āλ − L̂λµλh Cλ +

1
h
(Pλ − Pλh) < 0 (59)

is a sufficient condition for the system (56) to be asymptotically stable. Rewriting (59) as:

r̄

∑
i=1

r̄

∑
j=1

r̄

∑
k=1

λi(ξ(t))µj(ξ(t))λk(ξ(t− h))[(Pj Āi − L̂ijkCi)
T + Pj Āi − LijkCi +

1
h
(Pi − Pk)] < 0

and applying Lemma 1, we get (50)–(52). Gain (53) follows from (55). This completes the proof.

Remark 4. The transformation method in this section takes care of the nonlinear output equation. The nonlinear
output equation is a generalization of not only the theoretical point of view, but also the practical point of view.
It also eliminates the unknown input d(t). This leads to no consideration of the unknown input in the observer
design. It is a advantage to reduce the conservatism in the design conditions.
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3.3. Extension to Observer Design with Unmeasurable Premise Variables

In Takagi–Sugeno fuzzy system representation, the premise variables play an important role.
The premise variables basically describe nonlinearity in the system, but they are not always measurable
variables. In order to design an observer for fuzzy systems with unmeasurable premise variables,
we need to calculate the estimate of the unmeasurable premise variables.

For the case of the unmeasurable premise variables, we make the following assumptions:

Assumption 2. The following conditions are satisfied.

1. || ∂λi
∂ξ || ≤ δi

2. ||x|| ≤ ρx, ||u|| ≤ ρu

For the system (1) and (2) with the unmeasurable premise variables, the following observer is
proposed.

ż(t) =

(
r

∑
i=1

µi(ξ̂)Pi

)−1 r

∑
i=1

r

∑
j=1

r

∑
k=1

λi(ξ̂(t))µj(ξ̂(t))λk(ξ̂(t− h)){Âijkz(t) + B̂iju(t)

+M̂ijy(t)u(t) + L̂ijky(t)} (60)
de f
= P−1

µ̂

(
Âλ̂µ̂λ̂h z(t) + B̂λ̂µ̂u(t) + M̂λ̂µ̂y(t)u(t) + L̂λ̂µ̂λ̂h y(t)

)
x̂(t) = z(t)− Ĥy(t) (61)

where ξ̂(t) is the estimate of ξ(t). The error e(t) = x̂(t)− x(t) satisfies:

ė(t) = ż(t)− Tẋ(t)

= P−1
µ̂

(
Âλ̂µ̂λ̂h z(t) + B̂λ̂µ̂u(t) + M̂λ̂µ̂y(t)u(t) + L̂λ̂µ̂λ̂h y(t)

)
−T(Aλx(t) + Bλu(t) + Mλy(t)u(t) + Nλx(t)u(t) + Fλd(t))

+T(Aλ̂x(t) + Bλ̂u(t) + Mλ̂y(t)u(t) + Nλ̂x(t)u(t) + Fλ̂d(t)) (62)

−T(Aλ̂x(t) + Bλ̂u(t) + Mλ̂y(t)u(t) + Nλ̂x(t)u(t) + Fλ̂d(t))

= P−1
µ̂ Âλ̂µ̂λ̂h e(t) + (P−1

µ̂ Âλ̂µ̂λ̂h T + P−1
µ̂ L̂λ̂µ̂λ̂h C− TAλ̂)x(t) + (P−1

µ̂ B̂λ̂µ̂ − TBλ̂)u(t)

+(P−1
µ̂ M̂λ̂µ̂C− TMλ̂C− TNλ̂)x(t)u(t)− TFλ̂d(t) + ∆

where:

∆ = T[(Aλ̂ − Aλ)x(t) + (Bλ̂ − Bλ)u(t) + {(Mλ̂ −Mλ)C + (Nλ̂ − Nλ)}x(t)u(t) + (Fλ̂ − Fλ)d(t)] (63)

If the following conditions are satisfied:

P−1
µ̂ Âλ̂µ̂λ̂h T + P−1

µ̂ L̂λ̂µ̂λ̂h C− TAλ̂ = 0 (64)

P−1
µ̂ B̂λ̂µ̂ − TBλ̂ = 0 (65)

P−1
µ̂ M̂λ̂µ̂C− TMλ̂C− TNλ̂ = 0 (66)

TFλ̂ = 0 (67)

(62) becomes:
ė(t) = P−1

µ̂ Âλ̂µ̂λ̂h e(t) + ∆ (68)
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Since ∑r
i=1(λi(ξ̂(t))− λi(ξ(t))) = 0, we have the identity:

r

∑
i=1

(λi(ξ̂(t))− λi(ξ(t)))P−1
µ [Xλµλh x(t) + Yλµλh u(t) + Zλµλh x(t)u(t)] = 0 (69)

where Xijk, Yijk and Zijk, ij, k = 1, · · · , r are some constant matrices of appropriate dimensions.
Applying Lemma 3 to (69), we find that there exists c ∈ [λ(ξ̂) λ(ξ)] such that:

r

∑
i=1
5λi(c)eξ(t)P−1

µ [Xλµλh x(t) + Yλµλh u(t) + Zλµλh x(t)u(t)] = 0 (70)

where 5λ(c) = ∂λi(ξ)
∂ξ |ξ=c. Applying Lemma 3 to ∆ in (63), assuming the linear transformation of

eξ(t)
de f
= ξ̂(t)− ξ(t) = Ve(t) where V is a constant matrix of appropriate dimension and adding (70),

we obtain:

∆ = T[
r

∑
i=1
5λi(c)eξ(t)(Ai + P−1

µ Xλµλh)x(t) +
r

∑
i=1
5λi(c)eξ(t)(Bi + P−1

µ Yλµλh)u(t)

+
r

∑
i=1
5λi(c)eξ(t)((MiC + Ni) + P−1

µ Zλµλh)x(t)u(t)]

= T[H̄a∆a + H̄b∆b + H̄m∆m]Ve(t)

= H̄∆̄Ve(t)

(71)

where:
H̄ = T

[
H̄a H̄b H̄m

]
, H̄a =

[
A1 + P−1

µ Xλµλh · · · Ar + P−1
µ Xλµλh

]
,

H̄b =
[

B1 + P−1
µ Yλµλh · · · Br + P−1

µ Yλµλh

]
H̄m =

[
M1C + N1 + P−1

µ Zλµλh · · · MrC + Nr + P−1
µ Zλµλh

]

∆ =

∆a

∆b
∆m

 , ∆a =

x(t)5 λ1(c)
...

x(t)5 λr(c)

 , ∆b =

u(t)5 λ1(c)
...

u(t)5 λr(c)

 , ∆m =

x(t)u(t)5 λ1(c)
...

x(t)u(t)5 λr(c)


Then, we have:

∆T∆ = ∆T
a ∆a + ∆T

b ∆b + ∆T
m∆m

= (xTx + u2 + xTxu2)5 λT(c)5 λ(c)

≤ (ρ2
x + ρ2

u + ρ2
xρ2

u)
r

∑
i=1

δ2
i I

de f
= η2 I

which implies that there exists a bound of the uncertainty ∆. Now, we are in a position to give the
following result.

Theorem 3. Suppose that Assumption 2 holds. For a given h > 0 and η =
√
(ρ2

x + ρ2
u + ρ2

xρ2
u)∑r

i=1 δ2
i ,

(60) and (61) become an observer for the system (1) and (2) in the domain Dx,u = {||x|| ≤ ρx, ||u|| ≤ ρu} if
there exist matrices Pi > 0, Kijk, Xijk, Yijk, Zijk, i, j, k = 1, · · · , r, T and scalars βijk > 0, i, j, k = 1, · · · , r
such that:
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Φk
ii < 0, i, k = 1, · · · , r (72)

2
r− 1

Φk
ii + Φk

ij + Φk
ji < 0, i, j, k = 1, · · · , r, i 6= j (73)

Φk
ij =



(PjTAi − KijkC)T + PjTAi − KijkC + 1
h (Pi − Pk) + βijkη2VTV (∗)T

(Pj A1 + Xijk)
T

...
(Pj Ar + Xijk)

T

(PjB1 + Yijk)
T

...
(PjBr + Yijk)

T

(Pj(M1C + N1) + Zijk)
T

...
(Pj(MrC + Nr) + Zijk)

T



−βijk I



(74)

TFi = 0, i = 1, · · · , r (75)

where (∗)T indicates the transpose of the off-diagonal block matrix. In this case, observer gains are calculated as:

Âijk = PjTAi − KijkC, i, j, k = 1 · · · , r (76)

Ĥ = (T − I)C+ (77)

L̂ijk = Kijk − Âijk Ĥ, i, j, k = 1 · · · , r (78)

B̂ij = PjTBi, i, j = 1 · · · , r (79)

M̂ij = PjT(MiC + Ni)C+, i, j,= 1 · · · , r (80)

where C+ is a pseudoinverse matrix of C.

Proof. Substituting (71) in (62), we have:

ė(t) = (P−1
µ̂ Âλ̂µ̂λ̂h + H̄∆̄V)e(t) (81)

We use the Lyapunov function (26) with µ replaced by µ̂ and calculate the time-derivative of V(e)
along the solution of (81) by applying Lemma 4 to get:

V̇(e) = eT(t)[(P−1
µ̂ Âλ̂µ̂λ̂h + H̄∆̄V)T Pµ̂ + Pµ̂(P−1

µ̂ Âλ̂µ̂λ̂h + H̄∆̄V) +
1
h
(Pµ̂ − Pλ̂h)]e(t)

≤ eT(t)[ÂT
λ̂µ̂λ̂h + Âλ̂µ̂λ̂h +

1
h
(Pµ̂ − Pλ̂h) + β−1

λ̂µ̂λ̂h Pµ̂H̄H̄T Pµ̂ + βλ̂µ̂λ̂h η2VTV]e(t)
(82)

Making the same argument in (28) and applying the Schur complement formula, we see that:[
(Pµ̂TAµ̂ − Kλ̂µ̂λ̂h C)T + Pµ̂TAµ̂ − Kλ̂µ̂λ̂h C + 1

h (Pµ̂ − Pλ̂h) + βλ̂µ̂λ̂h η2VTV Pµ̂H̄
H̄T Pµ̂ − βλ̂µ̂λ̂h I

]
< 0 (83)
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is a sufficient condition for the system (81) to be asymptotically stable in the domain Dx,u = {||x|| ≤
ρx, ||u|| ≤ ρu}. Rewriting (83) as:

r

∑
i=1

r

∑
j=1

r

∑
k=1

λi(ξ̂(t))µj(ξ̂(t))λk(ξ̂(t− h))

×
[
(PjTAi − KijkC)T + PjTAi − KijkC + 1

h (Pi − Pk) + βijkη2VTV Pj H̄
H̄T Pj − βijk I

]
< 0

and applying Lemma 1, we get (72)–(74), and (75) follows from (67). Gains follow from (19), (28), (29),
(64)–(66). This completes the proof.

Remark 5. If there is no difference between λ(ξ(t)) and λ(ξ̂(t)), then ∆ becomes zero. This implies that we
can take V = 0 in (74) and consequently can choose βijk big enough for (74) to be satisfied. This means the
conditions in Theorem 3 reduce to those in Theorem 1. Algorithm 1 may be used to solve the design conditions
(72)–(75). Alternatively, for the case of the nonlinear output equation and elimination of the unknown input
term, the technique in Section 3.2 is applicable to the observer design with the unmeasurable premise variables.

Remark 6. For the reduction of the computational burden, simplification of L̂ijk = L̂i, j, k = 1, · · · , r and
Kijk = Ki, j, k = 1, · · · , r can be applied to Theorems 2 and 3, respectively, as we obtain Corollary 2.

4. Numerical Examples

We consider three examples here. Example 2 compares our main design method with the existing
method. Example 3 shows the observer design with the unmeasurable premise variables. Finally,
Example 4 takes care of the practical system for two cases of the linear and nonlinear measurement
output equations.

Example 2. Consider the fuzzy bilinear system (1) and (2) with the following system matrices:

A1 =

[
20 0
20 −20

]
, A2 =

[
10 0
10 −6

]
, B1 =

[
8
1

]
, B2 =

[
10
5

]
M1 =

[
0
0

]
, M2 =

[
0
0

]

N1 =

[
−1 1
0 1

]
, N2 =

[
−1 0
0 3

]
, F1 =

[
0.6
1

]
, F2 =

[
0.6
1

]
, C =

[
1 0

]
and the membership functions are given by:

λ1(x1(t)) = sin2(x1(t)), λ1(x1(t)) = cos2(x1(t))

For this system, none of the conditions of Corollary 1, Theorem 3.1 in [41], Theorem 1 in [26] and Theorem 1
in [27] are satisfied, and hence, these results do not make an observer design. In order to compare with Theorem 2
in [42] and Theorem 1 in [43], we let N = 0 (because [42] only considers the standard fuzzy system). Conditions
of Theorem 2 in [42] and Theorem 1 in [43] fail to be satisfied. On the other hand, Theorem 1 and Corollary 2
allow us to design an observer. This implies that Theorem 1 and Corollary 2 comprise a less conservative observer
design method. Other results including Corollary 1 are based on a conventional PDO approach with the common
Lyapunov matrix. In fact, Theorem 1 allows us to construct the observer (7) and (8) with:
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P1 =

[
1.1357 0.0000
0.0000 0.0386

]
, P2 =

[
1.1055 0.0000
0.0000 0.0638

]

Â111 =

[
−0.5678 0.0000
0.0000 −0.7722

]
, Â112 =

[
−0.5678 0.0000
−0.7151 −1.2762

]
, Â121 =

[
−0.6178 0.0000
0.0000 −0.7722

]

Â122 =

[
−0.6178 0.0000
−0.7151 −1.2762

]
, Â211 =

[
−0.6178 0.0000
−0.0000 −0.2317

]
, Â212 =

[
−0.6178 0.0000
−0.2043 −0.3829

]

Â221 =

[
−0.5678 0.0000
−0.0000 −0.2317

]
, Â222 =

[
−0.5678 0.0000
−0.2043 −0.3829

]

B̂11 =

[
−0.0000
−0.4762

]
, B̂12 =

[
−0.0000
−0.4505

]
, B̂21 =

[
−0.0000
−0.7870

]
, B̂22 =

[
−0.0000
−0.7445

]

M̂11 = M̂12 =

[
0.0000
0.0644

]
, M̂21 = M̂22 =

[
0.0000
0.1064

]
, Ĥ =

[
−1

−1.6667

]

L̂111 = L̂121 =

[
−0.0000
−2.1880

]
, L̂112 = L̂122 =

[
−0.0000
−3.6160

]

L̂211 = L̂221 =

[
−0.0000
−0.6435

]
, L̂212 = L̂222 =

[
−0.0000
−1.0635

]

Example 3. We consider a nonlinear system described by:

ẋ1(t) = −x1(t) + x2(t) + 0.5u(t) + 0.4d(t)

ẋ2(t) = −0.3x1(t)− 0.2x2(t) + 0.1x1(t) sin(x2(t)) + 0.4x2(t) sin(x2(t)) + 1.1u(t) + 0.3x1(t)u(t)

−0.1x1(t) sin(x2(t))u(t) + d(t)

y(t) = x1(t)

For x1 ∈ [−1, 1] and x2 ∈ [−π/2, π/2], this system can be written as the system (1)–(2) with the
following matrices:

A1 =

[
−1 1
−0.4 −0.6

]
, A2 =

[
−1 1
−0.2 0.2

]
, B1 =

[
0.5
1.1

]
, B2 =

[
0.5
1.1

]

M1 = M2 =

[
0
0

]
N1 =

[
0 0

0.4 0

]
, N2 =

[
0 0

0.2 0

]
, F1 = F2 =

[
0.4
1

]
, C =

[
1 0

]
and the membership functions:

λ1(x1(t)) =
1− sin(x2(t))

2
, λ2(x1(t)) =

1 + sin(x2(t))
2

The premise variable for this system is x2(t), which is not measurable. Hence, we shall design an
observer (60) and (61) with the unmeasurable premise variable. The error of the immeasurable premise variable
ex2 = [0 1]e = Ve. 5λ1(c) =

∂λ1
∂x2
|x2=c = |− cos(c)

2 | ≤ 0.5 and5λ2(c) = −5 λ1(c) ≤ 0.5. It follows that

δ2 = 2(0.5)2 = 0.5. Assume that ||u|| ≤ 2 = ρu. Then, we calculate η2 =
√
(ρ2

x + ρ2
u + ρ2

xρ2
u)δ

2 = 3.9616.
Observer gain matrices can be calculated by Theorem 3 as:
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P1 =

[
0.6312 0.0000
0.0000 1.3685

]
, P2 =

[
0.6010 0.0000
0.0000 1.3937

]

Â111 =

[
−0.3156 0.0000
0.0000 −4.2423

]
, Â112 =

[
−0.3156 0.0000
0.0529 −4.3204

]
, Â121 =

[
−0.3156 0.0000
0.3349 −4.2423

]

Â122 =

[
−0.3156 0.0000
0.3878 −4.3204

]
Â211 =

[
−0.3156 0.0000
0.0000 −3.1475

]
, Â212 =

[
−0.3156 0.0000
0.0580 −3.2055

]

Â221 =

[
−0.3156 0.0000
0.3668 −3.1475

]
, Â222 =

[
−0.3156 0.0000
0.4248 −3.2055

]

B̂11 = B̂12 =

[
−0.0000
−0.2053

]
, B̂21 = B̂22 =

[
−0.0000
−0.2091

]

M̂11 =

[
0.0000
0.5474

]
, M̂12 =

[
0.0000
0.2737

]
, M̂21 =

[
0.0000
0.5575

]
, M̂22 =

[
0.0000
0.2787

]

Ĥ =

[
−1
−2.5

]
, L̂111 = L̂121 =

[
−0.0000
−7.7319

]
, L̂112 = L̂122 =

[
−0.0000
−7.8743

]

L̂211 = L̂221 =

[
−0.0000
−4.7213

]
, L̂212 = L̂222 =

[
−0.0000
−4.8082

]

Given the initial conditions e(0) = [1.0 0.5]T , the simulation result is shown in Figure 1. The solid
line and dotted line indicate the errors e1(t) and e2(t), respectively. The designed observer obviously
estimates the true values of the states x1(t) and x2(t) since the errors e1(t) and e2(t) converge to zero.

Figure 1. The error trajectories.

Example 4. We shall design an observer for an isothermal continuous stirred tank reactor (CSTR) [41,44],
whose dynamics can be described by:

ẋ1(t) = −k1x1(t)− k3x2
1(t) + u(t)(CA0 − x1(t)) + 0.6d(t)

ẋ2(t) = k1x1(t)− k2x2(t)− x2(t)u(t) + d(t)
(84)

where the state x1(t) represents the concentration of the reactant inside the reactor (mol/L) and the state x2(t) is
the concentration of the product in the CSTR output stream (mol/L). The input-feed stream to the CSTR consists
of a reactant with concentration XA0, and the controlled input is the dilution rate u(t) = F/V(h−1) where F is
the input flow rate to the reactor (L/h) and V is the constant volume of the CSTR (L). The kinetic parameters
are chosen to be k1 = 50 h−1, k2 = 100 h−1, k3 = 10 L/(mol · h), CA0 = 10 mol/L and V = 1 L as
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in [44]. We assume that x1(t) ∈ [−α, α], α > 0. The system (84) can be written into (1) and (2) with the
following matrices:

A1 =

[
−50− 10α 0

50 −100

]
, A2 =

[
−50 + 10α 0

50 −100

]
, B1 = B2 =

[
10
0

]
, M1 = M2 =

[
0
0

]

N1 = N2 =

[
−1 0
0 −1

]
, F1 = F2 =

[
0.6
1

]
,

with the membership functions:

λ1(x1(t)) =
α− x1(t)

2α
, λ2(x1(t)) =

x1(t) + α

2α

For a finite value α > 0, we can design a local observer, and for α→ ∞, we can construct a global observer.
The output y(t) determines the grade of the final product and is assumed to be the following two cases.

Case 1: The output equation is linear:

y(t) = x1(t) =
[
1 0

]
x(t)

It is shown in [41] that for x1(t) ∈ [−1 1], an observer can be designed. However, x1(t) ∈ [−α α], α > 5;
the method in [41] fails to design an observer. Even for x1(t) ∈ [−100 100], Theorem 1 still guarantees
the designing of an observer. This concludes that Theorem 1 guarantees a much wider stability region of the
error system.

Case 2: The output equation is nonlinear:

y(t) = x1(t) + 0.1x2
1(t) =

[
1 + 0.1x1(t) 0

]
x(t)

Applying the technique in Section 3.2, we transform the system (84) into:

ẋ(t) =

[
0 0

5(50+10x1(t))
3 −100

]
x(t) +

[
0
50
3

]
u(t) +

[
0.1
1

]
ẏ(t) +

[
0 0
5
3 −1

]
x(t)u(t)

y(t) =
[
1 + 0.1x1(t) 0

]
x(t)

which, under the assumption that x1(t) ∈ [−α α], α > 0, can be written as (45) and (48) with:

Ā1 = Ā2 =

[
0 0

50
3 (5− α) −100

]
, Ā3 = Ā4 =

[
0 0

50
3 (5 + α) −100

]
, B̄1 = B̄2 = B̄3 = B̄4 =

[
0
50
3

]

M̄1 = M̄2 = M̄3 = M̄4 =

[
0
0

]
, N̄1 = N̄2 = N̄3 = N̄4 =

[
0 0
5
3 −1

]
,

Θ̄1 = Θ̄3 = 1
1−0.1α

[
0.6
1

]
, Θ̄2 = Θ̄4 = 1

1+0.1α

[
0.6
1

]
,

C1 = C2 =
[
1− 0.1α 0

]
, C3 = C4 =

[
1 + 0.1α 0

]
Defining σ1(ξ1(t)) = α−x1(t)

2α , σ2(ξ1(t)) = α+x1(t)
2α , γ1(ξ1(t)) =

1
1−0.1α−

1
1+0.1x1(t)

1
1−0.1α−

1
1+0.1α

, γ2(ξ1(t)) =

− 1
1+0.1α +

1
1+0.1x1(t)

1
1−0.1α−

1
1+0.1α

, we have the membership functions:
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λ̄1(x1(t)) = σ1(x1(t))γ1(x1(t)), λ̄2(x1(t)) = σ1(x1(t))γ2(x1(t))

λ̄3(x1(t)) = σ2(x1(t))γ1(x1(t)), λ̄4(x1(t)) = σ2(x1(t))γ2(x1(t))
(85)

Let α = 5. Theorem 2 designs the observer (49) with the membership functions (85). Note that we
can calculate x1(t) from the output equation y(t) = x1(t) + 0.1x2

1(t) where y(t) is the measurable output.
Solving for x1(t), we get:

x1(t) = −10 +
√

25 + 10y(t)

uniquely for x1(t) ∈ [−5 5]. Given the initial conditions e(0) = [1.0 0.4]T , the simulation result is shown in
Figure 2. The solid line and dotted line indicate the error e1(t) and e2(t), respectively. The designed observer
obviously works well, as wee see the error e1(t) and e2(t) converge to zero.

Figure 2. The error trajectories.

5. Conclusions

An observer design method for Takagi–Sugeno fuzzy bilinear systems with unknown inputs
has been proposed. A non-PDO was introduced, and new design conditions based on a multiple
Lyapunov function were given. This approach reduces the conservatism of observer design and allows
us to construct an observer for a wide class of nonlinear systems. The generalization of the nonlinear
output equation and the observer design method with the unmeasurable premise variables were also
considered. Finally, numerical examples were given to illustrate our results.
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