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Abstract: This paper investigates the sliding mode control for high-frequency sampled-data systems
with actuator faults. Besides matched nonlinearity, this paper also considers unmeasurable states
and unknown actuator degradation ratio as important factors of the overall system. The estimates of
system state vector are obtained by an adaptive sliding mode observer method firstly. Then, a novel
integral-type sliding surface, corresponding to the unified closed-loop delta operator system, is provided
based on aforementioned estimation values, and the fault closed-loop system is proven to be stable by
the proposed sliding mode control law. Finally, the fault-tolerant control theory is verified to be valid via
a practical simulation example.

Keywords: high frequency sampled-data systems; actuator faults; sliding mode control; delta
operator systems

1. Introduction

In practical engineering, unexpected faults of components including sensors and actuator and/or
the system’s structure always occur inevitably in practice due to components burn-in, damage, physical
constraint, etc. The impact of a fault or failure can lead to performance deterioration or instability
of the systems, and could even cause unexpected catastrophic accidents. For example, an actuator
of the vehicle system is stuck and failed to deflect the certain control state, which may result in a
serious problem. Hence, developing effective fault-tolerance design techniques to accommodate
sensor/actuator failures, and ensure high degree safe operation performances of the overall control
systems has been an essential and significant issue in recent years [1–3], and some interesting results
have been achieved [4–7]. In particular, adaptive control and sliding mode control methods have been
applied to different systems to cope with sensor/actuator faults and unknown external disturbances
(for instance, [8–12], and the references therein).

A great deal of attention has been paid to networked control systems (NCSs) in recent
years [13–17], because they are able to be combined with different kinds of practical systems
widely [18–20]. It should be noticed that, in modern industrial systems, the high frequency sampling
situation always exists. Conventional discretization means derived from the model built for traditional
systems failed to get the original system dynamic if the sampling time becomes more and more close
to zero. However, the appearance of delta operator systems has worked out this restriction and the
feature of high frequency sampling systems is able to be described accurately, the control result of
using the delta operator approach is much better than applying shift operator method. For this reason,
the delta operator systems have attracted abundant concern and many relevant theories such as H∞

control, adaptive control and sliding mode control methods have been applied on this issue.
The coexistence of sudden system structure change, high frequency data sampling [21], unknown

model nonlinearity [22,23] and actuator faults in practical system makes it important to deal with the
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fault-tolerant control problems of the systems mentioned above, which motivates our work. In this
paper, we simultaneously consider model nonlinearity and obtain the expected adaptive fault-tolerant
control method for the delta operator system. First, the estimates of the state vector are derived from
the proposed adaptive sliding mode observer and a special switching term is introduced to dispose
the actuator faults. In addition, stability of the fault closed-loop system is guaranteed by the novel
integral-type sliding mode controller we designed and the simulation result is presented in the end to
prove the effectiveness of the method.

The structure of this paper is as follows. In Section 2, the existing problem is presented in detail.
Sections 3 and 4 introduce the stability criterion and develop the adaptive controller, respectively.
The system trajectory is analyzed in Section 5 to illustrate its reachability and property. In Section 6,
a practical problem is provided and the validity of the proposed method is proven by simulation
results. Finally, the paper is concluded in Section 7.

2. Problem Statement

The delta operator owns the following form:

δx (k) =


dx (k)

dt
, T = 0,

x (k + T)− x (k)
T

, T 6= 0.
(1)

where T is the sampling period. In this paper, description of the following uncertain linear delta
operator system is

δx (k) = Ax (k) + B
[
uF

hl (k) + f (x (k) , k)
]

y (k) = Cx (k)

uF
hl (k) = ρl

huh (k) + ηl
hωsh (k) ,

(2)

where x (k) ∈ Rn means the immeasurable system state, the signal from the hth faulted actuator
in the lth faulty mode is presented by uF

hl (k), h ∈ {1, 2, ..., m}, l ∈ {1, 2, ..., L}, the total number of
faulty modes is L. y (k) ∈ Rp is the measurable output, f (x (k) , k) ∈ Rm stands for the unknown
sensor output. A ∈ Rn×n, B ∈ Rn×m and C ∈ Rn×p are system matrices with appropriate
dimensions. ρl

h means the unknown actuator efficiency factor which consist the diagonal matrix ρl =

diag
{

ρl
1, ρl

2, ..., ρl
m

}
, definition of the unknown constant ηl

h is

ηl
h =

{
0, ρl

h > 0,
0 or 1, ρl

h = 0.
(3)

Define ηl = diag
{

ηl
1, ηl

2, ...ηl
m

}
; if ρl

h = 0 and ηl
h = 0, it means that the hth actuator is outage

in the lth fault mode, ρl
h = 0 and ηl

h = 1 stand for the fault-stuck problem on the hth actuator in
the lth fault mode, 0 < ρl

h < 1 means that effectiveness of the hth actuator is damaged in the lth
fault mode, ρl

h = 1 is the no fault state symbol of the hth actuator in the lth fault mode. ωsh (k) is
the unknown time-varying bounded fault-stuck in the hth actuator. For simplicity, in the following,
the model is exploited by:

uF (k) = ρu (k) + ηωs (k) , (4)

where ρ = diag {ρ1, ..., ρm} ∈
{

ρ1, ..., ρL}.
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The following assumptions are made in this paper.

(A1) ‖ f (x (k) , k)‖ ≤ α ‖y (k)‖+ β, where α > 0, β > 0 are known constants.
(A2) The actuator fault redundancy condition is that rank (B) = rank (ρB).
(A3) The unknown time-varying bounded fault-deviation vector ωs(k)

∆
= [ωs1 (k) ...ωsm (k)]T satisfies:

ωbs(k) ≤ ωs(k) ≤ ωts(k), h = 1, ..., m, (5)

where ωts(k) and ωbs(k) stand for the unknown upper and lower bounds of ωs, respectively, and
we denote

ωbs(k)
∆
= [ωbs1 (k) ...ωbsm (k)]T , ωts(k)

∆
= [ωts1 (k) ...ωtsm (k)]T . (6)

Lemma 1. [24] Considering known matrices G ∈ Rn×n and U ∈ Rn×m, assume that U has full column
rank m < n and G = GT . Then, αUTU − G > 0 holds for a scalar α if and only if ŨTGŨ < 0 where Ũ is any
matrix whose columns are able to build the null space basis of UT .

The design of observer for the system in Equation (2) is as follows:

δx̂ (k) = Ax̂ (k) + Bρ̂u (k) + Bus (k) + L (y (k)

− Cx̂ (k)) + Bη̂ (k)
[
(I − τ) d̂ts (k) + τd̂bs (k)

]
ŷ (k) = Cx̂ (k) ,

(7)

where x̂ (k) means the estimation of x (k), L is the observer gain to be designed, and us ∈ Rm stands for
the discontinuous term. ρ̂ = diag {ρ̂1, ρ̂2, ..., ρ̂m} is the estimation of the actuator efficiency factor. d̂ts

and d̂bs are estimations of ωts and ωbs, τ = diag {τ1, ..., τm},

τh =

{
0, xT (k) Pbh ≥ 0,
1, xT (k) Pbh < 0,

(8)

bh means the hth column of B, P ∈ Rn×n is the Lyapunov matrix to be designed. The definition of
sliding surface se(k) ∈ Rm is as follows:

se (k) = BT Pe (k) , (9)

Define the error e (k) = x̂ (k)− x (k); the error dynamic can be obtained as follows:

δe (k) = Ae (k) + B [us (k) + (ρ̂− ρ) u (k)− f (x (k) , k)]− LCe (k)− Bηωs (k)

+ Bη̂ (k)
[
(I − τ) d̂ts (k) + τd̂bs (k)

]
= (A− LC) ek + B (us (k) + (ρ̂− ρ) u (k)− f (xk, k))− Bηωs (k)

+ Bη̂ (k)
[
(I − τ) d̂ts (k) + τd̂bs (k)

]
.

(10)

Let BT P = NC, then rewrite the sliding surface in Equation (9) as:

se (k) = NCe (k) . (11)

Using the following coordinate transformation

z (k) =

[
z1 (k)
z2 (k)

]
= We (k) , W =

[ (
B̃T P−1B̃

)−1B̃T(
BT PB

)−1BT P

]
(12)
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with z1 (k) ∈ Rn−mand z2 (k) ∈ Rm, B̃ is any basis of the null space of BT , B̃ ∈
{

J : BT = 0
}

.
Then, it can be obtained that

se (k) = BT PBz2 (k) , W−1 =
[

P−1B̃ B
]

. (13)

In this situation, we can obtain the reduced-order sliding mode dynamics for the sliding
surface se (z (k)) = 0

δz1 (k) =
(

B̃T P−1B̃
)−1

B̃T (A− LC) P−1B̃z1 (k) . (14)

Then, we analyze the stochastic stability of the sliding mode Equation (14).

3. Stability Analysis of the Sliding Motion Equation

In this section, the reduced-order sliding mode dynamics will be analyzed to guarantee the
stochastic stability of the overall system.

Theorem 1. The reduced-order sliding mode dynamics in Equation (14) is stochastic stable in delta domain,
if there exists a matrix P > 0 with appropriate dimension, and scalars α1 > 0 such that the following LMI holds

ψ AT P− CTYT PB 0
PA−YC (T − 2) P 0 PB

BT P 0 −α−1
1 I 0

0 BT P 0 −α−1
1 I

 < 0, (15)

with
ψ=AT P + PA− CTYT −YC. (16)

Proof. In delta domain, define a Lyapunov functional as follows:

V1 (k) = zT
1 (k)

(
B̃T P−1B̃

)
z1 (k) . (17)

Based on Lemma 1, and taking the delta operator manipulations of V1 (k) along the trajectory of
delta operator system, we can obtain:

δV1 (k) = δT (z1 (k))
(

B̃T P−1B̃
)

z1 (k) + zT
1 (k)

(
B̃T P−1B̃

)
δ (z1 (k))

+ TδT (z1 (k))
(

B̃T P−1B̃
)

δ (z1 (k))

= zT
1 (k) B̃T P−1(A− LC)T B̃z1 (k) + zT

1 (k) B̃T (A− LC) P−1B̃z1 (k)

+ TδT (z1 (k))
(

B̃T P−1B̃
)

δ (z1 (k)) .

(18)

Thinking about the certain zero term

0 =− 2δT (z1 (k))
(

B̃T P−1B̃
)

δ (z1 (k)) + δT (z1 (k)) B̃T (A− LC) P−1B̃z1 (k)

+ zT
1 (k) B̃T P−1(A− LC)T B̃δ (z1 (k)) .

(19)

Then, it can be obtained that

δV1 (k) ≤
[

zT
1 (k) δT (z1 (k))

]
Γ
[

zT
1 (k) δT (z1 (k))

]T
(20)

holds if

Γ =

[
ψ1 B̃T P−1(A− LC)T B̃

B̃T (A− LC) P−1B̃ (T − 2) B̃T P−1B̃

]
< 0 (21)
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with
ψ1 = B̃T P−1(A− LC)T B̃+B̃T (A− LC) P−1B̃. (22)

which is equivalent to[
B̃T 0
0 B̃T

] [
ψ2 P−1(A− LC)T

(A− LC) P−1 (T − 2) P−1

] [
B̃ 0
0 B̃

]
< 0, (23)

ψ2 = P−1(A− LC)T+ (A− LC) P−1. (24)

It is not difficult to derive from Lemma 2 that Γ < 0 is solvable for P > 0 and α1 > 0 if and only if
the following holds [

ψ2 − α1BBT P−1(A− LC)T

(A− LC) P−1 (T − 2) P−1 − α1BBT

]
< 0, (25)

the formulation is equivalent to[
ψ2 − α1BBT P−1 (AT − CT LT)

AP−1 − LCP−1 (T − 2) P−1 − α1BBT

]
< 0. (26)

Pre- and post-multiplying (26) by

[
P 0
0 P

]
and its transpose, we have

[
ψ3 − Pα1BBT P

(
AT − CT LT) P

P (A− LC) (T − 2) P− α1PBBT P

]
< 0, (27)

ψ3=
(

AT − CT LT
)

P + P (A− LC) , (28)

where Y = PL, YT = LT P, then Equation (28) can be rewritten as:[
ψ4 − Pα1BBT P AT P− CTYT

PA−YC (T − 2) P− α1PBBT P

]
< 0, (29)

ψ4=AT P + PA− CTYT −YC. (30)

Equation (30) can be rewritten as[
ψ4 AT P− CTYT

PA−YC (T − 2) P

]
−
[

Pα1BBT P 0
0 α1PBBT P

]
< 0, (31)

where the second term is equal to

[
PB 0
0 PB

] [
α1 I 0
0 α1 I

] [
BT P 0

0 BT P

]
. If the following LMI

holds, LMI (Equation (31)) can be solved[
ψ4 AT P− CTYT

PA−YC (T − 2) P

]
+ ϕ < 0, (32)

ϕ=

[
PB 0
0 PB

] [
α1 I 0
0 α1 I

] [
BT P 0

0 BT P

]
. (33)
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According to the Schur complement, it is easy to obtain that Equation (33) is equivalent to
ψ4 AT P− CTYT PB 0

PA−YC (T − 2) P 0 PB
BT P 0 −α−1

1 I 0
0 BT P 0 −α−1

1 I

 < 0, (34)

ψ4=AT P + PA− CTYT −YC. (35)

It can be seen that the reduced-order sliding mode dynamics in Equation (14) is stochastic stable
in delta domain if Equation (15) holds. Thus, the proof is completed.

4. Stability Analysis of the Error Dynamic

This section will focus on designing the discontinuous term u (k) to guarantee the stochastic
stability of the error system in Equation (10). us (k) can be designed as

us (k) = − (α ‖y (k)‖+ β + γ) sgn (se (k)) (36)

with the sliding surface in Equation (9). Moreover, the adaption laws are given as follows:

δρ̂h (k) = −chseh (k) uh (k),

δη̂h (k) = gh1xT (k) Pbh [(I − τh) ω̂ts (k) + τhω̂bs (k)] ,

δω̂ts (k) = δω̂bs (k) = −gh2xT (k) Pbh.

(37)

Theorem 2. With the sliding mode controller us (k), the error system in Equation (10) is stochastic stable if the
following matrix constraint is satisfied:

P (A− LC) + (A− LC)T P < 0. (38)

Proof. Define Lyapunov function V (k) = V2 (k) + V3(k) and the error variable

ρ̃ = ρ̂− ρ, η̃ = η̂ − η, d̃ts = ω̂ts −ωts, d̃bs = ω̂bs −ωbs,

V2 (k) = eT (k) Pe (k) ,

V3 (k) =
m

∑
h=1

ρ̃2
h

ch
+

m

∑
h=1

η̃2
h

gh1
+

m

∑
h=1

ηh (1− τh) ω̃2
ts

gh2
+

m

∑
h=1

ηhτhω̃2
bs

gh2
.
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Taking the stochastic delta operator manipulations of along the trajectory of system, we obtain:

δV2 (k) =
E {V (k + 1)} −V (k)

T
= T2δT (e (k)) Pδ (e (k)) + TδT (e (k)) Pe (k) + TeT (k) Pδ (e (k))

+ TδT (e (k)) Pδ (e (k)) + δT (e (k)) Pe (k) + eT (k) Pδ (e (k))

= 2eT (k)Pδe (k) + 2TeT (k) Pδe (k) + TδT (e (k)) Pδ (e (k))

+ T2δT (e (k)) Pδ (e (k))

= 2eT (k) P [(A− LC) e (k) + B (us (k) + ρ̃u (k)− f (x (k) , k))]− 2eT (k) PBηωs (k)

+ T2δT (e (k)) Pδ (e (k)) + TδT (e (k)) Pδ (e (k)) + 2TeT (k) Pδe (k)

+ 2eT (k) PBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]

= 2eT (k) P (A− LC) e (k) + 2eT (k) PBus (k) + 2eT (k) PB [ρ̃u (k)− f (x (k) , k)]

+ 2eT (k) PBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]− 2eT (k) PBηωs (k)

+ 2TeT (k) Pδe (k) + T2δT (e (k)) Pδ (e (k)) + TδT (e (k)) Pδ (e (k)).

(39)

Recalling BT P = NC, Equation (39) becomes

δV2 (k) = 2eT (k) P (A− LC) e (k) + 2eT (k)CT NTus (k) + 2eT (k) PB [ρ̃u (k)− f (x (k) , k)]

+ 2eT (k) PBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]− 2eT (k) PBηωs (k)

+ 2TeT (k) Pδe (k) + T2δT (e (k)) Pδ (e (k)) + TδT (e (k)) Pδ (e (k)).

(40)

In Equation (40) the term 2eT (k) PB [ρ̃u (k)− f (x (k) , k)] can be amplified as:

2eT (k) PB [ρ̃u (k)− f (x (k) , k)] = 2eT (k) PBρ̃u (k)− 2eT (k) PB f (x (k) , k)

≤ 2eT (k) PBρ̃u (k) + 2
∥∥∥eT (k) PB

∥∥∥ ‖ f (x (k) , k)‖

≤ 2sT
e (k) ρ̃u (k) + 2 ‖se (k)‖ (α ‖y (k)‖+ β) .

(41)

Then, the expression of δV2 (k) will become:

δV2 (k) ≤ 2eT (k) P (A− LC) e (k) + 2sT
e (k) us (k) + 2eT (k) PBρ̃u (k) + 2 ‖se (k)‖ (α ‖yk‖

+β) + 2TeT (k) Pδe (k) + T2δT (e (k)) Pδ (e (k)) + TδT (e (k)) Pδ (e (k))

+ 2eT (k) PBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]− 2eT (k) PBηωs (k) .

(42)

Substituting sliding mode controller into Equation (42), it can be obtained that:

2sT
e (k) us (k) =− 2sT

e (k) (α ‖y (k)‖+ β + γ) sgn (se (k))

=− 2sT
e (k) (α ‖y (k)‖+ β + γ) sT

e (k) sgn (se (k))

=− 2 (α ‖y (k)‖+ β + γ) |se (k)|1
≤− 2 (α ‖y (k)‖+ β + γ) ‖se (k)‖ .

(43)

Hence, we can see that

δV2 (k) ≤ 2eT (k) P (A− LC) e (k) + 2sT
e (k) ρ̃ku (k) + 2eT (k) PBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]

− 2eT (k) PBηωs (k) + T2δT (e (k)) Pδ (e (k)) + TδT (e (k)) Pδ (e (k))

+ 2TeT (k) Pδe (k) + eT (k) Pe (k)− γ‖se (k)‖2.

(44)
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For the Lyapunov function V3 (k), it can be derived that the δV3 (k) can described as:

δV3 (k) =
m

∑
h=1

2
ch

ρ̃hδρ̂h+T
m

∑
h=1

1
ch

δ2ρ̂h +
m

∑
h=1

2
gh1

η̃hδη̃h + T
m

∑
h=1

1
gh1

δ2η̃h +
m

∑
h=1

2
gh2

ηh (1− τh) d̃tsδd̃ts

+ T
m

∑
h=1

1
gh2

ηh (1− τh) δ2d̃ts +
m

∑
h=1

2
gh2

ηhτhd̃bsδd̃bs + T
m

∑
h=1

1
gh2

ηhτhδ2d̃bs,
(45)

then, we can rewrite the expression of δ (V (k)) as:

δ (V (k)) ≤ 2eT (k) P (A− LC) e (k) +2sT
e (k) ρ̃ku (k) + 2eT (k) PBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]

− 2eT (k) PBηωs (k) +
m

∑
h=1

2
ch

ρ̃hδρ̂h+T
m

∑
h=1

1
ch

δ2ρ̂h +
m

∑
h=1

2
gh1

η̃hδη̃h + T
m

∑
h=1

1
gh1

δ2η̃h

+
m

∑
h=1

2
gh2

ηh (1− τh) d̃tsδd̃ts + T
m

∑
h=1

1
gh2

ηh (1− τh) δ2d̃ts +
m

∑
h=1

2
gh2

ηhτhd̃bsδd̃bs

+ T
m

∑
h=1

1
gh2

ηhτhδ2d̃bs + 2TeT (k) Pδe (k) + eT (k) Pe (k)

+ T2δT (e (k)) Pδ (e (k)) + TδT (e (k)) Pδ (e (k))− γ‖se (k)‖2.

(46)

It should be noticed that, if we select a small enough sampling interval T, the terms containing T
are able to be suppressed, and the expression becomes:

δ (V (k)) ≤ eT (k)
[

P (A− LC) + (A− LC)T P
]

e (k)− 2eT (k) PBηωs (k)

+ 2eT (k) PBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)] + 2
m

∑
h=1

sT
eh (k) ρ̃h (k)uh (k) +

m

∑
h=1

2
gh1

η̃hδη̃h

(47)

+
m

∑
h=1

2
ch

ρ̃h (k)δρ̂h (k) +
m

∑
h=1

2
gh2

ηh (1− τh) d̃tsδd̃ts +
m

∑
h=1

2
gh2

ηhτhd̃bsδd̃bs − γ‖se (k)‖2.

Let δρ̂h (k) = −chseh (k) uh (k), then, it can be obtained that

2
m

∑
h=1

sT
eh (k) ρh (k)uh (k) +

m

∑
h=1

2
ch

ρ̃h (k)δρ̂h (k) = 0.

Note that

xT (k) PB
m

∑
h=1

ηhωsh ≤ xT (k) PB
m

∑
h=1

ηh [(I − τh)ωtsh + τlωbsh],

define

xT (k) PB
m

∑
h=1

ηhωsh = xT (k) PB
m

∑
h=1

ηh [(I − τh)ωtsh + τhωbsh]− ϕ‖se (k)‖2.

The estimation of ηh, which is η̂h and can be adjusted according to the adaptive laws:

δη̂h = gh1xT (k) Pbh [(I − τh) ω̂ts + τhω̂bs] . (48)

In addition, ω̂ts and ω̂bs are updated by the adaptive laws:

δω̂ts = δω̂bs = −gh2xT (k) Pbh, (49)

then, the formulation of δ (V (k)) will be rewritten as:

δ (V (k)) ≤ eT (k)
[

P (A− LC) + (A− LC)T P
]

e (k)− γ‖se (k)‖2 + ϕ‖se (k)‖2. (50)
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Choose appropriate constants γ and ϕ satisfying γ > ϕ. Then, the stability condition will
be obtained:

δ (V (k)) < eT (k)
(

P (A− LC) + (A− LC)T P
)

e (k) < 0. (51)

It is obvious that δ (V (k)) < 0 is correct if the matrix inequality in Equation (38) holds, which
completes the proof.

5. Section Stabilization of the Overall Closed-Loop Systems

The overall closed-loop system is described as follows:
δx̂ (k) = Ax̂ (k) + Bρ̂ku (k) +Bus (k)− LCe (k) + Bη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]
δe (k) = (A− LC) e (k) + B (us (k) + ρ̃uk − f (xk, k))− Bηωs (k)

+Bη̂ (k)
[
(I − τ) ω̂ts (k) + τd̂bs (k)

]
,

(52)

then, the sliding surface ŝ (k) will be written as:

ŝ (k) = Fx̂ (k)−
kT−T

∑
q=0

TF (A + BKρ̂ (q))x̂ (q) + (A (0) + B (0)K (0) ρ̂ (0)) x̂ (0) , (53)

where F is designed such that FB is non-singular, and K ∈ Rm×n is designed to meet that A + BKρ̂ (q)
is Hurwitz. It can be seen that:

δ (ŝ (k)) = Fδx̂ (k)−
kT−T

∑
q=T

TFδ ((A + BKρ̂ (q)) x̂ (q)). (54)

For q = kT − T, it can be obtained that

T (A (rkT−T+T) + B (rkT−T+T)K (rkT−T+T) ρ̂ (rkT−T+T)) x̂ (kT − T + T)
T

−T (A (rkT−T) + B (rkT−T)K (rkT−T) ρ̂ (rkT−T)) x̂ (kT − T)
T

.
(55)

For q = kT − T − T = (k− 2) T, it is calculated that

T (A (rkT−T) + B (rkT−T)K (rkT−T) ρ̂ (rkT−T)) x̂ (kT − T)
T

−T (A (rkT−2T) + B (rkT−2T)K (rkT−2T) ρ̂ (rkT−2T)) x̂ (kT − 2T)
T

.
(56)

Thus, it is easy to derive that:

δŝ (k) = Fδx̂ (k)− F (A + BKρ̂ (k)) x̂ (k) . (57)

According to the definition of δŝ (k), it can be derived that:

δŝ (k) = F (Ax̂ (k) + Bρ̂ (k)u (k) + Bus (k) + L (y (k)− Cx̂ (k)))− F (A + BKρ̂ (k)) x̂ (k)

+ FBη̂ (k)
[
(I − τ) ω̂ts (k) + τd̂bs (k)

]
= FAx̂ (k) + FBρ̂ (k)u (k) + FBus (k) + FL (y (k)− Cx̂ (k))− FAx̂ (k)− FBKρ̂ (k) x̂ (k)

+ FBη̂ (k)
[
(I − τ) ω̂ts (k) + τd̂bs (k)

]
= FBρ̂ (k)u (k) + FBus (k) + FL (y (k)− Cx̂ (k))− FBKρ̂ (k) x̂ (k)

+ FBη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)] .

(58)
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If δŝ (k) = 0, it can be obtained that:

FBρ̂ (k)u (k) = −FBus (k) + FLCe (k) + FBKρ̂ (k) x̂ (k)− FBη̂ (k)
[
(I − τ) ω̂ts (k) + τd̂bs (k)

]
. (59)

Therefore, the equivalent control law ueq (k) can be written as:

ueq (k) = ρ̂ (k)−1 (FB)−1 (−FBus (k) + FLCe (k) + FBKρ̂ (k) x̂ (k)− FBη̂ (k) [(I − τ) ω̂ts (k)

+τω̂bs (k)])

= ρ̂ (k)−1
(
−us (k) + (FB)−1FLiCe (k) + Kρ̂ (k) x̂ (k)− η̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)]

)
.

(60)

Substituting Equation (60) into Equation (58), we can obtain:

δx̂ (k) = (A + BKρ̂ (k)) x̂ (k) . (61)

Based on the observer equation, the present objective is to design u (k) to ensure that the
closed-loop system is able to be driven onto the sliding surface ŝ (k) = 0 with probability 1 in
finite time.

The u (k) can be defined as

u (k) = −ρ̂ (k)−1 (FB)−1ζ ŝ (k) + uadv(k) (62)

with

uadv(k) =

{
−ρ̂ (k)−1 (FB)−1ϑ (k) ŝ(k)

‖ŝ(k)‖ , ŝ (k) > ε,

−ρ̂ (k)−1 (FB)−1ϑ (k) ŝ(k)
ε , ŝ (k) ≤ ε,

ϑ (k) = ‖F‖ ‖B‖ (α ‖y (k)‖+ β + γ)
√

m + ‖F‖ ‖BK‖ ‖ρ̂ (k)‖ ‖x̂ (k)‖
+ ‖F‖ ‖B‖ ‖η̂‖ (‖I − τ‖ ‖ω̂ts (k)‖+ ‖τ‖ ‖ω̂bs (k)‖) + ‖F‖ ‖L‖ ‖Ce (k)‖.

(63)

Theorem 3. Supposing Inequalities (15) and (38) have solutions, the sliding surface is given by Equation (53).
Then, the trajectory of delta operator system in Equation (52) can be driven onto the sliding surface in finite
time with the following control law in Equation (62), and evolve in a neighborhood around the sliding surface,
converging to a residual set at the origin in the end.

Proof. Considering ŝ (k), define a Lyapunov function Vs (k) = 1
2 ŝT (k) ŝ (k),

δVs (k) = ŝT (k) δŝ (k) +
T
2

[
δŝT (k) δŝ (k)

]
= ŝT (k) (Fδx̂ (k)− F (A + BKρ̂ (k)) x̂ (k)) +

T
2

[
δŝT (k) δŝ (k)

]
= ŝT (k) Fδx̂ (k)− ŝT (k) F (A + BKρ̂ (k)) x̂ (k) +

T
2

[
δŝT (k) δŝ (k)

]
= ŝT (k) F (Ax̂ (k) + Bρ̂ (k)u (k) +Bus (k)− LCe (k) + Bη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)])

− ŝT (k) F (A + BKρ̂ (k)) x̂ (k) +
T
2

[
δŝT (k) δŝ (k)

]
=ŝT (k) FBρ̂ (k)u (k) +

T
2

[
δŝT (k) δŝ (k)

]
+ ŝT (k) F (Ax̂ (k) +Bus (k)− LCe (k)

− (A + BKρ̂ (k)) x̂ (k) + Bη̂ (k) [(I − τ) ω̂ts (k) + τω̂bs (k)])

≤ŝT (k) FBρ̂ (k)u (k) + ‖ŝ (k)‖ ‖F‖
(
‖B‖ (α ‖y (k)‖+ β + γ)

√
m + ‖L‖ ‖Ce (k)‖

)
+ ‖ŝ (k)‖ ‖F‖ (‖BK‖ ‖ρ̂ (k)‖ ‖x̂ (k)‖+ ‖B‖ ‖η̂‖ (‖I − τ‖ ‖ω̂ts (k)‖+ ‖τ‖ ‖ω̂bs (k)‖))

+
T
2

[
δŝT (k) δŝ (k)

]
.

(64)
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It should be noticed that the following fact holds:

‖sgn (ŝ (k))‖ =
∥∥∥∥(sgn(ŝ1 (k))

T , sgn(ŝ2 (k))
T , ...sgn(ŝm (k))T

)T
∥∥∥∥

=

∥∥∥∥∥∥
((

ŝ1 (k)
|ŝ1 (k)|

)T
,
(

ŝ2 (k)
|ŝ2 (k)|

)T
, ...
(

ŝ3 (k)
|ŝ3 (k)|

)T
)T
∥∥∥∥∥∥

=
√

m.

(65)

We substitute Equations (62) and (63) into Equation (64), then δVs (k) will become:

δVs (k) ≤− ŝT (k) ζ ŝ (k)− ŝT (k) FBρ̂kρ−1
k (FB)−1ϑ (k)

ŝ (k)
‖ŝ (k)‖ + ‖ŝ (k)‖ ϑ (k) +

T
2

[
δŝT (k) δŝ (k)

]
≤− ŝT (k) γŝ (k) +ŝT (k) (γ− ζ) ŝ (k) +

T
2

[
δŝT (k) δŝ (k)

]
.

(66)

In addition, considering ŝ (k) ≤ ε and the control law, there will exist

δVs (k) ≤ −ŝT (k) γŝ (k) +ŝT (k) (γ− ζ) ŝ (k) +
T
2

[
δŝT (k) δŝ (k)

]
+

ε

4
. (67)

The term T
2
[
δŝT (k) δŝ (k)

]
in the above inequality contains the parameter uncertainties and a

properly selected ζ can suppress the uncertainty. If the parameter uncertainties are large, the sampling
interval q should be selected small to guarantee that the term T

2
[
δŝT (k) δŝ (k)

]
becomes small enough.

Appropriately selecting parameter ζ, it can be obtained that

ξmax

(
(F− F (A + BKρ̂ (k)))T (γ− 2ω) (F− F (A + BKρ̂ (k)))

)
< −η

where γ and η are proper positive scalars. We can derive that

δVs (k) < −γŝT (k) ŝ (k) + η (ε) , (68)

η (ε) =

{
0, ŝ (k) > ε
ε
4 , ŝ (k) ≤ ε.

(69)

The proof is completed.

6. Numerical Example

We provide an example to prove the validity of the results mentioned above in this section.
The proposed method will be applied to design a robust sliding mode controller for the simplified
truck-trailer system, which was proposed as in [25], and the system associated with delta operator is
described as

δx (k) = Ax (k) + B
[
uF

hl (k) + f (x (k) , k)
]

with

A =

[
−0.7734 −0.6691
1.3382 −1.4425

]
, B =

[
−0.1828 −0.2360
1.0629 −0.9260

]
.

Define the sampling period as T = 0.001 and the actuator efficiency value as ρ = 0.75. The original

state x (0) of system can be chosen as
[

2 −0.5
]T

, ζ = 0.6.
After solving matrix constraint in Equation (15), the following solution can be obtained that:
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P =

[
0.4132 0.2139
0.2139 0.6069

]
, L =

[
2.4745
0.6889

]
, α1 = 0.25.

Figure 1 shows the sliding surface applied in the δ−domain, which can be denoted by ŝ (k).
Considering state variable x(k), Figures 2 and 3 compare the corresponding state trajectories of system
and its observer. It is easy to conclude that the system is stochastically stable. Figures 4 and 5 compare
the current results with the consequences gotten by the methods in previous work.
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Figure 1. The figure of ŝk.
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Figure 2. State component x1 and its estimation.
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Figure 3. State component x2 and its estimation.
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Figure 4. x1 and its estimation in previous work.
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7. Conclusions

In this paper, we have investigated delta operator method to research the adaptive sliding mode
control for high-frequency sampled-data systems with actuator faults. A novel observer-based sliding
mode control method is proposed to deal with the problem. In future work, we will pay attention
to the situation in which is influenced by network-induced communication delay and data packet
losses are taken into account, simultaneously. In the future, we will focus on the combination of delta
operator with semi-Markov systems, switched positive system, etc. and consider the influence of
dead-zone or saturation to the overall system.
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