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Abstract: In this paper, we investigate the design and performance of static feedback controllers
with partial-state information for the seismic protection of tall buildings equipped with incomplete
multi-actuation systems. The proposed approach considers a partially instrumented multi-story
building with an incomplete system of interstory force–actuation devices implemented on selected
levels of the building, and an associated set of collocated sensors that measure the corresponding
interstory drifts and interstory velocities. The main elements of the proposed controller design
methodology are presented by means of a twenty-story building equipped with a system of
ten interstory actuators arranged in three different layouts: concentrated, semi-distributed and
fully-distributed. For these control configurations, partial-state controllers are designed following a
static output-feedback H-infinity controller design approach, and the corresponding frequency and
time responses are investigated. The obtained results clearly indicate that the proposed partial-state
controllers are effective in mitigating the building seismic response. They also show that a suitable
distribution of the instrumented stories is a relevant factor in the control system performance.

Keywords: structural vibration control; static output-feedback; large-scale structures; multi-actuator
systems; distributed sensors; information constraints

1. Introduction

Vibration control of large buildings and civil structures is an important issue that has attracted
increasing research attention over the last years [1–5]. In recent works, a variety of complex and
sophisticated control systems with multiple actuation devices has been considered to provide an
improved level of vibrational protection. Thus, for example, the usage of multiple Tuned Mass
Dampers (TMDs) is proposed in [6–8], an innovative Multiple Tuned Mass Damper system that
uses the building floors as TMD devices is investigated in [9,10], the combined action of TMDs
and Tuned Liquid Column Dampers for control of wind-induced vibrations in super tall buildings
is discussed in [11], a system of Multiple Active Tendons is proposed in [12] for vibration control
of irregular buildings, and a system of Multiple Cardan Gyroscopes for vibration control of tower
structures is proposed in [13]. Interstory force–actuation devices, as those schematically displayed in
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Figures 1b and 2, are particularly suitable to make up multi-actuator systems for large-scale structures.
This kind of actuation device facilitates acquiring valuable state information by means of collocated
sensors [14], and also allows for considering complex control configurations formed by a large set
of actuators and sensors that are distributed throughout the structure. Relevant works in this line
include the design and study of complex multi-actuation systems with information constraints using
advanced control design methodologies. Thus, the design of optimal passive-damping systems using
a state-feedback control approach is conducted in [15,16]. In [17], decentralized time-delayed dynamic
output-feedback H∞ controllers are obtained using a homotopic transformation. Decentralized and
semi-decentralized control strategies based on substructure decomposition are investigated in [18–20].
Decentralized static output-feedback H∞ controllers are obtained in [21] by solving a single-step Linear
Matrix Inequality (LMI) optimization problem. Static output-feedback H∞ controllers with a finite
frequency range are proposed in [22] and further developed in [23]. An adaptive control strategy
for nonlinear building models with semi-active magnetorheological dampers is investigated in [24].
Dynamic output-feedback controllers with both continuous and sampled feedback information are
computed in [25] by means of iterative LMI procedures. In addition, an LMI formulation for robust
non-fragile static controllers with sampled-data feedback information is obtained in [26] using a
dissipativity approach.
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Figure 1. (a) simplified mechanical model for an n-story building with story masses mi, stiffness
coefficients ki and damping coefficients ci, i = 1, . . . , n; and (b) interstory actuation device.
The actuation device di is implemented at the building position pi between the stories spi−1 and
spi . The interstory actuator di produces a pair of opposite structural forces of magnitude |ui(t)| on the
supporting stories spi−1 and spi .
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(a) Actuation Scheme 1 (b) Actuation Scheme 2
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(c) Actuation Scheme 3
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Figure 2. Incomplete actuation schemes in a 20-story building. (a) concentrated actuation scheme AS1
with m = 10 actuators located at positions AP1 = [1, 2, . . . , 10]; (b) semi-distributed actuation scheme
AS2 with m = 10 actuators located at positions AP2 = [1, 2, 3, 4, 5, 7, 10, 13, 16, 19]; (c) distributed
actuation scheme AS3 with m = 10 actuators located at positions AP3 = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19].

In this paper, we present a controller design methodology for the seismic protection of tall
buildings equipped with a distributed set of actuators and collocated sensors. More specifically,
we assume that some of the building stories are equipped with an interstory force–actuation device
and a sensing unit that can measure the corresponding interstory drift and interstory velocity [14].
We also assume that the building is only partially instrumented and, consequently, the available state
information is incomplete. This kind of control configuration is poorly studied in the literature and
poses serious computational challenges in large-dimensional problems. The solution proposed in
this work is based on an advanced static output-feedback H∞ approach that allows for obtaining
controllers with incomplete state information by solving a two-step Linear Matrix Inequality (LMI)
optimization problem [27–29]. This controller design methodology is applied to study the effectiveness
of different configurations of incomplete multi-actuator systems with partial state information, paying
special attention to the influence of the actuation system distribution on the control performance.
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In particular, we consider three different actuation schemes for a 20-story building equipped with
a system of 10 actuation devices: a concentrated actuation scheme, a semi-distributed actuation
scheme, and a fully-distributed actuation scheme (see Figure 2). For these three actuation layouts,
partial-state controllers that only use the state information corresponding to the instrumented stories
are designed and their frequency and time responses are investigated. The obtained results confirm
the effectiveness of structural vibration control strategies with incomplete multi-actuator systems and
partial state information. They also point out that an enhanced performance can be achieved by a
suitable distribution of the instrumented stories.

The rest of the paper is organized as follows: in Section 2, a state-space model for the twenty-story
building with incomplete actuation schemes is presented. In Section 3, full-state and partial-state
controllers are designed for the different control configurations and the corresponding frequency
characteristics are investigated. In Section 4, numerical simulations of the time responses are conducted
and illustrative peak-value plots of the interstory drifts, absolute story accelerations and control efforts
are presented and compared. Finally, in Section 5, some conclusions and future research directions are
briefly discussed.

2. Building Model

In this section, we provide a dynamical model for the lateral displacement of an n-story building
equipped with different actuation schemes. The particular models corresponding to a twenty-story
building with the actuation schemes displayed in Figure 2 are discussed in detail. These particular
models will be used in the controllers designs presented in Section 3 and the numerical simulations
carried out in Section 4. The building motion can be described by the second-order differential equation

M q̈(t) + Cd q̇(t) + Ks q(t) = Tuu(t) + Tww(t), (1)

where q(t) =
[
q1(t), . . . , qn(t)

]T is the vector of story displacements with respect to the ground, w(t)
is the seismic ground acceleration and u(t) is the vector of control actions. M, Cd and Ks are the
mass, damping and stiffness matrices, respectively, which model the mechanical characteristics of the
building; Tu is the control location matrix, which determines the structural effect of the actuation forces;
and Tw is the disturbance input matrix, which models the effect of the ground disturbance. The mass
matrix is a diagonal matrix M = diag(m1, m2, . . . , mn) and the stiffness matrix has the following
tridiagonal structure:

Ks =



k1 + k2 −k2

−k2 k2 + k3 −k3

· · · · · · · · ·
· · · · · · · · ·

−kn−1 kn−1 + kn −kn

−kn kn

 , (2)

where mi and ki, i = 1, . . . , n denote the mass and stiffness coefficient of the i-th story, respectively
(see Figure 1a). When the story damping coefficients ci, i = 1, . . . , n are known, a damping matrix
Cd with the structure shown in Equation (2) can be obtained by substituting the coefficients ki by the
corresponding ci. However, most frequently, the story damping coefficients are unknown. In this
case, the damping matrix Cd can be computed from M and K by setting a proper damping ratio on
the building modes [30]. The disturbance input matrix has the form Tw = −M[1]n×1, where [1]n×1

denotes a vector of dimension n with all its entries equal to 1. The structure of the control location
matrix Tu depends on the particular characteristics of the considered actuation scheme. In this work,
we assume that the control forces are exerted by a system of m devices d1, . . . , dm, where di is an
interstory actuator implemented at the building position pi. As indicated in Figure 1b, the actuation
device di produces a force ui(t) on the story number pi (upper story), and an opposite force −ui(t)
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on the story number pi − 1 (lower story). An actuation scheme is determined by a list of actuation
positions AP = [p1, . . . , pm]. If the actuation scheme is complete, that is, if an actuation device is
implemented at every building level, then the list of actuation positions is APc = [1, 2, . . . , n] and the
corresponding control location matrix is a square matrix of size n with the following upper-diagonal
band form:

TAPc
u =


1 −1

1 −1
· · · · · ·

· · · · · ·
1 −1

1

 . (3)

For an incomplete actuation scheme with a list of positions AP = [p1, . . . , pm], m < n, the
corresponding control location matrix TAP

u is a rectangular matrix of size n×m that can be obtained
by extracting the corresponding columns from TAPc

u , that is:

TAP
u = TAPc

u (1, 2, . . . , n; AP) = TAPc
u (1, 2, . . . , n; p1, . . . , pm). (4)

Thus, for the concentrated actuation scheme AS1 in Figure 2a, the list of positions is
AP1 = [1, 2, . . . , 10] and we have the control location matrix TAP1

u = TAPc
u (1, 2, . . . , 20; AP1), that is:

TAP1
u = TAPc

u (1, 2, . . . , 20; 1, 2, . . . , 10) =



1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



(5)

For the semi-distributed actuation scheme AS2 in Figure 2b, the actuation positions
are AP2 = [1, 2, 3, 4, 5, 7, 10, 13, 16, 19] and the corresponding control location matrix has the
following form:

TAP2
u = TAPc

u (1, 2, ..., 20; AP2) =



1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



(6)
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Finally, for the fully-distributed actuation scheme AS3 in Figure 2c, the list of actuation positions
is AP3 = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19], and we obtain the control location matrix

TAP3
u = TAPc

u (1, 2, ..., 20; AP3) =



1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



(7)

The interstory drift ri(t) is the relative displacement between the consecutive stories located at
the building levels i and i − 1. The vector of interstory drifts r(t) = [r1(t), r2(t), . . . , rn(t)]T can be
computed as follows: {

r1(t) = q1(t),

ri(t) = qi(t)− qi−1(t), for i = 2, . . . , n.
(8)

By considering the state vector

x(t) = [r1(t), ṙ1(t), r2(t), ṙ2(t), . . . , rn(t), ṙn(t)]T (9)

that arranges the interstory drifts and interstory velocities in increasing order, we obtain a first-order
state-space model

ẋ(t) = A x(t) + B u(t) + E w(t), (10)

with

A = C Â C−1, B = C B̂, E = C Ê, (11)

Â =

[
[0]n×n In

−M−1Ks −M−1Cd

]
, B̂ =

[
[0]n×m

M−1Tu

]
, Ê =

[
[0]n×1

−[1]n×1

]
, (12)

where In is the identity matrix of dimension n, [0]n×m represents a zero-matrix of the indicated
dimensions, and C is the change-of-basis matrix corresponding to the state transformation

x(t) = C
[

q(t)
q̇(t)

]
. (13)

3. Controllers Design

In this section, we consider a twenty-story building model defined by the mass, stiffness and
damping parameters collected in Table 1 [14], and equipped with the incomplete actuation schemes
AS1, AS2 and AS3 displayed in Figure 2. For these three actuation layouts, we first compute optimal
H∞ state-feedback controllers by assuming that the building incorporates a complete system of sensors
that provide full-access to the state information. Next, we consider a more realistic scenario of a
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partially instrumented building equipped with a restricted system of sensors, which are collocated
with the actuation devices. For this second control setup, we compute suboptimal H∞ controllers
following a static output-feedback approach.

Table 1. Twenty-story building model: mass, stiffness and damping characteristics.

Story 1–5 6–11 12–14 15–17 18–19 20

mass (×106 Kg) 1.10 1.10 1.10 1.10 1.10 1.10
stiffness (×108 N/m) 8.62 5.54 4.54 2.91 2.56 1.72
relative damping 2%

3.1. Controllers with Full-State Information

Assuming that the control objective is to reduce the building vibrational response by means of
moderate control actions, we consider the vector of controlled-outputs

z(t) = Cz x(t) + Dz u(t) (14)

defined by the matrices

Cz =

[
I2n

[0]m×2n

]
, Dz = α

[
[0]2n×m

Im

]
, (15)

where α is a scaling factor that allows adjusting the control action intensity. When the full state
information is available, we can consider a state-feedback controller

u(t) = Gx(t) (16)

defined by the state gain matrix G ∈ Rm×2n, which produces the closed-loop system{
ẋ(t) = AG x(t) + Ew(t),

z(t) = CG x(t),
(17)

with
AG = A + BG, CG = C + DG. (18)

The H∞ controller design methodology considers the system norm

γG = sup
‖w‖2 6=0

‖z‖2

‖w‖2
, (19)

where ‖ f ‖2 =
[∫ ∞

0 f T(t) f (t) dt
]1/2 is the usual continuous 2-norm. The value γG represents the

worst-case gain from the disturbance-input to the closed-loop controlled-output defined by the control
gain matrix G. The controller design objective is to obtain an optimal state-feedback controller
u(t) = G̃x(t) that produces an asymptotically stable matrix AG̃ and attains a minimum H∞-norm
value γ

G̃
. Using an LMI formulation, the optimal state-feedback H∞ controller can be computed by

solving the following optimization problem [31]:

P :

maximize η,

subject to X > 0, η > 0, and the LMI in (21),
(20)

[
AX + XAT + BY + YT BT + ηEET ∗

CzX + DzY −I2n+m

]
< 0, (21)
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where ∗ denotes the transpose of the symmetric entry and X = XT ∈ R2n×2n, Y ∈ Rm×2n are
the optimization variables. If an optimal value η̃ is attained in P for the pair

(
X̃, Ỹ

)
, then the

state-feedback gain matrix G̃ = ỸX̃−1 is an optimal solution to the H∞ controller synthesis problem
and the corresponding γ-value can be computed as γ

G̃
=
(
η̃
)−1/2.

For a given state-feedback controller u(t) = Gx(t), the corresponding γ-value can also be
computed by considering the disturbance to controlled-output closed-loop transfer function

TG(ω) = CG(2πωjI2n − AG)
−1E, (22)

and solving the optimization problem

γG = sup
ω

σmax
[
TG(ω)

]
, (23)

where j =
√
−1, ω is the frequency in hertz, and σmax[ · ] denotes the maximum singular value.

To obtain an optimal state-feedback control gain matrix G̃1 for the actuation scheme AS1, we solve
the LMI optimization problem P with the values n = 20, m = 10; the matrices A, B, E in Equation (11)
corresponding to the values in Table 1 and the control location matrix TAP1

u in Equation (5); and the
controlled-output matrices Cz, Dz in Equation (15) with the scaling factor α = 10−7.4. Proceeding in a
similar way, we also compute optimal state-feedback control gain matrices G̃2 and G̃3 for the actuation
schemes AS2 and AS3 using, respectively, the control location matrices TAP2

u in Equation (6) and TAP3
u

in Equation (7). The γ-values obtained for the full-state optimal controllers are the following:

γ
G̃1

= 2.9153, γ
G̃2

= 3.0850, γ
G̃3

= 2.9852 (24)

and the corresponding frequency responses are displayed in Figure 3. Looking at the overall view
presented in Figure 3a, it can be appreciated that the three controllers produce a significant reduction
of the building resonant peaks. In accordance with the obtained γ-values, the plots in Figure 3b show
that a slightly higher performance is attained by the concentrated actuation scheme AS1 with the
controller G̃1 in the main resonant peak. However, looking again at the overall view in Figure 3a, it
should be noted that a better behavior is exhibited by the distributed actuation schemes AS2 and AS3
in the second resonant peak. The γ-value corresponding to the uncontrolled system is γunc = 5.0720.
The relative γ-value reductions with respect to the uncontrolled building response attained by the
optimal full-state controllers are collected in Table 2.
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Figure 3. Frequency response of the optimal controllers with full-state information. Maximum singular
values of the closed-loop transfer functions TG̃1

(ω) (blue solid line), TG̃2
(ω) (red dash-dotted line)

and TG̃3
(ω) (green dashed line), and the open-loop transfer function T(ω) = C(2πωjI2n − A)−1E

(black solid line). (a) overall view of the first five resonant modes; and (b) close view of the main
resonant peak.
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Table 2. Percentages of γ-value reductions attained by the full-state and partial-state controllers for
the actuation schemes AS1, AS2 and AS3 with respect to the H∞-norm of the uncontrolled building
γunc = 5.0720.

Actuation Scheme AS1 AS2 AS3

Full-state controller G̃i 42.52 39.18 41.14
Partial-state controller K̃i 38.74 39.18 41.14

3.2. Controllers with Partial State Information

In this section, we assume that the available feedback information is supplied by a system of
sensors that are collocated with the actuation devices, and provide a vector of 2m measured outputs

y(t) = [y1(t), y2(t), . . . , y2m−1(t), y2m(t)]T , (25)

where y2i−1(t) = rpi (t) and y2i(t) = ṙpi (t) are, respectively, the interstory drift and interstory velocity
associated to the actuation device di implemented at the building position pi (between the stories
spi−1 and spi ). Using a measured-output matrix Cy ∈ R2m×2n, the vector y(t) can be written in the
form y(t) = Cy x(t). For a complete actuation scheme, Cy is an identity matrix of dimension 2n.
For an incomplete actuation scheme defined by a list of positions AP = [p1, . . . , pm], the corresponding
measured-output matrix CAP

y can be obtained by selecting the rows in positions 2pi− 1, 2pi, i = 1, . . . , m
from the identity matrix I2n, that is:

CAP
y = I2n(2p1 − 1, 2p1, . . . , 2pm − 1, 2pm; 1, 2, . . . , 2n). (26)

Thus, for the concentrated actuation scheme AS1, the list of actuation positions is AP1 = [1, 2, ..., 10]
and the corresponding measured-output matrix has the form CAP1

y =
[
I20, [0]20×20

]
. For the distributed

actuation scheme AS2, the list of actuation positions is AP2 = [1, 2, 3, 4, 5, 7, 10, 13, 16, 19] and the
associated measured-output matrix CAP2

y is the submatrix of the identity matrix I40 formed by the
rows in positions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 19, 20, 25, 26, 31, 32, 37 and 38. For the distributed
actuation scheme AS3, the list of actuation positions is AP3 = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] and the
associated measured-output matrix CAP3

y is the submatrix of the identity matrix I40 formed by the rows
in positions 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 37 and 38.

Considering the imposed constraints on the feedback information, we are interested in designing
a static output-feedback controller

u(t) = Ky(t) (27)

defined by a constant output-feedback gain matrix K ∈ Rm×2m, which allows computing the vector of
control actions from the vector of measured-outputs y(t) by means of a simple matrix multiplication.
Now, the closed-loop system has the following form:{

ẋ(t) = AK x(t) + Ew(t),

z(t) = CK x(t),
(28)

with
AK = A + BKCy, CK = Cz + DzKCy, (29)

and the associated H∞-norm takes the value

γK = sup
ω

σmax
[
TK(ω)

]
, (30)



Designs 2018, 2, 6 10 of 18

where the closed-loop transfer function TK(ω) has now the form

TK(ω) = CK(2πωjI2n − AK)
−1E. (31)

In this new context, the H∞ controller design aims at obtaining an optimal static output-feedback
controller u(t) = K̃y(t) that produces an asymptotically stable closed-loop matrix AK̃ and, at the
same time, attains a minimum H∞-norm value γ

K̃
. The effective computation of this kind of optimal

controllers for large-scale systems is a difficult problem that poses major theoretical and computational
challenges. However, according to the results presented in [27,28], a suboptimal static output-feedback
H∞ controller can be designed by solving the following LMI optimization problem:

Po :

{
maximize η,

subject to XQ > 0, XR > 0, η > 0 and the LMI in Equation (33),
(32)

[
AQXQQT+ QXQQTAT+ ARXRRT+ RXRRTAT+ BYRRT+ RYT

R BT+ ηEET ∗
CzQXQQT+ CzRXRRT+ DzYRRT −I2n+m

]
< 0, (33)

where XQ, XR and YR are the optimization variables, Q is a matrix whose columns contain a basis of
Ker(Cy), and the matrix R has the form

R = C†
y + QQ†X̃CT

y
(
CyX̃CT

y
)−1, (34)

where
C†

y = CT
y
(
Cy CT

y
)−1, Q† =

(
QTQ

)−1QT (35)

are the Moore–Penrose pseudoinverses of Cy and Q, respectively, and X̃ is the optimal X-matrix obtained
in the LMI optimization problem P corresponding to the full-state controller design. If an optimal
value η̃o is attained in Po for the triplet

(
X̃Q, X̃R ,ỸR

)
, then the matrix K̃ = ỸR

(
X̃R
)−1 defines a static

output-feedback controller u(t) = K̃y(t) with asymptotically stable closed-loop matrix AK̃, and the

value γ̃
K̃
=
(
η̃o
)−1/2 provides an upper bound of the associated H∞-norm value γ

K̃
.

To design a partial-state controller for the proposed twenty-story building model with the
concentrated actuation scheme AS1, we consider the measured-output vector

y(1)(t) = [r1(t), ṙ1(t), r2(t), ṙ2(t), . . . , r10(t), ṙ10(t)]T , (36)

and solve the LMI optimization problem Po in Equation (32) with the same matrices A, B, E, Cz,
Dz used in the design of the state-feedback gain matrix G̃1 and the matrices Q, R defined by the
measured-output matrix CAP1

y =
[
I20, [0]20×20

]
and the optimal X-matrix computed in the associated

full-state controller design. As a result, we obtain an output-feedback gain matrix K̃1 with a γ-value
upper bound γ̃K̃1

= 3.3846. The frequency responses of the partial-state controller u(t) = K̃1 y(1)(t)

and the associated full-state controller u(t) = G̃1 x(t) are displayed in Figure 4b. The plots in the figure
show a small (but clearly appreciable) loss of performance of the partial-state controller (blue solid
line) with respect to the full-state controller (black dashed line). Using the closed-loop transfer function
TK̃1

(ω) and solving the optimization problem in Equation (30), we obtain that the actual γ-value of
the partial-state controller is γK̃1

= 3.1071, which represents an increment of 6.58% with respect to the
optimal value γ

G̃1
= 2.9153.

For the semi-distributed actuation scheme AS2, the vector of measured outputs y(2)(t)
contains the interstory drifts and interstory velocities indicated in the list of positions
AP2 = [1, 2, 3, 4, 5, 7, 10, 13, 16, 19]. In this case, we obtain an output-feedback gain matrix K̃2 with a
γ-value upper bound γ̃K̃2

= 3.0857 by solving the LMI optimization problem Po with the same matrices

A, B, E, Cz, Dz used in the design of the state-feedback gain matrix G̃2 and the matrices Q, R defined by
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the measured-output matrix CAP2
y and the corresponding auxiliary X-matrix. Comparing the value of

the upper bound γ̃K̃2
with the optimal value γ

G̃2
= 3.0850, it can be seen that the static output-feedback

controller u(t) = K̃2 y(2)(t) is practically optimal. In fact, the plots presented in Figure 4c show that
the frequency response of the partial-state controller defined by the output-feedback gain matrix K̃2

(red solid line) is practically equal to the frequency response of the optimal full-state controller defined
by the state-feedback gain matrix G̃2 (black dashed line).

For the fully-distributed actuation scheme AS3, the vector of measured outputs y(3)(t)
contains the interstory drifts and interstory velocities indicated in the list of positions
AP3 = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]. Following the same computational procedure used in the previous
cases, we obtain an output-feedback gain matrix K̃3 with a γ-value upper bound γ̃K̃3

= 2.9921.
By considering the closed-loop transfer function TK̃3

(ω) and solving the optimization problem in

Equation (30), we find that the actual γ-value of the partial-state controller u(t) = K̃3 y(3)(t) is
γK̃3

= 2.9852, which matches the optimal value γ
G̃3

= 2.9852 attained by the full-state controller. As it
happened with the semi-distributed scheme AS2, looking at the plots presented in Figure 4d, it can be
appreciated that the frequency response of the partial-state controller defined by the output-feedback
gain matrix K̃3 (green solid line) is practically equal to the frequency response of the optimal full-state
controller defined by the state-feedback gain matrix G̃3 (black dashed line).

To provide a better comparison of the partial-state controllers behavior, the corresponding
frequency responses are displayed together in Figure 4a, where the blue solid line represents the
partial-state controller defined by the output-feedback gain matrix K̃1, the red dash-dotted line pertains
to the partial-state controller defined by K̃2, and the green dashed line represents the partial-state
controller defined by K̃3. The frequency response of the uncontrolled building (black solid line)
is also included as a reference. Looking at the plots in this figure, it can be clearly seen that
the three partial-state controllers produce a significant reduction of the building resonant peaks.
Moreover, considering the percentages of γ-value reduction collected in Table 2 and the behavior
in the secondary resonant peaks, it becomes apparent that the best performance under partial-state
information corresponds to the fully-distributed configuration AS3.

Remark 1. The total number of elements in the control matrix is related to the number of optimization variables
in the LMI design problem. This factor can produce a critical increase of the computation time required by
the controller design procedure and is a major issue in large-scale problems. For an n-story building with a
system of m actuation devices, the full-state control matrices have 2 nm elements and the proposed partial-state
control matrices have 2 m2 elements. Specifically, for the 20-story building with m = 10 actuation devices
considered in this paper, the full-state control matrices have 400 elements and the partial-state control matrices
have 200 elements. Obtaining the full-state control matrix G̃1 by solving the LMI optimization problem P in
Equation (20) has required a computation time of 42.71 s. Computing the partial-state control matrix K̃1 by
solving the LMI optimization problem Po in Equation (32) has required an additional computation time of 6.60 s.
For the full-state control matrices G̃2 and G̃3, the computation times have been 49.60 s and 43.34 s, respectively,
and the additional computation times required to obtain the partial-state controllers K̃2 and K̃3 have been 5.28 s
and 4.17 s, respectively.

Remark 2. It should be noted that the R-matrix proposed in Equation (34) uses the optimal X-matrix obtained
in the design of the full-state controller. For a given incomplete actuation scheme, the proposed two-step controller
design procedure involves computing both the full-state and the partial-state controllers. This approach has the
advantage of providing a natural reference for the performance of the suboptimal partial-state controller and can
be a computationally effective controller design strategy for large-scale structures with incomplete actuation
schemes of moderate dimension.
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(b) Actuation Scheme 1
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(c) Actuation Scheme 2
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(d) Actuation Scheme 3
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Figure 4. Frequency response of the full-state and partial-state controllers for the different actuation
schemes. (a) overall view of the frequency response corresponding to uncontrolled building (black
solid line) and the partial-state controllers defined by the output-feedback control matrices K̃1 (blue
solid line), K̃2 (red dash-dotted line) and K̃3 (green dashed line); (b) concentrated actuation scheme
AS1. Frequency response of the partial-state controller defined by the output-feedback control matrix
K̃1 (blue solid line) and the full-state controller defined by the state-feedback control matrix G̃1 (black
dashed line); (c) semi-distributed actuation scheme AS2. Frequency response of the partial-state
controller defined by the output-feedback control matrix K̃2 (red solid line) and the full-state controller
defined by the state-feedback control matrix G̃2 (black dashed line); and (d) fully-distributed actuation
scheme AS3. Frequency response of the partial-state controller defined by the output-feedback control
matrix K̃3 (green solid line) and the full-state controller defined by the state-feedback control matrix G̃3

(black dashed line).

4. Numerical Results

To illustrate the time-response characteristics of the proposed partial-state controllers, a suitable
set of numerical simulations has been carried out using the scaled Kobe 1995 seismic record as ground
acceleration input (see Figure 5). For the concentrated actuation scheme AS1, the absolute peak-values
of the interstory-drifts, story absolute accelerations and control efforts corresponding to the different
control configurations are presented in Figure 6, where the black solid line with squares presents the
response of the uncontrolled building, the blue solid line with triangles corresponds to the full-state
controller defined by the state-feedback control matrix G̃1 and the red dashed line with asterisks
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represents the partial-state controller defined by the output-feedback control matrix K̃1. The time
responses corresponding to the semi-distributed actuation scheme AS2 and the fully-distributed
actuation scheme AS3 are presented in Figures 7 and 8, respectively, using the same colors, line
styles and symbols. To complement this graphical information, the percentages of reduction in the
interstory drift peak-values with respect to the uncontrolled response at selected levels of the building
(see Remark 3) are collected in Table 3, and the maximum control-effort peak-values are presented in
Table 4.
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Figure 5. Ground acceleration disturbance. North-South Kobe 1995 seismic record scaled to an acceleration
peak-value of 1 m/s2.
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(a) Interstory drift peak-values
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Figure 6. Time response of the twenty-story building with the concentrated actuation scheme AS1.
Seismic response to the scaled North-South Kobe 1995 ground acceleration record for the uncontrolled
configuration (black solid line with squares), the full-state controller defined by the state-feedback gain
matrix G̃1 (blue solid line with triangles) and the partial-state controller defined by the output-feedback
gain matrix K̃1 (red dashed line with asterisks). (a) interstory drift peak-values; (b) absolute acceleration
peak-values; and (c) control effort peak-values.
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Figure 7. Time response of the twenty-story building with the semi-distributed actuation scheme AS2.
Seismic response to the scaled North-South Kobe 1995 ground acceleration record for the uncontrolled
configuration (black solid line with squares), the full-state controller defined by the state-feedback gain
matrix G̃2 (blue solid line with triangles) and the partial-state controller defined by the output-feedback
gain matrix K̃2 (red dashed line with asterisks). (a) interstory drift peak-values; (b) absolute acceleration
peak-values; and (c) control effort peak-values.

Table 3. Percentage of reduction in the interstory drift peak-values with respect to the uncontrolled
response for the proposed full-state and partial-state controllers. The North-South Kobe 1995 seismic
record, scaled to an acceleration peak of 1 m/s2, has been taken as disturbance input.

Story Level 1 6 12 15 18 20

full-state controller G̃1 32.41 41.37 55.94 49.31 52.97 65.24

full-state controller G̃2 39.76 47.12 58.11 55.38 59.19 70.63

full-state controller G̃3 40.89 43.57 60.03 56.20 59.83 71.94

partial-state controller K̃1 37.77 47.43 58.88 51.15 54.89 64.76

partial-state controller K̃2 39.60 44.67 57.66 53.55 54.37 65.06

partial-state controller K̃3 40.07 42.15 58.96 54.89 58.08 69.78

Table 4. Maximum control-effort peak values (in MN) corresponding to the computed full-state and
partial-state controllers. The North-South Kobe 1995 seismic record, scaled to an acceleration peak of
1 m/s2, has been taken as disturbance input.

Controller G̃1 G̃2 G̃3 K̃1 K̃2 K̃3

maximum control-effort peak-value (×106 N) 1.656 1.385 1.342 2.132 1.343 1.273
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Figure 8. Time response of the twenty-story building with the fully-distributed actuation scheme AS3.
Seismic response to the scaled North-South Kobe 1995 ground acceleration record for the uncontrolled
configuration (black solid line with squares), the full-state controller defined by the state-feedback gain
matrix G̃3 (blue solid line with triangles) and the partial-state controller defined by the output-feedback
gain matrix K̃3 (red dashed line with asterisks). (a) interstory drift peak-values; (b) absolute acceleration
peak-values; and (c) control effort peak-values.

Looking at the plots in Figures 6–8, the following facts can be appreciated: (i) all the proposed
controllers provide a good level of reduction in the interstory drift and absolute acceleration
peak-values with respect to the uncontrolled response; (ii) for the distributed actuation schemes
AS2 and AS3, the behavior of the full-state controller and the partial-state controller are very similar;
and (iii) for the concentrated actuation scheme AS1, the interstory drift peak-values produced by the
partial-state controller are slightly smaller than those attained by the full-state controller. However,
significantly larger control-effort peak-values are also required by the partial-state controller. These
time-response results are entirely consistent with the frequency-response characteristics observed in
Section 3, and indicate that the performance of the partial-state controllers is not affected by the reduced
feedback information in the distributed actuation schemes AS2 and AS3. In contrast, a noticeable
loss of performance can be observed in the partial-state controller corresponding to the concentrated
actuation scheme AS1. The same facts can be appreciated by looking at the data collected in Table 3
and Table 4, where it becomes apparent that larger percentages of reduction in the interstory drift
peak-values are attained by the distributed actuations schemes AS2 and AS3 with smaller control-effort
peaks. Particularly remarkable is the performance of the fully-distributed partial-state controller K̃3,
which produces larger reductions in the interstory drift peak-values than the full-state controller G̃1

and, at the same time, requires a maximum control-effort peak-value that is a 23.1% smaller than the
one required by the concentrated full-state controller G̃1.

Remark 3. In order to provide a meaningful summary of the building response, the percentages of reduction
in the interstory drift peak-values collected in Table 3 have been constrained to a selected set of building levels,
which include the top and bottom level and the intermediate levels where the uncontrolled response presents a
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locally maximum value (see the black line with squares in Figure 6a). Specifically, the selected building levels are:
1, 6, 12, 15, 18 and 20. Looking at the data in Table 1, it can be seen that these levels are coincident with the
stiffness discontinuities.

Remark 4. All the computations in this paper have been carried out using Matlab c© R2015b (MathWorks,
Natick, MA, USA) on a regular laptop with an Intel c© CoreTM i7-2640M processor (Intel Corporation, Santa
Clara, CA, USA) at 2.80 GHz. The LMI optimization problems have been solved with the function mincx()
included in the Robust Control ToolboxTM.

5. Conclusions

In this paper, the design of partial-state controllers with incomplete multi-actuation systems for
the seismic protection of large buildings has been investigated. The proposed approach considers a
partially instrumented building with a system of interstory force–actuation devices implemented at
selected levels of the building and an associated set of collocated sensors that provide the interstory
drifts and interstory velocities corresponding to the building’s instrumented levels.

In order to study the influence of the actuation system distribution on the control performance,
three different actuation schemes have been considered for a 20-story building equipped with a system
of 10 actuation devices: (i) a concentrated actuation scheme formed by a block of 10 actuation devices
implemented at the 10 lowest levels of the building, (ii) a semi-distributed actuation scheme consisting of
a block of five actuators implemented at the five lowest levels of the building and a set of five actuators
uniformly distributed in the remaining 15 upper levels and (iii) a fully-distributed actuation scheme
made up of 10 actuation devices implemented at alternate positions from the first to the nineteenth
building levels. For these three different actuation layouts, ideal H∞ state-feedback controllers have
been designed assuming that the interstory drifts and interstory velocities corresponding to all the
building levels are available. Next, partial-state controllers that only use the interstory drifts and
interstory velocities of the instrumented building levels as feedback information have been designed
using an advanced static output-feedback H∞ approach. This controller design methodology provides
a novel line of solution to the considered problem, allowing to obtain effective partial-state controllers
with a reduced computational cost.

After studying the frequency-response and time-response of the obtained full-state and
partial-state controllers, two relevant facts have been observed: (i) for the semi-distributed and
fully-distributed actuation schemes, the partial-state controllers and the full-state controllers have
practically the same level of performance; and (ii) the fully-distributed actuation scheme is particularly
effective, producing similar or even superior levels of response mitigation with lower levels of control
effort. For the first fact, a satisfactory explanation can be easily obtained by observing that, despite the
reduced system of sensors, the semi-distributed and fully-distributed schemes are still able to capture
a “high-quality picture” of the building dynamical state. In contrast, the partial-state controller in the
concentrated actuation scheme loses all the state information of the upper half building. Finding a
good explanation for the second fact is a more tricky issue. After careful consideration, we have noted
that the concentrated and semi-distributed configurations contain actuation devices implemented
in adjacent building levels, which can exert conflicting control actions on the common shared floor.
We think that this can be a possible explanation for the higher control-effort level observed in the
controllers of these actuation schemes.

In summary, the obtained results indicate that properly distributed actuation systems with
collocated sensors can be very effective for partial-state control systems of large structures. Additionally,
special attention should be paid to avoid possible conflicting interactions between adjacent actuation
devices. After these positive outcomes, further research effort should be invested in finding a suitable
methodology to determine optimal configurations of distributed multi-actuation systems with partial
state information. This is certainly an important and challenging problem, especially for large-scale
structures [32,33]. Other related issues of special interest are the study of the potential loss of
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performance in adjacent actuation devices and the design of decentralized control strategies with
partial-state information.
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