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Abstract: When the Takagi–Sugeno (T-S) fuzzy model is used to design controllers for a concerned
system, the discrepancy between the system and its T-S fuzzy model becomes crucial sometimes
in terms of control performance, particularly in cases when the magnitude of the discrepancy is
relatively large. While most existing works have focused on approaches to restrain the influence of
the discrepancy, the idea used in this paper is to extract as much information from the discrepancy as
possible at first and then use it in the controller design before restraining its influence. By doing so,
the magnitude of the discrepancy is reduced accordingly, and thus, better control performance can
be expected. Including the discrepancy and other uncertain elements like the inner parameters’
perturbation, a term called uncertainty is considered in this paper. Assuming that the uncertainty
influences the system behavior through the state and control input, an observer able to catch the
trajectory of the partial uncertainty related to the control input is proposed. Then, a controller
employing the trajectory is suggested. All design parameters are obtained by solving certain linear
matrix inequalities, which guarantees the system stability. Finally, simulations are provided to
illustrate the effectiveness of the proposed approach.

Keywords: T-S fuzzy model; uncertainty; observer of uncertainty; linear matrix inequalities;
system stability

1. Introduction

The Takagi–Sugeno (T-S) fuzzy model [1] is composed of certain If-Then fuzzy rules, in which
each consequent part is in the form of the state-space representation that is a linear differential equation.
Though the overall T-S fuzzy model is a nonlinear model (meaning a nonlinear differential equation),
techniques for controller design based on linear models such as linear feedback control can still be
applied, if a controller design based on the T-S fuzzy model is developed using the concept of the
so-called parallel distributed compensation (PDC). This is one of the main reasons why there have
been significant advances in the study of the stability analysis and controller synthesis based on the
T-S fuzzy model since the beginning of the 1990s. In particular, with the help of some advanced
software packages such as the third-party MATLAB toolbox, the design parameters in the PDC
controller can be numerically obtained by solving certain linear matrix inequalities (LMIs) that provide
sufficient conditions for system stability in the sense of Lyapunov stability.

On the other hand, the T-S fuzzy model, like other models, in most cases, is comprised of
approximate mathematical expressions for the purpose of designing a controller for the system. This
means that there is a discrepancy between a real system and its T-S fuzzy model. Including the
discrepancy, this paper uses a term called uncertainty to express the unmodeled dynamics such
as external/internal disturbance and parameter perturbations beyond the T-S fuzzy model. If the
uncertainty is small enough, i.e., the T-S fuzzy model matches the real system perfectly well, the control
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performance of the controller based on the T-S fuzzy model will be as good as designed; however,
in the case when the magnitude of the uncertainty is relatively large, the controller may not work
well when it is applied to the real system, and in the worst case, the closed-loop system may become
unstable. Therefore, in order to guarantee and improve the control performance, the uncertainty must
be taken into consideration in the T-S fuzzy model.

Though the uncertainty is referred to by different names in different contexts, how to deal with it
has been a very typical subject in control systems. Among the existing approaches, H∞ control [2–6] is
an effective approach that keeps the ratio of the influence from the uncertainty on the real system below
some prescribed indexes. Though a wide range of related works was reported, as a result, the influence
from the uncertainty becomes larger accordingly if the magnitude of the uncertainty is larger, even
if the ratio is kept the same. Another way to handle the uncertainty in the T-S fuzzy model is to
utilize the capability of the fuzzy approximator capable of uniformly approximating unknown
nonlinearities [7–10], in which related parameters are tuned by adaptive laws [2]. However,
the parameters lying in the fuzzy approximators are tuned on the basis, not of the improvement
of the approximateness, but of the system stability. In other words, if the approximateness is not
guaranteed, the control performance cannot be as good as expected, and even the overall control
system becomes unstable in the worst case.

Assuming the uncertainty is norm-bounded with certain structures in the T-S fuzzy model, some
works involved certain known matrices defining the norm-bounded uncertainty in certain LMIs,
which guarantees the system stability [11–14]. However, it is not easy to estimate the norm-bounded
matrices because the mathematical model of the real system is unavailable in most cases; thus, the
magnitudes of the norm-bounded matrices are often set large to safely cover the uncertainty, which
results in conservative stability conditions. On the other hand, viewing the uncertainty as an unknown
input, there are existing approaches of designing state observers decoupling the influence of the
unknown input in the field of fault diagnosis [15–17]. However, when further designing a controller
based on the model with unknown input, in fact, the approach used in the design of the state observers
cannot be applied straightforwardly to the design of controller.

Uncertainty observer-based control provides a promising approach to handle system uncertainty
and improve robustness [18–21]. In this framework, a baseline controller is first designed under the
assumption that the uncertainty is not considered, and then, a compensation part is added to the
baseline controller in order to counteract the influence of the uncertainty that is estimated by an
observer. However, all the proposed observers are designed on the assumption that the uncertainty
only lies in the control matrices and must not be time-dependent, which clearly limits its applications.

While it is difficult to estimate the uncertainty itself particularly when it is highly oscillating,
the paper makes an effort to extract as much information from the uncertainty as possible; then, the
information is utilized in the controller design. Consequently, the influence of the uncertainty will be
reduced accordingly, which leads to a better control performance. In the T-S fuzzy model considered
in this paper, the uncertainty is thought to influence the system behavior through the state and the
control input. While the former part of the uncertainty is assuming norm-boundedness, this paper
focuses attention on the latter part of the uncertainty, because it is linked to the control input directly,
which implies that any information available about the uncertainty can be used directly, as well.
Concretely, the latter part of the uncertainty is virtually divided further into a constant part and a
time-varying part, and an observer of the constant part is designed. As a result, the observer is able to
catch the trajectory of the latter part of the uncertainty. Following the observer design, a controller using
the information of the trajectory from the observer is proposed, in which the conditions guaranteeing
the system stability are arranged in the form of LMIs. Finally, simulation results are provided to
illustrate the effectiveness of the approach proposed in this paper.
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2. T-S Fuzzy Model and Partial Disturbance Observer

Assume that a nonlinear system can be represented by the following T-S fuzzy model [1]:

Plant Rule i :

If θ1(t) is Mi
1 and · · · and θnθ

(t) is Mi
nθ

, Then

ẋ(t) = Aix(t) + Biu(t) + Fi(t)
y(t) = Cix(t)
ẏ(t) = Ci ẋ(t)

 (1)

where θj (j = 1, 2, · · · , nθ) is a variable in the antecedent that is available; Mi
j (i = 1, 2, . . . , nr),

a fuzzy term corresponding to the i-th rule; x(t) ∈ Rn, the state vector; u(t) ∈ Rm, the input
vector; y(t) ∈ Rp, the output vector; Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n, some compatible matrices;
Fi(t) ∈ Rn, uncertainty including modeling error, external disturbance, unmodeled dynamics and
parameter perturbations.

The overall T-S fuzzy model is of the following form accordingly:

ẋ(t) = ∑nr
i=1 αi(t)

(
Aix(t) + Biu(t) + Fi(t)

)
y(t) = ∑nr

i=1 αi(t)Cix(t)
ẏ(t) = ∑nr

i=1 αi(t)Ci ẋ(t)

 (2)

where θ(t) = [θ1(t) θ2(t) · · · θnθ
(t)],

αi(t) =
ωi(θ(t))

∑nr
i=1 ωi(θ(t))

≥ 0,
nr

∑
i=1

αi(t) = 1, ωi(θ(t)) =
nθ

∏
j=1

Mi
j(θj(t)).

At first glance, ẏ(t) = Ci ẋ(t) in (1) seems redundant due to the fact that it can be obtained directly
from y(t) = Cix(t). However, when it comes to the fuzzy inference, ẏ(t) = ∑nr

i=1 αi(t)Ci ẋ(t) in (2)
cannot be obtained straightforwardly from y(t) = ∑nr

i=1 hi(t)Cix(t), which leads to:

ẏ(t) =
nr

∑
i=1

α̇i(t)Cix(t) +
nr

∑
i=1

αi(t)Ci ẋ(t).

Therefore, we assume that in this paper, ∑nr
i=1 α̇i(t)Cix(t) = 0 in order to focus our

attention on simple control approaches rather than complex formula manipulation. In addition,
if C1 = C2 = · · · = Cnr = C as in most cases of the T-S fuzzy models, then ẏ(t) = Ci ẋ(t) is no longer
needed due to the fact that y(t) = ∑nr

i=1 αi(t)Cix(t) = Cx(t), which leads to ẏ(t) = Cẋ(t).
As for the uncertainty Fi(t), we assume it influences the system behavior through the state and

the control input:

Fi(t) = ∆Ai(t)x(t) + Bi∆ui(t), (3)

where ∆Ai(t) denotes a partial influence of the uncertainty on the state x(t), while ∆ui(t) represents a
further partial influence of the uncertainty on the control input u(t).

Paying attention to ∆ui(t), which influences the system through the control matrix Bi the same as
the control input u(t), it is reasonable to consider that it would be able to design a controller that is
based on a regular control input u(t) with an extra element such as u(t)− ∆ui(t) to counteract the
influence of ∆ui(t) completely if ∆ui(t) were available. While it is impossible to catch the real value of
∆ui(t) as a whole, it is still desirable to employ some information of ∆ui(t), even partially, to counteract
its influence on the system as much as possible. On the other hand, some existing works have shown
that we are able to estimate ∆ui(t) under the condition of d

dt ∆ui(t) = 0 [22,23], which means that
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∆ui(t) must be a constant, or precisely, not a time-dependent function. Though such a condition is
evidently strict from the point of view of dynamic control systems, in fact, as pointed out by Wu
and Han [23], the condition can, not theoretically, but practically, be extended to cases such as the
piecewise-constant case and the slowly time-varying case (ḋc(t) ' 0). However, when it comes to a
sharply time-varying case, it is clear that the condition cannot be tolerated anymore.

On the basis of the aforementioned observation, we virtually divide ∆ui(t) into a constant part dc

and a time-vary part ∆di(t):

∆ui(t) = dc + ∆di(t). (4)

Whether ∆di(t) is either slowly time-varying or sharply time-varying, we assume it, along with
∆Ai(t), is norm-bounded as follows [11]:[

∆Ai(t) 0
0 ∆di(t)

]
=

[
MAi 0

0 Mdi

]
Θi(t)

[
NA 0
0 Nd

]
, (5)

where MAi, Mdi, NA and Nd are known constant matrices with compatible dimensions and Θi(t) is an
unknown nonlinear time-varying matrix function satisfying:

Θi(t)Θi(t)T ≤ I. (6)

Regarding the virtually constant part dc in (4), we use the following observer to estimate it:

Observer Rule i :

If θ1(t) is Mi
1 and · · · and θp(t) is Mi

p, Then

d̂c(t) = ξ(t) + Ly(t)
ξ̇(t) = −L ∑nr

j=1 αj(t)Cj
(

Aix(t) + Bi(u(t) + d̂c(t))
) } (7)

where d̂c ∈ Rm is the estimate of the constant part dc; ξ ∈ Rm, the internal state vector of the
observer; L ∈ Rm×r, the observer gain to be determined. The overall observer is of the following form
accordingly:

d̂c(t) = ξ(t) + Ly(t)

ξ̇(t) = −∑nr
i=1 ∑nr

j=1 αi(t)αj(t)LCj

(
Aix(t) + Bi(u(t) + d̂c(t))

) } . (8)

Defining the estimation error between dc and d̂c as:

ed = dc − d̂c, (9)

we have:

ėd = −ξ̇ − Lẏ

=
nr

∑
i=1

nr

∑
j=1

αiαjLCj

(
Aix + Bi(u + d̂c)

)
−

nr

∑
i=1

nr

∑
j=1

αiαjLCj

(
(Ai + ∆Ai)x + Bi(u + dc + ∆di)

)
(10)

= −
nr

∑
i=1

nr

∑
j=1

αiαjLCj

(
Bied + ∆Aix + Bi∆di

)
,

where the facts that ẏ(t) = ∑nr
i=1 αi(θ)Ci ẋ(t) and ḋc = 0 are used. It is worth noting that ḋc = 0 is not

an assumption in this paper, because dc is considered as the constant part in (4).
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Before starting the controller design, the following lemma is first provided, which will be used in
the control system stability analysis [24].

Lemma 1. Given matrices A, M, E and R = RT > 0 with appropriate dimensions, let Θ(t) be of the
appropriate dimensions and satisfy Θ(t)TΘ(t) ≤ I. Then, the following holds:

(a) For any scalar ε > 0,

MΘ(t)E + (MΘ(t)E)T ≤ εMMT + ε−1ETE. (11)

(b) If for some constant ε > 0 such that εI − ERET > 0, then:

(A + Mθ(t)E)R(A + Mθ(t)E)T ≤ AR(R− ε−1RETER)−1RAT + εMMT (12)

or:

(A + Mθ(t)E)R(A + Mθ(t)E)T ≤ ARAT + ARET(εI − ERET)−1ERAT + εMMT . (13)

From here, unless confusion arises, arguments such as t and θ will be omitted just for notational
convenience. An asterisk (∗) for inline expressions denotes the transpose of the terms on its left-hand
side; for matrix expressions, it denotes the transpose of its symmetric block-entry.

3. Controller Design

Based on the partial disturbance observer, the following PDC controller is proposed.

Controller Rule i :

If θ1 is Mi
1 and · · · and θp is Mi

p, Then

u = Kix− d̂c (14)

where Ki ∈ Rm×n is the control gain to be determined. Compared to the regular PDC controller,
there is an extra term d̂c in order to counteract the disturbance whenever possible. The overall PDC
controller is of the following form accordingly:

u =
nr

∑
i=1

αiKix− d̂c. (15)

Substituting (15) into (2), the closed-loop control system becomes:

ẋ =
nr

∑
i=1

nr

∑
j=1

αiαj

(
(Ai + ∆Ai)x + Bi(Kjx− d̂c + dc + ∆di)

)
=

nr

∑
i=1

nr

∑
j=1

αiαj

(
(Aix + BiKj)x + ∆Aix + Bied + Bi∆di

)
.

(16)

Combining (A5) with (A7), we have the following augmented system containing the state and
estimation error of the partial disturbance:

ẋe =
nr

∑
i=1

nr

∑
j=1

αiαj
(
Aijxe + ∆Aijxe + Bij∆di

)
, (17)
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where:

xe =

[
x
ed

]
, Aij =

[
Ai + Bik j Bi

0 −LCjBi

]
, ∆Aij =

[
∆Ai 0

−LCj∆Ai 0

]
, Bij =

[
Bi

−LCjBi

]
. (18)

The stability of the above augmented closed-loop system is investigated based on the Lyapunov
stability theory. Let us consider the following quadratic Lyapunov function candidate:

V = xT
e Pxe (19)

where:

P =

[
P1 0
0 P2

]
> 0, (20)

P1 = PT
1 , P2 = PT

2 .
Taking the time derivative of V, we have:

V̇ =ẋT
e Pxe + xT

e Pẋe

=
nr

∑
i=1

nr

∑
j=1

αiαj

{(
xT

e AT
ij + xT

e ∆AT
i + ∆dT

i BT
ij

)
Pxe + xT

e P
(
Aijxe + ∆Aixe + Bij∆di

) }
=

nr

∑
i=1

nr

∑
j=1

αiαj

{
xT

e

(
AT

ij P + PAij

)
xe + 2xT

e P∆Aijxe + 2xT
e PBij∆di

}
.

(21)

Substituting the following inequalities into (21),

2P∆Aij = 2P

[
∆Ai 0

−LCj∆Ai 0

]

= 2P

[
I
−LCj

]
∆Ai

[
I 0

]
= 2P

[
I
−LCj

]
MAi Θi NA

[
I 0

]

≤ P

[
I
−LCj

]
MAi M

T
Ai

[
I
−LCj

]T

P +
[

I 0
]T

NT
ANA

[
I 0

]
= PMijMT

ij P +Ni,

(22)

where:

Mij =

[
MAi

−LCj MAi

]
, Ni =

[
NT

ANA 0
0 0

]
, (23)

and:
2xT

e PBij∆di = 2xT
e PBij Mdi

Θi Nd

≤ xT
e PBij Mdi

MT
di
BT

ij Pxe + NT
d Nd,

(24)

where (a) of Lemma 1 is used, we have:

V̇ ≤
nr

∑
i=1

nr

∑
j=1

αiαj

{
xT

e

(
AT

ij P + PAij + PMijMT
ij P +Ni + PBij Mdi

MT
di
BT

ij P
)

xe + NT
d Nd

}
. (25)
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Letting:

AT
ij P + PAij + PMijMT

ij P +Ni + PBij Mdi
MT

di
BT

ij P ≤ −η I (26)

where η > 0 is a prescribed constant, from (25), we have:

V̇ ≤ −
nr

∑
i=1

nr

∑
j=1

αiαjxT
e ηxe + NT

d Nd

= −xT
e ηxe + NT

d Nd

= −ηxT
e xeγ−1

max(P)γmax(P) + NT
d Nd

≤ −ηγ−1
max(P)xT

e Pxe + NT
d Nd

= −ηγ−1
max(P)V + NT

d Nd

= −κV + NT
d Nd,

(27)

where γmax(P) > 0 is the maximum eigenvalue of P, κ = ηγ−1
max(P) > 0. Considering the relation in (5)

and ∆di ∈ Rm×1, whatever the dimensions of Mdi and Θi may be, Nd must be a vertical vector.
As a result, NT

d Nd is a scalar.
From (27), we have:

V(t) ≤ e−κt

(
V(0)−

NT
d Nd

κ

)
+

NT
d Nd

κ
, (28)

which implies that after sufficient time has elapsed, e−κt
(

V(0)− NT
d Nd
κ

)
will tend to zero, i.e.,

V ≤
NdNT

d
η

γmax(P). (29)

Considering the relation of V = xT
e Pxe ≥ ||xe||2γmin(P), where γmin(P) > 0 is the minimum

eigenvalue of P, from (29), we have:

‖xe‖ ≤

√
NdNT

d γmax(P)
ηγmin(P)

. (30)

Therefore, the problem left is how to maintain the inequality (26). By the Schur complement, (26) is
equivalent to the following:PAij + (∗) +Ni + η I PMij PBij Mdi

∗ −I 0
∗ ∗ −I

 < 0. (31)

Substituting (18) and (23) into (31), we have:
Ξ P1Bi P1MAi P1Bi Mdi

∗ −FCjBi − (∗) + η I −FCj MAi −FCjBi Mdi

∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0. (32)

where F = P2L ∈ Rm×r,

Ξ = P1 Ai + P1BiKj + (∗) +
(

NT
ANA + η

)
I (33)
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Considering that P1, Kj, F and P2, which is hidden in F, are parameters to be determined, Ξ is
nonlinear. Though, except Ξ, the other blocks are all linear, (32) cannot be treated as an LMI issue to
obtain the parameters satisfying the inequality. However, bearing in mind that a necessary condition to
hold the inequality is the leading principal minor Ξ < 0, here in this paper, we first consider obtaining
Kj such that:

Q1 > 0[
AiQ1 + Bi Mj + (∗) Q1

∗ −(NT
ANA + η)−1 I

]
< 0

 , i, j = 1, 2, . . . , nr (34)

where Q1 = QT
1 = P−1

1 , Mj = KjQ1. It is evident that by the Schur complement, Ξ < 0 holds if (34) is
satisfied. By solving LMIs in (34), we have:

Kj = MjQ−1
1 . (35)

Once Kj is known, (32) becomes LMIs. In other words, viewing P1, P2, F as the decision variables,
solving (32) along with LMI (20), the observer gain L can be obtained as follows.

L = P−1
2 F. (36)

To sum up all results above, the following theorem is provided.

Theorem 1. Consider a nonlinear system represented by the T-S fuzzy model (2) with the uncertainty Fi
subject to (3)–(6), the partial uncertainty observer (7) and controller (15) in which the observer gain L and the
control gain Kj (j = 1, . . . , nr) are obtained by the following two steps. For a prescribed scalar η > 0, if there
exists symmetric matrices P1, P2, Q1, matrices F and Mj with appropriate dimensions obtained progressively:

Step 1 solving LMIs (34) to obtain Q1, Mj, then Kj by (35),
Step 2 solving LMIs (20) and (32) to obtain P1, P2 and F, then L by (36), where Kj is known by Step 1,

then the augmented system xe containing the state x and the estimation error of the partial disturbance defined
in (9) will remain stable, and the state xe will converge to the region defined in (30).

Regarding this theorem, we give the following remarks.

Remark 1. It follows from (30) that it is better to set a larger η and a smaller Nd in order to make ||xe|| smaller.
However, a larger η leads to LMIs (34) tending to be more difficult to satisfy, while a smaller Nd causes the risk
that ∆di is no longer covered by Mdi

Θi Nd, as shown in (5). There is a trade-off between the parameter setting
and the convergence.

Remark 2. P2 is not involved in the LMIs (32) directly in Step 2, which implies that it is enough as long as
P2 > 0 as required by the LMI (20). Therefore, from (36), we observe that a smaller P2 leads to a larger observer
gain L. In order to adjust the magnitude of P2,[

P1 0
0 γP2

]
> 0, (37)

where γ > 0 is set manually.

Remark 3. The theorem is based on the condition that the state x is available. A similar design is provided in
Appendix A in the case that the state is unavailable.
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4. Simulation

Consider the following altered Van der Pol oscillator [25]:[
ẋ1

ẋ2

]
=

[
(1 + 0.5 sin(t)) x2

−x1 +
(
1− x2

1
)

x2 + u

]
+ F

y = x2

 (38)

where the uncertainty in (3) is given as:

F =

[
0 0.5 sin(t)
0 0

]
x +

[
0
1

]
∆u, (39)

and xT = [x1 x2], in which ∆u is considered in two cases that are depicted in Figures 1 and 2.

0 2 4 6 8 10 12

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (s)

Figure 1. Sinusoidally-perturbed uncertainty.

0 2 4 6 8 10 12

-4

-2

0

2

4

6

time (s)

Figure 2. Piecewise constantly-perturbed uncertainty.
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Without control and uncertainty, i.e., u = 0 and ∆F = 0, the x1 − x2 phase plane is shown in
Figure 3, where the circle is the initial point and the square is the end point. It is clear that the unforced
system is unstable.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 3. x1 − x2 phase plane with u = 0 and F = 0.

The above nonlinear system can be represented by the following two-rule T-S fuzzy model:

Rule i : If x1 is Mi(x1), Then

ẋ = (Ai + ∆Ai) x + Bi (u + ∆u)
y = Cix

}
(40)

where i = 1, 2, M1(x1) =


9−x2

1
9 , −3 ≤ x1 ≤ 3

0, otherwise
, M2(x1) = 1−M1(x1), C1 = C2 =

[
0 1

]
,

A1 =

[
0 1
−1 1

]
, A2 =

[
0 1
−1 −8

]
, B1 =

[
0
1

]

B2 = B1, ∆A1 =

[
0 0.5 sin(t)
0 0

]
, ∆A2 = ∆A1.

As for ∆Ai, ∆di in (5), we set MAi = I, NA = 0.2I, Mdi
= 1 and Nd = 1. Following Step 1 in

Theorem 1, we have K1 = [−30.3086,−30.1844], K2 = [−30.3086,−21.1844] by solving LMIs by (35).
Then, following Step 2, we have L = 11.3559 by solving LMIs (20) and (32), where γ in (37) is set to be
100 in order to get a larger observer gain. It is obvious that L will be 0.113559 if we set γ = 1.

For the purposes of comparison, we recall the regular PDC controller based on the T-S fuzzy
model (2) where Fi = 0 [26]:

u =
nr

∑
i=1

αiKix. (41)
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The control gain can be obtained by Ki = GjQ−1, where Q = QT ∈ Rn×n, Gj ∈ Rm×n are subject to
the following LMIs:

Q > 0
AiQ + BiGj + (∗) < 0

}
, i, j = 1, 2, . . . , nr. (42)

Solving the above LMIs, we have K1 = [−0.2179,−1.7081], K2 = [−0.2179, 7.2919] for the regular
PDC controller in (41). The control performance of the regular controller is shown in Figure 4, where the
uncertainty is not considered, i.e., F = 0, where the initial state is set to be x0 = [1, 1]T . It is clear that
the regular controller is able to stabilize the unstable system when the uncertainty is not considered.
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Figure 4. Control performance of the regular parallel distributed compensation (PDC) controller (41)
where F = 0 in (38).

However, when the uncertainty in Figure 1 is applied to the system, as shown in Figure 5,
the regular controller no longer stabilizes the system. On the contrary, with the uncertainty
observer (A4), the proposed controller (15) can stabilize the system effectively under the same
circumstances. Figures 6 and 7 depict the behaviors of state and control input, respectively. At
the same time, as shown in Figure 8, the observer (A4) is able to catch the trajectory (bold line) of the
uncertainty ∆u.
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Figure 5. Control performance of the regular PDC controller (41) where ∆u in Figure 1 is applied.
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Figure 6. Control performance of the proposed controller (15) where ∆u in Figure 1 is applied.
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Figure 7. Control input of the proposed controller (15) where ∆u in Figure 1 is applied.
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Figure 8. ∆u in Figure 1 and its estimate (bold line).
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When it comes to the uncertainty in Figure 2, as shown in Figure 9, the regular controller (41) once
again is unable to stabilize the system. However, the proposed controller is very effective at handling
the same situation. The behaviors of the state and control input are depicted in Figures 10 and 11,
respectively, while the behavior of the uncertainty observer (A4) is depicted in Figure 12.
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Figure 9. Control performance of the regular PDC controller (41) where ∆u in Figure 2 is applied.
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Figure 10. Control performance of the proposed controller (15) where ∆u in Figure 2 is applied.
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Figure 11. Control input of the proposed controller (15) where ∆u in Figure 2 is applied.
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Figure 12. ∆u in Figure 2 and its estimate (bold line).

5. Conclusions

In order to improve the control performance when using the widely-used T-S fuzzy model to
design a controller, a term called uncertainty was considered in the model. While the stability of the
whole control system involving such uncertainty can be guaranteed by certain conditions such as
LMIs, one of the main contributions in this paper was making an effort to employ some information of
the uncertainty whenever possible in the controller design. Consequently, as verified in the Simulation
Section, an observer that is able to catch the trajectory of partial uncertainty that shares the same
control matrix as the control input was proposed without the often used condition that the uncertainty
must be time independent. Compared to the regular PDC controller, simulation results showed that the
controller proposed in this paper was more effective at handling the situation where the uncertainty
appears. However, all the designs in this paper were developed on the condition that all of the state is
available, which may restrain its applications to practical systems. As one of the ongoing challenges, we
are working on an observer of the state along with the one related to the uncertainty for the controller
design. It is apparent that the approach shown in this paper cannot be straightforwardly extended
to the state-unknown case on account of the uncertainty. Finally, it is worth noting that, when the
approach proposed in this paper is applied to a real-time system, the uncertainty may not cover all the
discrepancy between the real system and its T-S fuzzy model. In this sense, the system stability margin
and robustness should be considered when developing such approaches in future works.
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Appendix A

In the event that the state is unavailable, the controller (14) no longer works. Though using the
output feedback design, instead of the state feedback, is one of the reasonable options, here we adopt a
state-observer-based approach, in case the state is used somewhere else besides the controller design.
For example, we may be interested in the behavior of each state in the control process.

Under the existence of the lumped disturbance, the following state observer is suggested:

˙̂x =
nr

∑
i=1

αi

(
Ai x̂ + Bi(u + d̂c) + L1(y− ŷ)

)
(A1)
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where x̂ is the estimate of the state x; d̂c, the estimate of dc, which will be given later; L1 ∈ Rn×r,
the observer gain to be determined; ŷ = ∑nr

j=1 αjCj x̂.
Define the estimation error between x and x̂ as:

ex = x− x̂ (A2)

then we have from (2) and (A1):

ėx = ẋ− ˙̂x

=
nr

∑
i=1

αi

(
(Ai + ∆Ai)x + Bi(u + dc + ∆di)

)
−

nr

∑
i=1

nr

∑
j=1

αiαj

(
Ai x̂ + Bi(u + d̂c) + L1Cj(x− x̂)

)
=

nr

∑
i=1

nr

∑
j=1

αiαj

(
(Ai − L1Cj)ex + Bied + ∆Aix + Bi∆di

)
.

(A3)

As for the estimation of the disturbance, the disturbance observer (A4) is replaced as follows:

d̂c = ξ + L2y

ξ̇ = −∑nr
i=1 ∑nr

j=1 αiαjL2Cj

(
Ai x̂ + Bi(u + d̂c)

) } (A4)

where L2 ∈ Rm×r is the disturbance observer gain to be determined.
From (9) and (A4), we have:

ėd = ḋc − ˙̂dc

= −ξ̇ − L2ẏ

=
nr

∑
i=1

nr

∑
j=1

αiαjL2Cj

(
Ai x̂ + Bi(u + d̂c)

)
−

nr

∑
i=1

nr

∑
j=1

αiαjL2Cj

(
(Ai + ∆Ai)x + Bi(u + dc + ∆di)

)
= −

nr

∑
i=1

nr

∑
j=1

αiαjL2Cj

(
Aiex + Bied + ∆Aix + Bi∆di

)
.

(A5)

Using the observers above, the controller (15) is replaced by:

u =
nr

∑
i=1

αiKi x̂− d̂c. (A6)

Substituting (A6) into (2), the closed-loop control system becomes:

ẋ =
nr

∑
i=1

nr

∑
j=1

αiαj

(
(Ai + ∆Ai)x + Bi(Kj x̂− d̂c + dc + ∆di)

)
=

nr

∑
i=1

nr

∑
j=1

αiαj

(
(Aix + BiKj)x + ∆Aix− BiKjex + Bied + Bi∆di

)
,

(A7)

where the relation x̂ = x− ex is used.
Combining (A3) and (A5) with (A7), we have the following augmented system containing the

state, estimation errors of the state and the partial disturbance:

ẋe =
nr

∑
i=1

nr

∑
j=1

αiαj
(
Aijxe + ∆Aijxe + Bij∆di

)
, (A8)
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where:

xe =

 x
ex

ed

 , Aij =

Ai + Bik j −BiKj Bi
0 Ai − L1Cj Bi
0 L2Cj Ai −L2CjBi

 , ∆Aij =

 ∆Ai 0 0
∆Ai 0 0

−LCj∆Ai 0 0

 , Bij =

 Bi
Bi

−LCjBi

 .

It is clear that (A8) is very similar to (17). Therefore, the approach used in Section 3 is applicable
to this case. Consequently, the observer gains L1 in (A1), L2 in (A4) and the control gain Ki in (A6) can
be determined by certain LMIs, which are the system stability conditions. We leave this to the reader.
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